Skip to main content

Local and Regional Vascular Delivery Strategies for Therapeutic Angiogenesis and Myogenesis

  • Chapter
  • 369 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

An estimated 15% of patients with ischemic heart disease are not amenable to conventional methods of revascularization (13), and an additional 12–22% may be limited to incomplete percutaneous coronary intervention (PCI) or surgical procedures (1,47). These so-called no-option patients often progress to end-stage ischemic cardiomyopathy with an annual mortality in excess of 30% (8). Treatment options for this group remain limited to multidrug medical management, myocardial reduction surgery, left-ventricular (LV) assist device placement, or cardiac transplantation. The current estimation is that 100,000 patients per year in this group would potentially benefit from alternative therapies (2,3,9). Over the past decade, cardiac angiogenesis and myogenesis have emerged as such alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones EL, Craver JM, Guyton RA, Bone DK, Hatcher CR Jr, Riechwald N. Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983;51:7–12.

    Article  PubMed  CAS  Google Scholar 

  2. Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis—how many patients might be eligible? Am J Cardiol 1999;84:598–600,A8.

    Article  PubMed  CAS  Google Scholar 

  3. Koransky ML, Robbins RC, Blau HM. VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc Med 2002;12(3):108–114.

    Article  PubMed  CAS  Google Scholar 

  4. Laham RJ, Simons M, Sellke F. Gene transfer for angiogenesis in coronary artery disease. Annu Rev Med 2001;52:485–502.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J. Angiogenic therapy of the human heart. Circulation 1998;97:628–629.

    PubMed  CAS  Google Scholar 

  6. Bauters C. Growth factors as potential new treatment for ischemic heart disease. Clin Cardiol 1997;20(II):52–57.

    Google Scholar 

  7. McNeer JF, Conley MJ, Starmer CF, et al. Complete and incomplete revascularization at aortocoronary bypass surgery; experience with 392 consecutive patients. Am Heart J 1974;88:176–182.

    Article  PubMed  CAS  Google Scholar 

  8. Lucchese FA, Frota Filho JD, Blacher C, Pereira W, Lucio E, Beck L, Leonetti LA, Leaes PE. Partial left ventriculectomy: overall and late results in 44 class IV patients with 4-year follow-up. J Card Surg 2000;15:179–185.

    Article  PubMed  CAS  Google Scholar 

  9. Lowe HC, Burkoff D, Khachigian LM, MacNeill BD, Hayase M, Oesterle SN. Beyond angioplasty: novel developments in interventional cardiology. Intern Med J 2002;32:470–474.

    Article  PubMed  CAS  Google Scholar 

  10. Emanueli C, Madeddu P. Angiogenesis gene therapy to rescue ischemic tissues: achievements and future directions. Br J Pharmacol 2001;133(7):951–958.

    Article  PubMed  CAS  Google Scholar 

  11. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nat Med 1997;3(7):158–164.

    Article  PubMed  CAS  Google Scholar 

  12. Dowell JD, Rubart M, Pasumarthi KBS, Soonpaa MH, Field LJ. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003;58:336–350.

    Article  PubMed  CAS  Google Scholar 

  13. Perin EC, Geng YJ, Willerson JT. Adult stem cell therapy in perspective. Circulation 2003;107:935–938.

    Article  PubMed  Google Scholar 

  14. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ Res 2002;91:1092–1102.

    Article  PubMed  CAS  Google Scholar 

  15. Szmitko PE, Fedak PWM, Weisel RD, Stewart DJ, Kutryk MJB, Verma S. Endothelial progenitor cells: new hope for a broken heart. Circulation 2003;107:3093–3100.

    Article  PubMed  Google Scholar 

  16. Reffelmann T, Kloner RA. Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res 2003;58(2):358–368.

    Article  PubMed  CAS  Google Scholar 

  17. Menasche P. Skeletal muscle satellite cell transplantation. Cardiovasc Res 2003;58:351–357.

    Article  PubMed  CAS  Google Scholar 

  18. Hammond HK, McKirnan MD. Angiogenic gene therapy for heart disease: a review of animal studies and clinical trials. Cardiovasc Res 2001;49:561–567.

    Article  PubMed  CAS  Google Scholar 

  19. Simons M, Bonow RO, Chronos NA, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000;102(11):E73–E86.

    PubMed  CAS  Google Scholar 

  20. Reinlib L, Field L. Cell transplantation as a future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000;101:E182–E187.

    PubMed  CAS  Google Scholar 

  21. Post MJ, Laham RJ, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49:522–531.

    Article  PubMed  CAS  Google Scholar 

  22. Sinnaeve P, Varenne O, Collen D, Janssens S. Gene therapy in the cardiovascular system: an update. Cardiovasc Res 1999;44(3):498–506.

    Article  PubMed  CAS  Google Scholar 

  23. Allen MD. Myocardial protection: is there a role for gene therapy? Ann Thorac Surg 1999;68(5):1924–1928.

    Article  PubMed  CAS  Google Scholar 

  24. Leor J, Prentice H, Sartorelli V, Quinones MJ, Patterson M, Kedes LK, Kloner RA. Gene transfer and cell transplant: an experimental approach to repair a ‘broken heart.’ Cardiovasc Res 1997;35:431–441.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz LB, Moawad J. Gene therapy for vascular disease. Ann Vasc Surg 1997;11(2):189–99.

    Article  PubMed  CAS  Google Scholar 

  26. Peppel K, Koch WJ, Lefkowitz RJ. Gene transfer studies for augmenting cardiac function. Trends Cardiovasc Med 1997;7:145–150.

    Article  Google Scholar 

  27. Folkman J. Clinical applications of research on angiogenesis. NEJM 1995;333(26):1757–1763.

    Article  PubMed  CAS  Google Scholar 

  28. Rowland RT, Cleveland JC, Meng X, Harken AH, Brown JM. Potential gene therapy strategies in the treatment of cardiovascular disease. Ann Thorac Surg 1995;60:721–728.

    Article  PubMed  CAS  Google Scholar 

  29. Losordo DW, Kawamoto A. Biological revascularization and the interventional molecular cardiologist: bypass for the next generation. Circulation 2002;106:3002–3005.

    Article  PubMed  Google Scholar 

  30. Kornowski R, Fuchs S, Leon MB, Epstein SE. Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 2000;101(4):454–458.

    PubMed  CAS  Google Scholar 

  31. Sellke FW, Ruel M. Vascular growth factors and angiogenesis in cardiac surgery. Ann Thorac Surg 2003;75(2):S685–S690.

    Article  PubMed  Google Scholar 

  32. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 1997;36(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 2001;49(3):532–542.

    Article  PubMed  CAS  Google Scholar 

  34. Epstein SE, Kornowski R, Fuchs S, Dvorak HF. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 2001;104:115–119.

    PubMed  CAS  Google Scholar 

  35. Isner JM, Vale PR, Symes JF, Losordo DW. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89:389–400.

    Article  PubMed  CAS  Google Scholar 

  36. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994;266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  37. Lazarous DF, Shou M, Scheinowitz M. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996;94:1074–1082.

    PubMed  CAS  Google Scholar 

  38. Lazarous DF, Scheinowitz M, Shou M, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995;91:145–153.

    PubMed  CAS  Google Scholar 

  39. Thirumurti V, Shou M, Hodge E, Goncalves L, Epstein SE, Lazarous DF, Unger EF. Lack of efficacy of intravenous basic fibroblast growth factor in promoting myocardial angiogenesis, J Am Coll Cardiol 1998;31(Suppl 1):54.

    Article  Google Scholar 

  40. Laham RJ, Rezaee M, Post M, Sellke FW, Braeckman RA, Hung D, et al. Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 1999;27(7):821–826.

    PubMed  CAS  Google Scholar 

  41. Rajanayagam MA, Shou M, Thirumurti V, et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol 2000;35(2):519–526.

    Article  PubMed  CAS  Google Scholar 

  42. Sakakibara Y, Tambara K, Sakaguchi G, et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 2003;24(1):105–112.

    Article  PubMed  Google Scholar 

  43. Sato K, Wu T, Laham RJ, et al. Efficacy of intracoronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia. J Am Coll Cardiol 2001;37(2):616–623.

    Article  PubMed  CAS  Google Scholar 

  44. Udelson JE, Dilsizian V, Laham RJ, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation 2000;102:1605–1610.

    PubMed  CAS  Google Scholar 

  45. Henry TD, Annex BH, McKendall GR, et al. (for the VIVA Investigators). Vascular endothelial growth factor in ischemia for vascular angiogenesis (the VIVA trial). Circulation 2003;107:1359–1365.

    Article  PubMed  CAS  Google Scholar 

  46. Li Y, Takemura G, Kosai KI, et al. Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation 2003;107:2499–2506.

    Article  PubMed  CAS  Google Scholar 

  47. Strauer BE, Kornowski R. Stem cell therapies in perspective. Circulation 2003;107:929–934.

    Article  PubMed  Google Scholar 

  48. Hariawala MD, Horowitz JJ, Esakof D, et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996;63:77–82.

    Article  PubMed  CAS  Google Scholar 

  49. Lopez J, Laham RJ, Carrozza JC, et al. Hemodynamic effects of intracoronary VEGF delivery: evidence of tachyphylaxis and NO dependence of response. Am J Physiol 1997;273:H1317–H1323.

    PubMed  CAS  Google Scholar 

  50. Yang R, Thomas GR, Bunting S, et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol 1996;27:838–844.

    Article  PubMed  CAS  Google Scholar 

  51. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocytes phenotype in the adult murine heart. Circulation 2002;105:93–98.

    Article  PubMed  Google Scholar 

  52. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108(7):863–868.

    Article  PubMed  Google Scholar 

  53. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134–2139.

    Article  PubMed  Google Scholar 

  54. Chleboun JO, Martins RN, Mitchell CA, Chirila TV. bFGF enhances the development of the collateral circulation after acute arterial occlusion. Biochem Biophys Res Comm 1992;185:510–516.

    Article  PubMed  CAS  Google Scholar 

  55. Walder CE, Errett CJ, Bunting S, et al. Vascular endothelial growth factor augments muscle blood flow and function in a rabbit model of hindlimb ischemia. J Cardiovasc Pharmacol 1996;27:91–98.

    Article  PubMed  CAS  Google Scholar 

  56. Takeshita S, Rossow ST, Kearney M, et al. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 1995;147:1649–1660.

    PubMed  CAS  Google Scholar 

  57. Watanabe E, Smith DM, Sun J, Smart FW, Delcarpio JB, Roberts TB, et al. Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart. Basic Res Cardiol 1998;93(1):30–37.

    Article  PubMed  CAS  Google Scholar 

  58. Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, et al. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol 2002;282(3):H1071–H1080.

    PubMed  CAS  Google Scholar 

  59. Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S, et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 2002;105(5):608–613.

    Article  PubMed  CAS  Google Scholar 

  60. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ. Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv 2002;55(3):392–397.

    Article  PubMed  Google Scholar 

  61. Sarkar N, Blomberg P, Wardell E, Eskandarpour M, Sylven C, Drvota V, et al. Nonsurgical direct delivery of plasmid DNA into rat heart: time course, dose response, and the influence of different promoters on gene expression. J Cardiovasc Pharmacol 2002;39(2):215–224.

    Article  PubMed  CAS  Google Scholar 

  62. Tio RA, Tkebuchava T, Scheuermann TH, et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gen Ther 1999;10:2953–2960.

    Article  CAS  Google Scholar 

  63. Schwartz ER, Speakman MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J Am Coll Cardiol 2000;35:1323–1330.

    Article  Google Scholar 

  64. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000;102:898–901.

    PubMed  CAS  Google Scholar 

  65. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther 2003;10:1535–1542.

    Article  PubMed  CAS  Google Scholar 

  66. Wright MJ, Wightman LM, Lilley C, de Alwis M, Hart SL, Miller A, et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol 2001;96(3):227–236.

    Article  PubMed  CAS  Google Scholar 

  67. Lee LY, Patel SR, Hackett NR, Mack CA, Polce DR, El-Sawy T, et al. Focal angiogen therapy using intramyoca rdial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000;69(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  68. Mack CA, Patel SR, Schwartz EA, et al. Biological bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Cardiovasc Surg 1998;115:168–177.

    Article  CAS  Google Scholar 

  69. Safi J, DiPaula AF, Riccioni T, et al. Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart. Microvasc Res 1999;58:238–249.

    Article  PubMed  CAS  Google Scholar 

  70. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999;99(2):201–205.

    PubMed  CAS  Google Scholar 

  71. Horvath KA, Doukas J, Lu CY, Belkind N, Greene R, Pierce GF, et al. Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann Thorac Surg 2002;74(2):481–487.

    Article  PubMed  Google Scholar 

  72. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 2002;105(21):2556–2561.

    Article  PubMed  CAS  Google Scholar 

  73. Aoki M, Morishita R, Taniyame Y, et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, etc. Gene Ther 2000;7:417–427.

    Article  PubMed  CAS  Google Scholar 

  74. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98(25):2800–2804.

    PubMed  CAS  Google Scholar 

  75. Symes JF, Losordo JW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999;68:830–837.

    Article  PubMed  CAS  Google Scholar 

  76. Rosengardt TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman W, et al. Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF 121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468–474.

    Google Scholar 

  77. Schumacher B, Pecher P, von Specht BU, Stegman T, Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998;97:645–650.

    PubMed  CAS  Google Scholar 

  78. Kornowski R, Fuchs S, Tio FO, Pierre A, Epstein SE, Leon MB. Evaluation of the acute and chronic safety of the Biosense injection catheter system in porcine hearts. Catheter Cardiovasc Interv 1999;48(4):447–455.

    Article  PubMed  CAS  Google Scholar 

  79. Kornowski R, Leon MB, Fuchs S, Vodovotz Y, Flynn MA, Gordon DA, et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000;35(4):1031–1039.

    Article  PubMed  CAS  Google Scholar 

  80. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37(6):1726–1732.

    Article  PubMed  CAS  Google Scholar 

  81. Park SW, Gwon HC, Jeong JO, Byun J, Kang HS, You JR, et al. Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Hum Gene Ther 2001;12(8):893–903.

    Article  PubMed  CAS  Google Scholar 

  82. Chazaud B, Hittinger L, Sonnet C, Champagne S, Le Corvoisier P, Benhaiem-Sigaux N, et al. Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc Res 2003;58(2):444–450.

    Article  PubMed  CAS  Google Scholar 

  83. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107:461–468.

    Article  PubMed  Google Scholar 

  84. Vale PR, Losordo DW, Milliken CE, McDonald MC, et al. Randomized single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricle electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–2143.

    PubMed  CAS  Google Scholar 

  85. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105(17):2012–2018.

    Article  PubMed  CAS  Google Scholar 

  86. Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003;41(10):1721–1724.

    Article  PubMed  Google Scholar 

  87. Perin EC, Dohmann HFR, Bororjevic R, Silva SA, Sousa ALS, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.

    Article  PubMed  Google Scholar 

  88. Naimark WA, Lepore JJ, Klugherz BD, Wang Z, Guy TS, Osman H, et al. Adenovirus-catheter compatibility increases gene expression after delivery to porcine myocardium. Hum Gene Ther 2003;14(2):161–166.

    Article  PubMed  CAS  Google Scholar 

  89. Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002;105(11):1282–1284.

    PubMed  Google Scholar 

  90. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003;108:1009–1014.

    Article  PubMed  Google Scholar 

  91. Rezaee M, Yeung AC, Altman P, Lubbe D, Takeshi S, Schwartz RS, et al. Evaluation of the percutaneous intramyocardial injection for local myocardial treatment. Catheter Cardiovasc Interv 2001;53(2):271–276.

    Article  PubMed  CAS  Google Scholar 

  92. Rezaee M, Yeung AC, Altman P, et al. Percutaneous intramyocardial delivery is an efficient modality for local myocardial treatment. J Am Coll Cardiol 2001;37(Suppl 1):1157–1128 (Abstr).

    Google Scholar 

  93. Grube E, Gerckens U, Altman PA, Rosenman DC, Rezaee M. The helical infusion catheter: first clinical evaluation for local intramyocardial therapeutics. Am J Cardiol 2002;90(Suppl 6A):120H.

    Google Scholar 

  94. St. John ME, Xie J, Heldman AW, et al. Catheter-based percutaneous cellular cardiomyoplasty using allogeneic bone marrow derived mesenchymal stem cells. J Am Coll Cardiol 2003;41(Suppl A):1176 (Abstr).

    Google Scholar 

  95. Price ET, Ikeno F, Fenn RC, et al. Percutaneous endocardial versus selective coronary venous cellular delivery: comparisons of transplant efficiency, distribution, and efficacy in reducing infarct size and improving myocardial function. J Am Coll Cardiol 2003;41(Suppl A):1176–174 (Abstr).

    Google Scholar 

  96. Ujhelyi MR, Hadsall KZ, Euler DE, Mehra R. Intrapericardial therapeutics: a pharmacodynamic and pharmacokinetic comparison between pericardial and intravenous procainamide delivery. J Cardiovasc Electrophysiol 2002;13(6):605–611.

    Article  PubMed  Google Scholar 

  97. Hou D, Rogers PI, Toleikis PM, Hunter W, March KL. Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch. Circulation 2000;102(13):1575–1581.

    PubMed  CAS  Google Scholar 

  98. Waxman S, Moreno R, Rowe KA, Verrier RL. Persistent primary coronary dilation induced by transatrial delivery of nitroglycerin into the pericardial space: a novel approach for local cardiac drug delivery. J Am Coll Cardiol 1999;33(7):2073–2077.

    Article  PubMed  CAS  Google Scholar 

  99. Baek SH, Hrabie JA, Keefer LK, Hou D, Fineberg N, Rhoades R, et al. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 2002;105(23):2779–2784.

    Article  PubMed  CAS  Google Scholar 

  100. Lopez JJ, Edelman ER, Stamler A, Hibberd MG, Prasad P, Thomas KA, et al. Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. Am J Physiol 1998;274(3 Pt 2):H930–H936.

    PubMed  CAS  Google Scholar 

  101. Harada K, Grossman W, Friedman M, Edelman E, Prasad PV, Keighley CS, Manning WJ, Sellke FW, Simons M. Basic fibroblast growth factor improves function in chronically ischemic porcine hearts. J Clin Invest 1994;94:623–630.

    PubMed  CAS  Google Scholar 

  102. Pecher P, Schumacher BA. Angiogenesis in ischemic human myocardium: clinical results after 3 years. Ann Thorac Surg 2000;69:1414–1419.

    Article  PubMed  CAS  Google Scholar 

  103. Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100(18):1865–1871.

    PubMed  CAS  Google Scholar 

  104. Ruel M, Laham RJ, Parker JA, et al. Long-term effects of surgical angiogenic therapy with FGF-2 protein. J Thorac Cardiovasc Surg 2002;124:28–34.

    Article  PubMed  CAS  Google Scholar 

  105. Griscelli F, Belli E, Opolon P, Musset K, Connault E, Perricaudet M, et al. Adenovirus-mediated gene transfer to the transplanted piglet heart after intracoronary injection. J Gene Med 2003;5(2):109–119.

    Article  PubMed  CAS  Google Scholar 

  106. Laham RJ, Rezaee M, Post M, Xu X, Sellke FW. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv 2003;58(3):375–381.

    Article  PubMed  Google Scholar 

  107. Lopez JJ, Laham RJ, Stamler A, Pearlman JD, Bunting S, Kaplan A, et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998;40(2):272–281.

    Article  PubMed  CAS  Google Scholar 

  108. Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Goncalves L, et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999;44(2):294–302.

    Article  PubMed  CAS  Google Scholar 

  109. Ikeno F, Lyons J, Rezaee M, et al. A novel method for delivering cell therapy to the heart: safety and feasibility of periadventitial delivery via the EndoBionics MicroSyringe infusion catheter. Am J Cardiol 2003; Abstract 222:98L.

    Google Scholar 

  110. Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E, et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993;22:2001–2006.

    PubMed  CAS  Google Scholar 

  111. Horrigan M, MacIsaac A, Nicolini F, et al. Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 1996;94:1927–1933.

    PubMed  CAS  Google Scholar 

  112. Rajanayagam S, Shou M, Thirumurti V, et al. Two intracoronary doses of basic fibroblast growth factor enhance collateral blood flow in dogs. J Am Coll Cardiol 1996;27(Suppl A):36A (Abstr).

    Article  Google Scholar 

  113. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89(5):2183–2189.

    PubMed  CAS  Google Scholar 

  114. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH. Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 1997;94(9):4664–4668.

    Article  PubMed  CAS  Google Scholar 

  115. Shah AS, White DC, Emani S, Kypson AP, Lilly RE, Wilson K, et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 2001;103(9):1311–1316.

    PubMed  CAS  Google Scholar 

  116. Davidson MJ, Jones JM, Emani SM, Wilson KH, Jaggers J, Koch WJ, et al. Cardiac gene delivery with cardiopulmonary bypass. Circulation 2001;104(2):131–133.

    PubMed  CAS  Google Scholar 

  117. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 2000;7(3):232–240.

    Article  PubMed  CAS  Google Scholar 

  118. Giordano FJ, Ping P, McKirnan D, Nozaki S, DeMaria A, Dillman WH, Mathieu-Costello O, Hammond K. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  119. McKirnan MD, Lai NC, Waldman L, et al. Intracoronary gene transfer of fibroblast growth factor-4 increases regional contractile function and responsiveness to adrenergic stimulation in heart failure. Cardiac Vasc Regen 2000;1:11–21.

    Google Scholar 

  120. Emani SM, Shah AS, Bowman MK, Emani S, Wilson K, Glower DD, et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 2003;8(2):306–313.

    Article  PubMed  CAS  Google Scholar 

  121. Logeart D, Hatem SN, Heimburger M, Le Roux A, Michel JB, Mercadier JJ. How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 2001;12(13):1601–1610.

    Article  PubMed  CAS  Google Scholar 

  122. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 2002;105:788–793.

    Article  PubMed  CAS  Google Scholar 

  123. Grines CL, Watkins MW, Helmer G, Penny W, et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  124. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakas DJ, Giordano FJ, Simons M, Bonow RO. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for dose-dependent effect. Circulation 2000;101:118–121.

    PubMed  CAS  Google Scholar 

  125. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003;107:2677–2683.

    Article  PubMed  CAS  Google Scholar 

  126. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiological and therapeutic implications. J Thorac Cardiovasc Surg 2001;122(4):699–705.

    Article  PubMed  CAS  Google Scholar 

  127. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH. Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 2001;104(12 Suppl 1):I213–I217.

    PubMed  CAS  Google Scholar 

  128. Strauer BE, Brehm M, Teus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918.

    Article  PubMed  Google Scholar 

  129. Assmus B, Schachinger V, Teupe C, Britten M, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI). Circulation 2002;106:3009–3017.

    Article  PubMed  Google Scholar 

  130. Pratt FH. The nutrition of the heart through the vessels of Thebesius and the coronary veins. Am J Physiol 1898;1:86–103.

    Google Scholar 

  131. Meerbaum S. Coronary venous retroperfusion delivery of treatment to ischemic myocardium. Herz 1986;11(1):41–54.

    PubMed  CAS  Google Scholar 

  132. Mohl W. The momentum of coronary sinus interventions clinically. Circulation 1988;77(1):6–12.

    PubMed  CAS  Google Scholar 

  133. Ruengsakulrach P, Buxton BF. Anatomic and hemodynamic considerations influencing the efficiency of retrograde cardioplegia. Ann Thorac Surg 2001;71(4):1389–1395.

    Article  PubMed  CAS  Google Scholar 

  134. Mohl W. The relevance of coronary sinus interventions in cardiac surgery. Thorac Cardiovasc Surg 1991;39(5):245–250.

    Article  PubMed  CAS  Google Scholar 

  135. Mohl W. Retrograde cardioplegia via the coronary sinus. Ann Chir Gynaecol 1987;76(1):61–67.

    PubMed  CAS  Google Scholar 

  136. Gabriele OF. Pacing via coronary sinus. N Engl J Med 1969;280(4):219.

    PubMed  CAS  Google Scholar 

  137. Hunt D, Sloman G. Long-term electrode catheter pacing from coronary sinus. BMJ 1968;4(629):495–496.

    PubMed  CAS  Google Scholar 

  138. Gerber TC, Kantor B, Keelan PC, Hayes DL, et al. The coronary venous system: an alternative portal to the myocardium for diagnostic and therapeutic procedures in invasive cardiology. Curr Interv Cardiol Rep 2000;2:27–37.

    PubMed  Google Scholar 

  139. Sayad DE, Sawer A, Curkovic V, Gallardo I, Barold SS. Simple access to the coronary venous system for left ventricular pacing. Pacing Clin Electrophysiol 2003;26:1856–1858.

    Article  PubMed  Google Scholar 

  140. Walker S, Levy TM, Coats AJ, Peters NS, Paul VE. Bi-ventricular pacing in congestive cardiac failure: current experience and future directions. Eur Heart J 2000;21:884–889.

    Article  PubMed  CAS  Google Scholar 

  141. Karagueuzian HS, Ohta M, Drury JK, Fishbein MC, Meerbaum S, Corday E, et al. Coronary venous retroinfusion of procainamide: a new approach for the management of spontaneous and inducible sustained ventricular tachycardia during myocardial infarction. J Am Coll Cardiol 1986;7(3):551–563.

    PubMed  CAS  Google Scholar 

  142. Uriuda Y, Wang QD, Li XS, et al. Coronary venous drug infusion in the ischaemic-reperfused isolated rat heart. Cardiovasc Res 1996;31(1):82–92.

    Article  PubMed  CAS  Google Scholar 

  143. Tadokoro H, Miyazaki A, Satomura K, et al. Infarct size reduction with coronary venous retroinfusion of diltiazem in the acute occlusion/reperfusion porcine heart model. J Cardiovasc Pharmacol 1996;28(1):134–141.

    Article  PubMed  CAS  Google Scholar 

  144. Hatori N, Miyazaki A, Tadokoro H, et al. Beneficial effects of coronary venous retroinfusion of superoxide dismutase and catalase on reperfusion arrhythmias, myocardial function, and infarct size in dogs. J Cardiovasc Pharmacol 1989;14(3):396–404.

    Article  PubMed  CAS  Google Scholar 

  145. Haga Y, Uriuda Y, Bjorkman JA, Hatori N, et al. Ischemic and nonischemic tissue concentrations of felodipine after coronary venous retroinfusion during myocardial ischemia and reperfusion: an experimental study in pigs. J Cardiovasc Pharmacol 1994;24:298–302.

    PubMed  CAS  Google Scholar 

  146. Hatori N, Tadokoro H, Satomura K, Miyazaki A, Fishbein MC, et al. Beneficial effects of coronary venous retroinfusion but not left atrial administration of superoxide dismutase on myocardial necrosis in pigs. Eur Heart J 1991;12:442–450.

    PubMed  CAS  Google Scholar 

  147. Pakalska E, Kolff WJ. Anatomical basis for retrograde coronary vein perfusion. Venous anatomy and veno-venous anastomoses in the hearts of humans and some animals. Minn Med 1989;63(11):795–801.

    Google Scholar 

  148. Chen SG, Chang BL, Meerbaum S, et al. The pattern of delivery and distribution of coronary venous retroinfusate in canine hearts. Proc Chin Acad Med Sci Peking Union Med Coll 1989;4(1):19–25.

    PubMed  CAS  Google Scholar 

  149. Hochberg MS, Austen WG. Selective retrograde coronary venous perfusion. Ann Thorac Surg 1980;29(6):578–578.

    Article  PubMed  CAS  Google Scholar 

  150. Punzengruber C, Maurer G, Chang BL, Ong K, Meerbaum S, Corday E. Factors affecting penetration of retrograde coronary venous injections into normal and ischemic canine myocardium: assessment by contrast echocardiography and digital angiography. Basic Res Cardiol 1990;85(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  151. Oh BH, Volpini M, Kambayashi M, et al. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 1992;86(4):1265–1279.

    PubMed  CAS  Google Scholar 

  152. Herity NA, Lo ST, Oei F, Lee DP, Ward MR, Filardo SD, et al. Selective regional myocardial infiltration by the percutaneous coronary venous route: a novel technique for local drug delivery. Catheter Cardiovasc Interv 2000;51(3):358–363.

    Article  PubMed  CAS  Google Scholar 

  153. Vicario J, Piva J, Pierini A, Ortega HH, Canal A, Gerardo L, et al. Transcoronary sinus delivery of autologous bone marrow and angiogenesis in pig models with myocardial injury. Cardiovasc Radiat Med 2002;3:91–94.

    Article  PubMed  CAS  Google Scholar 

  154. Rezaee M, Herity N, Lo S, et al. Therapeutic angiogenesis by selective delivery of basic FGF in the anterior interventricular vein. J Am Coll Cardiol 2001;37(2):47A (Abstr).

    Article  Google Scholar 

  155. Hou D, Maclaughlin F, Thiesse M, Panchal VR, Bekkers BC, Wilson EA, et al. Widespread regional myocardial transfection by plasmid encoding Del-1 following retrograde coronary venous delivery. Catheter Cardiovasc Interv 2003;58(2):207–211.

    Article  PubMed  Google Scholar 

  156. Farcot JC, Barry M, Bourdarias JP, et al. New catheter-pump system for diastolic synchronized coronary sinus retroperfusion. Med Prog Technol 1980;8(1):29–37.

    PubMed  CAS  Google Scholar 

  157. Chang BL, Drury JK, Meerbaum S, et al. Enhanced myocardial washout and retrograde blood delivery with synchronized retroperfusion during acute myocardial ischemia. J Am Coll Cardiol 1987;9(5):1091–1098.

    Article  PubMed  CAS  Google Scholar 

  158. Villanueva FS, Spotnitz WD, Glasheen WP, et al. New insights into the physiology of retrograde cardioplegia delivery. Am J Physiol 1995;268(4 Pt 2):H1555–H166.

    PubMed  CAS  Google Scholar 

  159. Boekstegers P, Diebold J, Weiss C. Selective ECG synchronized suction and retroinfusion of coronary veins; first results of studies in acute myocardial ischemia in dogs. Cardiovasc Res 1990;24:456–464.

    Article  PubMed  CAS  Google Scholar 

  160. Boekstegers P, Giehrl W, von Degenfeld G, Steinbeck G. Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1998;31(7):1525–1533.

    Article  PubMed  CAS  Google Scholar 

  161. Fitzgerald PJ, Hayase M, Yeung AC, et al. New approaches and conduits: in situ venous arterialization and coronary artery bypass. Curr Interv Cardiol Rep 1999;1:127–137.

    PubMed  Google Scholar 

  162. Oesterle SN, Reifart N, Hayase M, et al. Catheter-based coronary bypass: a development update. Catheter Cardioasc Interv 2003;58:212–218.

    Article  Google Scholar 

  163. Oesterle SN, Reifart N, Hauptmann E, Hayase M, Yeung AC. Percutaneous in situ coronary venous arterialization: report of the first human catheter-based coronary artery bypass. Circulation 2001;103:2539–2543.

    PubMed  CAS  Google Scholar 

  164. Thompson CA, Nasseri BA, Makower J, Houser S, McGarry M, Lamson T, et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 2003;41(11):1964–1971.

    Article  PubMed  Google Scholar 

  165. Kar S, Nordlander R. Coronary veins: an alternate route to ischemic myocardium. Heart Lung 1992;21(2):148–157.

    PubMed  CAS  Google Scholar 

  166. Menasche P, Piwnica A. Cardioplegia by way of the coronary sinus for valvular and coronary surgery. J Am Coll Cardiol 1991;18(2):628–636.

    PubMed  CAS  Google Scholar 

  167. Mesisel E, Pfeiffer D, Engelmann L, et al. Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 2001;104:442–447.

    Article  Google Scholar 

  168. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000;7(23):2023–2027.

    Article  PubMed  CAS  Google Scholar 

  169. Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, Grayburn PA. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000;101:2554–2556.

    PubMed  CAS  Google Scholar 

  170. Beeri R, Guerrero JL, Supple G, Sullivan S, Levine RA, Hajjar RJ. New efficient catheter-based system for myocardial gene delivery. Circulation 2002;106(14):1756–1759.

    Article  PubMed  CAS  Google Scholar 

  171. Mukherjee D, Wong J, Griffin B, Ellis SG, Porter T, Sen S, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000;35(6):1678–1686.

    Article  PubMed  CAS  Google Scholar 

  172. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression in the heart. Circulation 2003;108:1022–1026.

    Article  PubMed  Google Scholar 

  173. Fuchs S, Baffour R, Shou M, Stabile E, Singh S, Schwartz B, et al. Could plasmidmediated gene transfer into the myocardium be augmented by left ventricular guided laser myocardial injury? Catheter Cardiovasc Interv 2001;54(4):533–538.

    Article  PubMed  CAS  Google Scholar 

  174. Bao J, Naimark W, Palasis M, Laham R, Simons M, Post MJ. Intramyocardial delivery of FGF2 in combination with radio frequency transmyocardial revascularization. Catheter Cardiovasc Interv 2001;53(3):429–434.

    Article  PubMed  CAS  Google Scholar 

  175. Yamamoto N, Kohmoto T, Roethy W, et al. Histological evidence that basic fibroblast growth factor enhances the angiogenic effects of transmyocardial laser revascularization. Basic Res Cardiol 2000;95:55–63.

    Article  PubMed  CAS  Google Scholar 

  176. Sayeed-Shah U, Mann MJ, Martin J, et al. Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization. J Thorac Cardiovasc Surg 1998;116:763–769.

    Article  PubMed  CAS  Google Scholar 

  177. Rezaee M, Mead H, Wohlgemuth J, Quertermous T, Rosenman D, Altman P. Enhanced local uptake of genetic material through intramyocardial electroporation with helix infusion electrode. Mol Ther 2001;13:774 (Abstr).

    Google Scholar 

  178. Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res 2003;92(10):1068–1078.

    Article  PubMed  CAS  Google Scholar 

  179. Lu Y, Shansky J, DelTatto M, Ferland P, Wang X, Vandenburgh H. Recombinant vascular endothelial growth factor secreted from tissue engineered bioartificial muscles promotes localized angiogenesis. Circulation 2001;104:594–599.

    Article  PubMed  CAS  Google Scholar 

  180. Kellar R, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 2001;104:2063–2068.

    Article  PubMed  CAS  Google Scholar 

  181. Shintani S, Murohara T, Ikeda H, Ueno T, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001;103:2776–2779.

    Article  PubMed  CAS  Google Scholar 

  182. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet PA, Windecker S, Eberli FR, Meier B. Promotion of collateral growth by granulocyte-macrophage colonystimulating factor in patients with coronary artery disease: a randomized double-blind, placebo-controlled study. Circulation 2001;104:2012–2017.

    Article  PubMed  CAS  Google Scholar 

  183. Gill M, Dia S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ Res 2001;88:167–174.

    PubMed  CAS  Google Scholar 

  184. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964–3972.

    Article  PubMed  CAS  Google Scholar 

  185. Vasa M, Fichtscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001;103:2885–2890.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Price, E.T., Yeung, A.C., Rezaee, M. (2005). Local and Regional Vascular Delivery Strategies for Therapeutic Angiogenesis and Myogenesis. In: Laham, R.J., Baim, D.S. (eds) Angiogenesis and Direct Myocardial Revascularization. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-934-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-934-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-153-0

  • Online ISBN: 978-1-59259-934-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics