Skip to main content

Abstract

Aneurysms are the most important disorder that affects the aorta. Aneurysms involving the abdominal aorta are typically associated with atherosclerosis, whereas those involving the thoracic aorta have many causes, including congenital abnormalities in the structure of the aortic wall. This chapter will discuss thoracic aortic aneurysms, such as Marfan syndrome, bicuspid aortic valve, and familial thoracic aortic aneurysm syndrome, and also abdominal aortic aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Allaire E, Hasenstab D, Kenagy RD, et al. Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation 1998;98:249–255.

    PubMed  CAS  Google Scholar 

  • Aoyoma T, Francke U, Dietz HC, Furthmayr H. Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibrob-lasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms. J Clin Invest 1994;94:130–137.

    Google Scholar 

  • Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg 1997;25:506–511.

    Article  PubMed  CAS  Google Scholar 

  • Booms T, Tiecke F, Rosenberg T, Hagemeier C, Robinson PN. Differential effects of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments. Hum Genet 2000;107:216–224.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Moons L, Lijnen R, et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997;17:439–444.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang P. Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein E/endothelial nitric oxide synthase double knockout mice. Circulation 2001;104:2391–2394.

    Article  PubMed  CAS  Google Scholar 

  • Coady MA, Davis RR, Roberts M, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg 1999;134:361–367.

    Article  PubMed  CAS  Google Scholar 

  • Collod G, Babron M, Jondeau G, et al. A second locus for Marfan syndrome maps to chromosome 3p24.2-p25. Nat Genet 1994;8:264–268.

    Article  PubMed  CAS  Google Scholar 

  • Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW. Expression and localization of macrophage elastase in abdominal aortic aneurysms. J Clin Invest 1998;102:1900–1910.

    PubMed  CAS  Google Scholar 

  • Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep 2002;4(3):222–227.

    Article  PubMed  Google Scholar 

  • De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Peyritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417–426.

    Article  PubMed  Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991;352:337–339.

    Article  PubMed  CAS  Google Scholar 

  • Dietz HC, McIntosh I, Sakai LY, et al. Four novel FBN 1 mutations: Significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 1993;17:468–475.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular alvulospetal morphogenesis. Circ Res 1995;77:1–6.

    PubMed  CAS  Google Scholar 

  • Eldadah ZA, Brenn T, Furthmayr H, Dietz HC. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest 1995;95:874–880.

    PubMed  CAS  Google Scholar 

  • Fedak PWM, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 2002;106:900–904.

    Article  PubMed  Google Scholar 

  • Freestone T, Turner RG, Coady A, et al. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 1995;15:1145–1151.

    PubMed  CAS  Google Scholar 

  • Fukui D, Miyagawa S, Soeda J, Tanaka K, Urayama H, Kawasaki S. Overexpression of transforming growth factor beta1 in smooth muscle cells of human abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2003;25(6):540–545.

    Article  Google Scholar 

  • Kuhlencordt PJ, Gyurko R, Han F, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 2001;104(4):448–454.

    Article  PubMed  CAS  Google Scholar 

  • Lee TC, Zhao YD, Courtman DW, et al. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 2000;101:2345–2348.

    PubMed  CAS  Google Scholar 

  • Loeys B, Nuytinck L, Delvaux I, De Bie S, De Paepe A. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med 2001;161:2447–2454.

    Article  PubMed  CAS  Google Scholar 

  • Milewicz DM, Chen H, Park E-S, et al. Reduced penetrance and variable expressivity of familial thoracic aneurysms/dissections. Am J Cardiol 1998;82:474–479.

    Article  PubMed  CAS  Google Scholar 

  • Miralles M, Wester W, Sicard GA, Thompson R, Reilly J. Indomethacin inhibits expansion of experimental aortic aneurysms via inhibition of the cox2 isoform of cyclooxygenase. J Vasc Surg 1999;29(5):884–893.

    Article  PubMed  CAS  Google Scholar 

  • Nkomo VT, Enriquez-Sarano M, Ammash NM, et al. Bicuspid aortic valve associated with aortic dilatation. Arterioscler Thromb Vasc Biol 2002;23:351–356.

    Article  Google Scholar 

  • Pepe G, Giusti B, Atlanasio M, et al. A major involvement in the cardiovascular system in patients affected by Marfan syndrome: novel mutations in fibrillin 1 gene. J Mol Cell Cardiol 1997;29:1877–1884.

    Article  PubMed  CAS  Google Scholar 

  • Pereira L, Andrikopoulds K, Tian J, et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 1997;17:218–222.

    Article  PubMed  CAS  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 1999;96:3819–3823.

    Article  PubMed  CAS  Google Scholar 

  • Pyeritz RE. The Marfan syndrome. Annu Rev Med 2000;51:481–510.

    Article  PubMed  CAS  Google Scholar 

  • Pyo R, Lee JK, Shipley M, et al. Targeted gene disruption of metallopro-teinase-9 suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 2000;105:1641–1649.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt DP, Ono RN, Notbohm H, Muller PK, Bachinger HP, Sakai LY. Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis: a potential disease causing mechanism in Marfan syndrome. J Biol Chem 2000;275:12,339–12,345.

    Article  PubMed  CAS  Google Scholar 

  • Robinson PN, Booms P. The molecular pathogenesis of the Marfan syndrome. Cell Mol Life Sci 2001;58:1698–1707.

    Article  PubMed  CAS  Google Scholar 

  • Robinson PN, Booms P, Katzke S, et al. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fib-rillinopathies. Hum Mutat 2002;20:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Zempo N, Yamashita A, Takenaka H, Fujioka K, Esato K. Matrix metalloproteinase expressions in arteriosclerotic aneurysmal disease. Vasc Endovascular Surg 2002;36(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  • Shah PK. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation 1997;96:2115–2117.

    PubMed  CAS  Google Scholar 

  • Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms: an elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 1995;96:318–326.

    PubMed  CAS  Google Scholar 

  • Vaughan CJ, Casey M, He J, et al. Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation 2001;103:2469–2475.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Das, S., Januzzi, J.L., Isselbacher, E.M. (2006). Aortic Diseases. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics