Skip to main content

Heart Failure

Emerging Concepts in Excitation-Contraction Coupling and β-Adrenoceptor Coupling

  • Chapter
Principles of Molecular Medicine

Abstract

The process that begins contraction in the heart is known as excitation—contraction (E—C) coupling because it couples electrical signals on the membrane of the cardiac cell to activation of the myofilament and cross-bridge cycling. The cardiac action potential is produced by the coordinated interaction of many ion channels, which transduce physiological signals within and between cardiomyocytes. These cardiomyocytes are further regulated by a number of receptors that control the strength of the contraction on a beat-to-beat basis and their morphology in a chronic fashion. In heart failure, a number of steps in E—C coupling become abnormal. In this chapter, we will examine the role of these abnormalities in the development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002;42:409–435.

    Article  PubMed  CAS  Google Scholar 

  • Aprigliano O, Rybin V, Pak E, Robinson R, Steinberg S. Beta 1-and beta 2-adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am J Physiol 1997;272:H2726–H2735.

    PubMed  CAS  Google Scholar 

  • Arch S, Ainsworth A, Cawthorne M, et al. Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 1984;309:163–165.

    Article  PubMed  CAS  Google Scholar 

  • Australia/New Zealand Heart Failure Collaborative Group. Randomised, placebo controlled trial of carvedilol in patents with congestive heat failure due to ischaemic heart disease. Lancet 1997;349:375–380.

    Article  Google Scholar 

  • Baker J, Hill S. Pharmacological characterization of CGP 12177 at the human beta(2)-adrenoceptor. Br J Pharmacol 2002;137:400–408.

    Article  PubMed  CAS  Google Scholar 

  • Bayewitch M, Avidor-Reiss T, Levy R, et al. Inhibition of adenylyl cyclase isoforms V and VI by various Gβγ subunits. FASEB J 1998;12:1019–1025.

    PubMed  CAS  Google Scholar 

  • Begin-Heick. β3-adrenoceptor activation of adenylyl cyclase in mouse white adipocyes: modulation by GTP and effect of obesity. J Cell Biochem 1995;58:464–473.

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson K, Melander O, Orho-melander M, et al. Polymorphism in the β1-adrenergic receptor gene and hypertension. Circulation 2001;104:187–190.

    PubMed  CAS  Google Scholar 

  • Berkowitz D, Nardone N, Smiley R, et al. Distribution of β3-adrenoceptor mRNA in human tissues. Eur J Pharmacol 1995;289:223–228.

    Article  PubMed  CAS  Google Scholar 

  • Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001;344:1659–1667.

    Article  Google Scholar 

  • Bianchetti A, Manara L. In vitro inhibition of intestinal motility by phenylethanolaminotetralines: evidence of atypical β-adrenoceptors in rat colon. Br J Pharmacol 1990;100:831–839.

    PubMed  CAS  Google Scholar 

  • Bloom J, Dutia M, Johnson B, et al. Disodium (R,R)-5-[2-[2-(3-Chlorophenyl)-2-hydroxymethyl]-amino]pro-pyl]-1,3-benzodioxole-2, 2-dicarboxylate (CL 316,243). A potent β-adrenergic agonist virtually specific for β3-adrenoceptors: a promising antidiabetic and antiobesity agent. J Med Chem 1992;35:3081–3084.

    Article  PubMed  CAS  Google Scholar 

  • Bond R, Leff P, Johnson T, et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adreno-ceptor. Nature 1995;374:272–276.

    Article  PubMed  CAS  Google Scholar 

  • Borjesson M, Magnusson Y, Hjalmarson A, Andersson B. A novel polymorphism in the gene coding for the β1-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J 2000;21:1853–1858.

    Article  PubMed  CAS  Google Scholar 

  • Bundkirchen A, Brixius K, Bolck B, Schwinger R. Bucindolol exerts agonistic activity on the propranolol-insensitive state of β1-adrenoceptros in human myocardium J Pharmacol Exp Ther 2002;300:794–801.

    Article  PubMed  CAS  Google Scholar 

  • Chaudry A, MacKenzie R, Georgic L, Granneman J. Differential interaction of the beta (1)-and beta (3)-adrenergic receptors with G (i) in rat adipocytes. Cell Signal 1994;6:457–465.

    Article  Google Scholar 

  • Chen-Izu Y, Xiao R, Izu L, et al. G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 2000;79:2547–2556.

    Article  PubMed  CAS  Google Scholar 

  • Chesley A, Lundberg M, Asai T, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3-kinase. Circ Res 2000;87:1172–1179.

    PubMed  CAS  Google Scholar 

  • Communal C, Singh K, Sawyer D, Colucci W. Opposing effects of beta(1)-and beta(2)-adrenergic receptors on cardiac mycoyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 1999;100:2210–2212.

    PubMed  CAS  Google Scholar 

  • Davare M, Avdonin V, Hall D, et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+channel Cav1.2. Science 2001;293:98–101.

    Article  PubMed  CAS  Google Scholar 

  • Del Monte F, Kaumann A, Poole-Wilson P, Wynne D, Pepper J, Harding S. Coexistence of functioning beta 1-and beta 2-adrenoceptors in single myocytes from human ventricle. Circulation 1993;88:854–863.

    PubMed  Google Scholar 

  • Devi L. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 2001;22:532–537.

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Kobilka B, Strader D, et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 1986;321:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Emorine L, Marullo S, Briend-Sutren M, et al. Molecular characterization of the human β3-adrenergic receptor. Science 1989;245:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  • Engel G, Hoyer D, Berthold R, Wagner H. (+)[125Iodo]cyanopindolol, a new ligand for β-adrenoceptors: identification and quantitation of sub-classes of β-adrenoceptors in guinea pig. Naunyn Schmiedebergs Arch Pharmacol 1981;317:277–285.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt S, Grimmer Y, Fan G, Lohse M. Constitutive activity of the human β1-adrenergic receptor in β1-receptor transgenic mice. Mol Pharmacol 2001;60:712–717.

    PubMed  CAS  Google Scholar 

  • Engelhardt S, Hein L, Wiesmann F, Lohse M. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999;96:7059–7064.

    Article  PubMed  CAS  Google Scholar 

  • Freestone N, Heubach J, Wettwer E, Ravens U, Brown D, Kaumann A. β4-Adrenoceptors are more effective than β1-adrenoceptors in mediating arrhythmic Ca42+transients in mouse ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 1999;360:445–456.

    Article  PubMed  CAS  Google Scholar 

  • Freestone N, Kaumann A. Activation of an atypical β-adrenoceptor increases calcium and can elicit arrhythmias in rat atrial cardiomy-ocytes. Pharmacologist 1997;39:74.

    Google Scholar 

  • Gao T, Ouri T, Gerhardstein B, et al. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997;272:19,401–19,407.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier C, Langin D, Balligand J. β3-Adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 2000;1:426–431.

    Article  Google Scholar 

  • Gauthier C, Leblais V, Kobzig L, et al. The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of anitric oxide synthase in human ventricle. J Clin Invest 1998;102:1377–1384.

    PubMed  CAS  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. Functional β3-adrenoceptor in the human heart. J Clin Invest 1996;98:556–562.

    PubMed  CAS  Google Scholar 

  • Gilbert E, Hershberger R, Wiechmann R, Movsesian M, Bristow M. Pharmacologic and hemodynamic effects of combined β-agonist stimulation and phosphodiesterase inhibition in the failing human heart. Chest 1995;108:1524–1532.

    PubMed  CAS  Google Scholar 

  • Gille R, Lemoine H, Ehle B, Kaumann A. The affinity of (-)-propranolol for P1 and β2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn Schmiedebergs Arch Pharmacol 1985;331:60–70.

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Adamson D, Ranu H, et al. The effect of Gi-protein inactivation on basal, and beta(1)-and beta(2)AR-stimulated contraction of myocytes from transgenic mice overexpressing the beta(2)-adrenocep-tor. Br J Pharmacol 2000;131:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Granneman J. The putative β4-adrenergic receptor is a novel state of the β1-adrenergic receptor. Am J Physiol Endocrinol Metab 2001;43:E199–E202.

    Google Scholar 

  • Hall J, Kaumann A, Brown M. Selective β1-adrenoceptor blockade enhances positive inotropic effects of endogenous catecholamines through β2-adrenoceptors in human atrium. Circ Res 1990;66:1610–1623.

    PubMed  CAS  Google Scholar 

  • Hamilton S, Codina J, Hawkes M, et al. Evidence for direct interaction of Gs alpha with the Ca2+channel of skeletal muscle. J Biol Chem 1991;266:19,528–19,535.

    PubMed  CAS  Google Scholar 

  • Hanoune J, Pouille Y, Tzavara E, et al. Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol Cell Endocrinol 1997;128:179–194.

    Article  PubMed  CAS  Google Scholar 

  • Harding S. Lack of evidence for β3-adrenoceptor modulation of contractile force in human ventricular myocytes. Circulation 1997;95:1–53.

    Google Scholar 

  • Hartzell HC, Fischmeister R. Direct regulation of cardiac Ca2+channels by G proteins: neither proven nor necessary? Trends Pharmacol Sci 1992;13:380–385.

    Article  PubMed  CAS  Google Scholar 

  • He J, Xu J, Castleberry A, Lau A, Hall R. Glycosylation of beta(1)-adren-ergic receptors regulates receptor surface expression and dimerization. Biochem Biophys Res Commun 2002;297:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Hebert T, Moffett S, Morello J, et al. A peptide derived from a beta2-adren-ergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996;271:16,384–16,392.

    Article  PubMed  CAS  Google Scholar 

  • Heubach J, Blaschke M, Harding S, Ravens U, Kaumann A. Cardiostimulant and cardiodepressant effects through overexpressed human β2-adrenoceptors in murine heart: regional differences and functional role of β1-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 2003;367:380–390.

    Article  PubMed  CAS  Google Scholar 

  • Iwai C, Akita H, Shiga N, et al. Suppressive effect of the Gly389 allele of the β1-adrenergic receptor gene on the occurrence of ventricular tachycardia in dilated cardiomyopathy. Circ J 2002;66:723–728.

    Article  PubMed  CAS  Google Scholar 

  • Joseph S, Lynham J, Grace A, Colledge W, Kaumann A. The effects of (-)-isoprenaline but not of (-)-CGP12177 are markedly reduced at Gly-389 β1-adrenoceptors compared to Arg-389 β1-adrenoceptors. Br J Pharmacol 2002;135:336P.

    Google Scholar 

  • Kanki H, Yang P, Xie H, Kim R, George A, Roden D. Polymorphisms in β-adrenergic receptor genes in the acquired long QT syndrome. J Cardiovasc Electrophysiol 2002;13:252–256.

    Article  PubMed  Google Scholar 

  • Kaumann A, Bartel S, Molenaar P, et al. Activation of β2-adrenergic receptors hastens relaxation and mediates phosphorylation of phos-pholamban, troponin I and C protein in ventricular myocardium form patients with terminal heart failure. Circulation 1999;99:65–72.

    PubMed  CAS  Google Scholar 

  • Kaumann A, Blinks J. β-Adrenoceptor blocking agents as partial agonists in isolated heart muscle: dissociation of stimulation and blockade. Naunyn Schmiedebergs Arch Pharmacol 1980;311:205–218.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A, Engelhardt S, Molenaar P, Hein L, Molenaar P, Lohse M. (-)-CGP 12177-evoked cardiostimulation in double β1-/β2-adrenoceptor knockout mice. Obligatory role of β1-adrenoceptors for putative β4-adrenoceptor pharmacology. Naunyn Schmiedebergs Arch Pharmacol 2001;363:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A, Lynham J, Sarsero D, Molenaar P. The atypical cardiac cardiostimulant β-adrenoceptor is distinct from β3-adrenoceptor and is coupled to a cyclic AMP-dependent pathway in rat and human myocardium. Br J Pharmacol 1997;120:102P.

    Article  Google Scholar 

  • Kaumann A, Lynham J. Stimulation of cyclic AMP-dependent protein kinase in rat atria by (-)-CGP 12177 through an atypical β-adrenoceptor. Br J Pharmacol 1997;120:1187–1189.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A, Molenaar P. Differences between the third cardiac β-adrenoceptor and the colonic β3-adrenoceptor in the rat. Br J Pharmacol 1996;118:2085–2098.

    PubMed  CAS  Google Scholar 

  • Kaumann A, Molenaar P. Modulation of human cardiac function through 4 β-adrenoceptor populations. Naunyn Schmiedebergs Arch Pharmacol 1997;355:667–681.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A, Preitner F, Sarsero D, Molenaar P, Revelli J, Giacobino J. (-)-CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 1998;53:670–675.

    PubMed  CAS  Google Scholar 

  • Kaumann A, Saunders L. Both β1-and β2-adrenoceptors mediate cate-cholamine-evoked arrhythmias in isolated human atrium. Naunyn Schmiedebergs Arch Pharmacol 1993;348:536–540.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A. Is there a third heart β-adrenoceptor? Trends Pharmacol Sci 1989;10:316–319.

    Article  PubMed  CAS  Google Scholar 

  • Kaumann A. Four β-adrenoceptor subtypes in mammalian heart. Trends Pharmacol Sci 1997;18:70–76.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 2001;15:598–611.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T. Recombinant roulette versus the apparent virtue of’ natural’ cell receptor systems: receptor genotypes versus phenotypes. Trends Pharmacol Sci 2002;23(9):403, 404.

    Article  PubMed  Google Scholar 

  • Kompa A, Gu X, Evans B, Summers R. Desensitization of cardiac beta-adrenoceptor signaling with heart failure produced by myocardial infarction in the rat. Evidence for the role of Gi but not Gs or phospho-rylating proteins. J Mol Cell Cardiol 1999;31:1185–1201.

    Article  PubMed  CAS  Google Scholar 

  • Kompa A, Summers R. Desensitizataion and resensitization of β1-and putative β4-adrenoceptor mediated responses occur in parallel in a rat model of cardiac failure. Br J Pharmacol 1999;128:1399–1406.

    Article  PubMed  CAS  Google Scholar 

  • Konkar A, Zhai Y, Granneman J. β1-Adrenergic receptors mediate β3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 2000;57:252–258.

    PubMed  CAS  Google Scholar 

  • Konkar A, Zhu Z, Granneman J. Aryloxypropanolamine and catecholamine ligand interactions with the β1-adrenergic receptor: evidence for interaction with distinct conformations of β1-adrenergic receptors. J Pharmacol Exp Ther 2000;294:923–932.

    PubMed  CAS  Google Scholar 

  • Krief S, Lonnqvist F, Raimbault S, et al. Tissue distribution of β3-adreno-ceptor mRNA in man. J Clin Invest 1993;91:344–349.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie C, Mercier J, Salahpour A, et al. β12-adrenergic receptor het-erodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 2002;277:35,402–35,410.

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Gong H, Koch W, Brown M, Harding S. The beta-four adreno-ceptor is a novel state of the beta-one adrenoceptor. J Am Coll Cardiol 2002;39(5):165A.

    Article  Google Scholar 

  • Liggett S, Tepe N, Lorenz J, et al. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 2001;101:1707–1714.

    Google Scholar 

  • Liggett S, Wagoner L, Craft L, Hornung R, Hoit B, McIntosh T. The Ile 164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998;102:1534–1539.

    PubMed  CAS  Google Scholar 

  • Lowe M, Grace A, Vandenberg J, Kaumann A. Action potential shortening through the putative β4-adrenoceptor in ferret ventricle: comparison with β1-and β2-adrenoceptor-mediated effects. Br J Pharmacol 1998;124:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  • Lowe M, Lynham J, Grace A, Kaumann A. Comparison of the affinity of beta-blockers for two states of the beta 1-adrenoceptor in ferret ventricular myocardium. Br J Pharmacol 2002;135:451–461.

    Article  PubMed  CAS  Google Scholar 

  • Lowe M, Lynham J, Grace A, Kaumann A. Comparison of the affinity of beta-blockers for two states of the beta 1-adrenoceptor in ferret ventricular myocardium. Br J Pharmacol 2002;135:451–461.

    Article  PubMed  CAS  Google Scholar 

  • Maack C, Cremers B, Flesch M, Hoper A, Sudkamp M, Bohm M. Different intrinsic activities of bucindolol, carvedilol and metoprolol in human failing myocardium. Br J Pharmacol 2000;130:1131–1139.

    Article  PubMed  CAS  Google Scholar 

  • Malinowska B, Schlicker E. Mediation of the positive chronotropic effect of CGP 12177 and cyanopindolol in the pithed rat by atypical beta-adrenoceptors, different from beta 3-adrenoceptors. Br J Pharmacol 1996;117:943–949.

    PubMed  CAS  Google Scholar 

  • Manara L, Badone D, Baroni M, et al. Functional identification of rat atypical β-adrenoerocetor by the first β3-selective antagonists, arly-oxypropanolaminetetratine. Br J Pharmacol 1996;117:1374–1376.

    PubMed  Google Scholar 

  • Maqbool A, Hall A, Ball S, Balmforth A. Common polymorphisms of β1-adrenoceptor: identification and rapid screening assay. Lancet 1999;353:897.

    Article  PubMed  CAS  Google Scholar 

  • Mason D, Moore J, Green S, Liggett S. A gain-of-function polymorphism in a G-protein coupling domain of the human beta 1-adrenergic receptor. J Biol Chem 1999;274(19):12,670–12,674.

    Article  PubMed  CAS  Google Scholar 

  • Michel M, Insel P. Receptor gene polymorphisms: lessons on functional relevance from the β1-adrenoceptor. Br J Pharmacol 2003;138:279–282.

    Article  PubMed  CAS  Google Scholar 

  • Milano C, Allen L, Rockman H, et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994;264:582–586.

    Article  PubMed  CAS  Google Scholar 

  • Mohell N, Dicker A. The β-adrenergic radioligand [3H] CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J 1989;261:401–405.

    PubMed  CAS  Google Scholar 

  • Molenaar P, Sarsero D, Kaumann A. Proposal for the interaction of non-conventional partial agonists and catecholamines with the’ putative β4-adrenoceptor’ in mammalian heart. Clin Exp Pharmacol Physiol 1997;24:647–656.

    Article  PubMed  CAS  Google Scholar 

  • Moniotte S, Kobzik L, Feron O, Trochu J, Guthier C, Balligand J. Upregulation of b3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 2000;103:1649–1655.

    Google Scholar 

  • Nantel F, Bonin H, Emorine L, et al. The human β3-adrenoceptor is resistant to short-term agonist-promoted desensitization. Mol Pharmacol 1993;43:548–555.

    PubMed  CAS  Google Scholar 

  • Oostendorp J, Kaumann A. Pertussis toxin suppresses carbachol-evoked cardiodepression but does not modify cardiostimulation mediated through beta1-and putative beta4-adrenoceptors in mouse left atria: no evidence for beta2-and beta3-adrenoreceptor function. Naunyn Schmiedebergs Arch Pharmacol 2000;361:134–145.

    Article  PubMed  CAS  Google Scholar 

  • Ostrom R, Violin J, Coleman S, Insel P. Selective enhancement of β-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 2000;57:1075–1079.

    PubMed  CAS  Google Scholar 

  • Packer M, Bristow M, Cohn J, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349–1355.

    Article  PubMed  CAS  Google Scholar 

  • Pak M, Fishman P. Anomalous behaviour of CGP 12177A on beta 1-adrenergic receptors. J Recept Signal Transduct Res 1996; 16(1,2): 1–23.

    PubMed  Google Scholar 

  • Pavoine C, Magne S, Sauvadet A, Pecker F. Evidence for a beta2-adrener-gic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/camp pathway. J Biol Chem 1999;274:628–637.

    Article  PubMed  CAS  Google Scholar 

  • Podlowski S, Wenzel K, Luther H, et al. Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J Mol Med 2000;78:87–93.

    Article  PubMed  CAS  Google Scholar 

  • Poole-Wilson PA, Swedberg K, Cleland JGF, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the carvedilol or metoprolol European trial (COMET): randomised controlled trial. Lancet 2003;362:9377–9384.

    Google Scholar 

  • Pott C, Brixius K, Bundkirchen A, et al. The preferential β3-adrenoceptor agonist BRL 37344 increases force via β1-/β2-adrenoceptors and induces endothelial nitric oxide synthase via β3-adrenoceptors in human atrial myocardium. Br J Pharmacol 2003;138:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Rana B, Shina T, Insel P. Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu Rev Pharmacol Toxicol 2001;41:593–624.

    Article  PubMed  CAS  Google Scholar 

  • Rathz D, Brown K, Kramer L, Liggett S. Amino acid 49 polymorphisms of the human β1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol 2002;39:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Rybin V, Xu X, Lisanti M, Steinberg S. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 2000;275:41,447–41,457.

    Article  PubMed  CAS  Google Scholar 

  • Rybin V, Xu X, Steinberg S. Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 1999;84:980–988.

    PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz R. A mutation-induced activated state of the b2-adrenergic receptor: extending the ternary complex model. J Biol Chem 1993;268:4625–4636.

    PubMed  CAS  Google Scholar 

  • Samama P, Pei G, Costa T, Cotecchia S, Lefkowitz R. Negative antagonists promote an inactive conformation of the β2-adrenergic receptor. Mol Pharmacol 1994;45:390–394.

    PubMed  CAS  Google Scholar 

  • Sarsero D, Molenaar P, Kaumann A, Freestone N. Putative β4-Adrenoceptors in rat ventricle mediate increases in contractile force and cell Ca2+: comparison with atrial receptors and relationship to (-)-[3H]-CGP 12177 binding. Br J Pharmacol 1999;128:1445–1460.

    Article  PubMed  CAS  Google Scholar 

  • Sarsero D, Molenaar P, Kaumann A. The “putative β4-adrenoceptor” mediates positive inotropic responses and hastens relaxation through a cAMP pathway in human heart. Aust N Z J Med 1998;28:147.

    Google Scholar 

  • Sarsero D, Russell F, Lynham J, et al. (-)-CGP 12177 increases contractile force and hastens relaxation of human myocardial preparations through a propranolol-resistant state of the β 1-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 2003;367:10–21.

    Article  PubMed  CAS  Google Scholar 

  • Sennitt M, Kaumann A, Molenaar P, et al. The contribution of classical (β1/2-) and atypical β-adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel β3-adrenoceptor agonists of differing selectivities. J Pharmacol Exp Ther 1998;285:1084–1095.

    PubMed  CAS  Google Scholar 

  • Sheares K, Haydock S, Brown M. Evidence in vivo of a functional β4-adrenoceptor in the human heart? Br J Clin Pharmacol 2000;49:496P.

    Google Scholar 

  • Shuba Y, Hesslinger B, Trautwein W, McDonald T, Pelzer D. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol 1990;424:205–228.

    PubMed  CAS  Google Scholar 

  • Skeberdis V, Jurevicius J, Fischmeister R. β3-Adrenergic regulation of L-type Ca2+current in human atrial myocytes. Abstract to the 43rd Annual Meeting of the Biophysical Society February 13–17, 1999, Baltimore, MD.

    Google Scholar 

  • Small K, Wagoner L, Levin A, Kardia S, Liggett S. Synergistic poly-morphsims of β1 and α2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002;347:1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg S, Brunton L. Compartmentation of G protein-coupled signaling pathways in cardiac myocyte. Annu Rev Pharmacol Toxicol 2001;41:751–773.

    Article  PubMed  CAS  Google Scholar 

  • Summers R, Molenaar P. Autoradiography of β1 and β2-adrenoceptors. In: Kendall D, Hill S, eds. Methods in Molecular Biology 41: Signal Transduction Protocols. Totowa, NJ: Humana Press Inc., 1995; pp. 25–39.

    Chapter  Google Scholar 

  • Sunahara R, Dessauer C, Gilman A. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 1996;36:461–480.

    Article  PubMed  CAS  Google Scholar 

  • Waagstein F, Caidahl K, Wallentin I, Bergh C, Hjalmarson A. Long-term beta-blockade in dilated cardiomyopathy. Effects of short and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–563.

    PubMed  CAS  Google Scholar 

  • Walter M, Lemoine H, Kaumann A. Stimulant and blocking effects of optical isomers of pindolol on the sinoatrial node and trachea of guinea pig. Role of β-adrenoceptor subtypes in the dissociation between blockade and stimulation. Naunyn Schmiedebergs Arch Pharmacol 1984;327:159–175.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel K, Felix S, Bauer D, et al. Novel variants in 3 kb of 5?UTR of the b1-adrenergic receptor gene (-93C4T,-210C4T, and-2146T4C):-21a6C homozygotes present in patients with idiopathic dilated car-diomyopathy and coronary heart disease. Hum Mutat 2000;16:534.

    Article  PubMed  CAS  Google Scholar 

  • Wheeldon N, Mcdevitt D, Lipworth B. Cardiac Effects of the β3-adrenocep-tor agonist BRL 35135 in man. Br J Clin Pharmacol 1994;37:363–369.

    PubMed  CAS  Google Scholar 

  • White H, Maqbool A, McMahon A, et al. An evaluation of the beta-1 adren-ergic receptor Arg389Gly polymorphism in individuals at risk of coronary events. A WOSCOPS substudy. Eur Heart J 2002;23:1087–1092.

    Article  CAS  Google Scholar 

  • Wickman K, Clapham D. Ion channel regulation by G proteins. Physiol Rev. 1995;75:864–885.

    Google Scholar 

  • Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 1990;336:1–6.

    Article  Google Scholar 

  • Xiao R, Avdonin P, Zhou Y, et al. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.

    PubMed  CAS  Google Scholar 

  • Xiao R, Cheng H, Zhou Y, Kuschel M, Lakatta E. Recent advances in cardiac β2-adrenergic signal transduction. Circ Res 1999;85:1092–1100.

    PubMed  CAS  Google Scholar 

  • Xiao R, Hohl C, Altschuld R, et al. β2-Adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to change in Ca2+ dynamics, contractility or phospholamban phosphorylation. J Biol Chem 1994;269:19,151–19,156.

    PubMed  CAS  Google Scholar 

  • Xiao R, Lakatta E. β1-Adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cyotsolic Ca2+and Ca2+current in single rat ventricular cells. Circ Res 1993;73:286–300.

    PubMed  CAS  Google Scholar 

  • Xiao R. β-Adrenergic signalling in the heart: dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Sci STKE 2001;104:RE15.

    Google Scholar 

  • Yatani A, Brown A. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 1989;245:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Imoto Y, Reeves J, Birnbaumer L, Brown A. A G protein directly regulates mammalian cardiac calcium channels. Science 1987;238:1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Imoto Y, Codina J, Hamilton S, Brown A, Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulated dihydropyridine-sensititive Ca2+channels. J Biol Chem 1988;263:9887–9895.

    PubMed  CAS  Google Scholar 

  • Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002;295(1):1711–1715.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Cheng H, Bogdanov K, et al. Localized cAMP-dependent signalling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am J Physiol 1997;273:H1611–H1618.

    PubMed  CAS  Google Scholar 

  • Zhou Y, Yang D, Zhu W, et al. Spontaneous activation of beta(2)-but not beta(1)-adrenoceptors expressed in cardiac myocytes from beta(1)beta(2) double knockout mice. Mol Pharmacol 2000;58:887–894.

    PubMed  CAS  Google Scholar 

  • Zhu W, Yang D, Zhang S, et al. Heterodimerization of β1-and β2 -adrenergic receptors in cardiac myocytes. Circulation 2002;106(Supp II):1124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Lewis, C.J., Monte, F.D., Harding, S.E., Hajjar, R.J. (2006). Heart Failure. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics