Skip to main content

Preclinical Models and Experience to Date

  • Chapter
  • 366 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

In the last decade, therapeutic angiogenesis in cardiovascular diseases has been extensively investigated using a variety of animal models. Recently, there have been great efforts to begin such research in human trials. There is still, however, an ongoing need for continued preclinical investigations to illuminate the complexity of angiogenic agents. Therapeutic modalities including autologous stem cell transplantation, targeted protein delivery, prolonged protein half-life, and various combination therapies are only some of the areas that require further investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger EF. Experimental evaluation of coronary collateral development. Cardiovasc Res 2001;49:497–506.

    Article  PubMed  CAS  Google Scholar 

  2. Schaper W. Experimental infarcts and the microcirculation. In: Hearse DJ, Yellon DM, eds. Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven, New York, NY: 1984:79–90.

    Google Scholar 

  3. Baroldi G, Scomazzoni G. Coronary circulation in the normal and the pathologic heart. Office of the Surgeon General, Department of the Army, 1967.

    Google Scholar 

  4. Baroldi G, Radice F, Schmid G, et al. Morphology of acute myocardial infarction in relation to coronary thrombosis. Am Heart J 1974;87:65–75.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen MV. Coronary Collaterals, Clinical and Experimental Observations. Futura, Mount Kisco, NY: 1985.

    Google Scholar 

  6. Schaper W. The Collateral Circulation of the Heart. Elsevier, Amsterdam, Netherlands: 1971.

    Google Scholar 

  7. Schaper W, Schaper J. Collateral Circulation—Heart, Brain, Kidney, Limbs. Dordrecht: Kluwer Academic, 1993.

    Google Scholar 

  8. Folkman J, D’Amore A. Blood vessel formation: what is its molecular basis? Cell 1996;87:1153–1155.

    Article  PubMed  CAS  Google Scholar 

  9. Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 2002;136:54–71.

    PubMed  Google Scholar 

  10. Unger EF. Experimental evaluation of coronary collateral development. Cardiovasc Res 2001;49:497–506.

    Article  PubMed  CAS  Google Scholar 

  11. Litvak J, Siderides LE, Vineberg AM. Experimental production of coronary artery insufficiency and occlusion. Am Heart J 1957;53:505–518.

    Article  PubMed  CAS  Google Scholar 

  12. Roth DM, Maruoka Y, Rogers J, et al. Development of collateral circulation in left circumflex ameroid-occluded swine myocardium. Am J Physiol 1987;253:H1279–H1288.

    PubMed  CAS  Google Scholar 

  13. Roth DM, White FC, Nichols ML, et al. Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 1990;82:1778–1789.

    PubMed  CAS  Google Scholar 

  14. Simons M. Myocardial ischemia and growth factor therapy. In: Dormandy JA, Dole WP, Rubanyi GM, eds. Therapeutic Angiogenesis. Springer, Berlin: 1999:125.

    Google Scholar 

  15. White FC, Carroll SM, Magnet A, et al. Coronary collateral development in swine after coronary artery occlusion. Circ Res 1992;71:1490–1500.

    PubMed  CAS  Google Scholar 

  16. Radke PW, Heinl-Green A, Frass OM, et al. Evaluation of the porcine ameroid constrictor model of chronic myocardial ischemia for therapeutic angiogenesis studies. JACC 2003;41(6):331A.

    Google Scholar 

  17. Operschall C, Falivene L, Clozel JP, Roux S. A new model of chronic cardiac ischemia in rabbits. J Appl Physiol 2000;88:1438–1445.

    PubMed  CAS  Google Scholar 

  18. Fujita M, Mikuniya A, Takayashi M, et al. Acceleration of coronary collateral development by heparin in conscious dogs. Jpn Circ J 1987;51:395–402.

    PubMed  CAS  Google Scholar 

  19. Vineberg AM. The vineberg operation. 1. Revascularization of the heart. J Am Med Assoc 1966;195(Suppl):43–47c.

    Google Scholar 

  20. Kraitchman DL, Bluemke D, Chin BB, et al. A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging. Invest Radiol 2000;35:445–451.

    Article  PubMed  CAS  Google Scholar 

  21. Huwer H, Winning J, Vollmar B, et al. Microvascularization and ventricular function after local alginate-encapsulated angiogenic growth factor treatment in a rat cryothermia-induced myocardial infarction model. Microvasc Res 2001;62:211.

    Article  PubMed  CAS  Google Scholar 

  22. Huwer H, Rissland J, Vollmar B, et al. Angiogenesis and microvascularization after cryothermia-induced myocardial infarction: a quantitative fluorescence microscopic study in rats. Basic Res Cardiol 1999;94:85–93.

    Article  PubMed  CAS  Google Scholar 

  23. Chilian WM, Mass HJ, Williams SE, et al. Microvascular occlusions promote coronary collateral growth. Am J Physiol 1990;258:H1103–H1111.

    PubMed  CAS  Google Scholar 

  24. Sabbah HN, Stein PD, Kono T, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 1991;260:H1379–H1384.

    PubMed  CAS  Google Scholar 

  25. Zimmermann R, Arras M, Ullmann C, et al. Time course of mitosis and collateral growth following coronary embolization in the porcine heart. Cell Tissue Res 1997;287:583–590.

    Article  PubMed  CAS  Google Scholar 

  26. Schaper W, Munoz-Chapuli R, Wolf C, et al. Collateral circulation of the heart. In: Ware JA, Simons M, eds. Angiogenesis and Cardiovascular Disease. Oxford University Press, Oxford, UK: 1999:159–198.

    Google Scholar 

  27. Li J, Brown LF, Hibberd MG, et al. VEGF, flk-1, and flt-1 expression in a rat myocardial model of angiogenesis. Am J Physiol 1996;270:H1803–H1811.

    PubMed  CAS  Google Scholar 

  28. Takeshita S, Rossow S, Kearney M, et al. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 1995;147:1649–1660.

    PubMed  CAS  Google Scholar 

  29. Ware JA, Simons M. Angiogenesis and Cardiovascular Disease. Oxford University Press, Oxford, UK: 1999.

    Google Scholar 

  30. Xie MH, Holcomb I, Deuel B, et al. FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 1999;11:729–735.

    Article  PubMed  CAS  Google Scholar 

  31. Battler A, Scheinowitz M, Bor A, et al. Intracoronary injection of basic growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 1993;22:2001–2006.

    Article  PubMed  CAS  Google Scholar 

  32. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992;257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  33. Roth DM, Maruoka Y, Rogers J, et al. Development of coronary collateral circulation in left circumflex ameroid-occluded swine myocardium. Am J Physiol 1987;253:H1279–H1288.

    PubMed  CAS  Google Scholar 

  34. Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89:2183–2189.

    PubMed  CAS  Google Scholar 

  35. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994;93:662–670.

    PubMed  CAS  Google Scholar 

  36. Baird A, Walicke P. Fibroblast growth factors. Br Med Bull 1989;45:438–452.

    PubMed  CAS  Google Scholar 

  37. Mack CA, Patel SR, Schwartz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Cardiovasc Surg 1998;115:168–177.

    Article  CAS  Google Scholar 

  38. Patel SR, Lee LY, Mack CA, et al. Safety of direct myocardial administration of an adenovirus vector encoding vascular endothelial growth factor 121. Hum Gene Ther 1999;10:1331–1348.

    Article  PubMed  CAS  Google Scholar 

  39. French BA, Mazur W, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994;90:2414–2424.

    PubMed  CAS  Google Scholar 

  40. Kornowski R, Leon MB, Fuchs S, et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. J Am Coll Cardiol 2000;35:1031–1039.

    Article  PubMed  CAS  Google Scholar 

  41. Tio RA, Tkebuchava T, Scheuerman TH, et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 1999;10:2953–2960.

    Article  PubMed  CAS  Google Scholar 

  42. Aoki M, Morishita R, Taniyame Y, et al. Angiogenesis induced by hepatocyte growth factor in noninfarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis. Gene Ther 2000;7:417–427.

    Article  PubMed  CAS  Google Scholar 

  43. Taniyama Y, Morishita R, Hiraoka K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation 2001;104:2344–2350.

    Article  PubMed  CAS  Google Scholar 

  44. Lazarous DF, Shou M, Stiber JA, et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999;44:294–302.

    Article  PubMed  CAS  Google Scholar 

  45. Giordano F, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  46. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  47. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(19 Suppl):II247–II256.

    PubMed  CAS  Google Scholar 

  48. Kobayashi T, Hamano K, Li TS, et al. Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. Surg Res 2000;89:189–195.

    Article  CAS  Google Scholar 

  49. Schatteman GC, Hanlon HD, Jiao C, et al. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 2000;106:571–578.

    PubMed  CAS  Google Scholar 

  50. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103:897–903.

    Article  PubMed  CAS  Google Scholar 

  51. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–705.

    Article  PubMed  CAS  Google Scholar 

  52. Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726–1732.

    Article  PubMed  CAS  Google Scholar 

  53. Kim EJ, Li RK, Weisel RD, et al. Angiogenesis by endothelial cell transplantation. J Thorac Cardiovasc Surg 2001;122:963–971.

    Article  PubMed  CAS  Google Scholar 

  54. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–436.

    Article  PubMed  CAS  Google Scholar 

  55. Kobayashi T, Hamano K, Li TS, et al. Angiogenesis induced by the injection of peripheral leukocytes and platelets. J Surg Res 2002;103:279–286.

    Article  PubMed  CAS  Google Scholar 

  56. Hamano K, Li TS, Kobayashi T, et al. Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg 2002;73:1210–1215.

    Article  PubMed  Google Scholar 

  57. Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49:522–531.

    Article  PubMed  CAS  Google Scholar 

  58. Simons M, Bonow RO, Chronos NA. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circ 2000;102:E73–E86.

    CAS  Google Scholar 

  59. Pearlman JD, Laham RJ, Post M, et al. Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis. Curr Pharm Des 2002;8:1467–1496.

    Article  PubMed  CAS  Google Scholar 

  60. Wilke NM, Zenovich AG, Jerosch-Herold M, Henry TD. Cardiac magnetic resonance imaging for the assessment of myocardial angiogenesis. Curr Interv Cardiol Rep 2001;3:205–212.

    PubMed  Google Scholar 

  61. Pearlman JD, Laham RJ, Simons M. Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation—preliminary study in pigs. Radiology 2000;214:801–807.

    PubMed  CAS  Google Scholar 

  62. Lederman RJ, Guttman MA, Peters DC. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002;105:1282–1284.

    PubMed  Google Scholar 

  63. Li JJ, Ueno H, Pan Y, et al. Percutaneous transluminal gene transfer into canine myocardium in vivo by replication-defective adenovirus. Cardiovasc Res 1995;30:97–105.

    Article  PubMed  CAS  Google Scholar 

  64. Vale PR, Losordo DW, Tkebuchava T, et al. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol 1999;34:246–254.

    Article  PubMed  CAS  Google Scholar 

  65. Goncalves LM, Epstein SE, Piek JJ. Controlling collateral development: the difficult task of mimicking mother nature. Cardiovasc Res 2001;49:495–496.

    Article  PubMed  CAS  Google Scholar 

  66. Reed MJ, Corsa A, Pendergrass W, et al. Neovascularization in aged mice: delayed angiogenesis is coincident with decreased levels of transforming growth factor betal and type I collagen. Am J Pathol 1998;152:113–123.

    PubMed  CAS  Google Scholar 

  67. Swift ME, Kleinman HK, DiPietro LA. Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 1999;79:1479–1487.

    PubMed  CAS  Google Scholar 

  68. Reed MJ, Corsa AC, Kudravi SA, et al. A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem 2000;77:116–126.

    Article  PubMed  CAS  Google Scholar 

  69. Simons M. Therapeutic coronary angiogenesis: a fronte praecipitium a tergo lupi? Am J Physiol Heart Circ Physiol 2002;280:H1923–H1927.

    Google Scholar 

  70. Harada K, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 1994;94:623–630.

    PubMed  CAS  Google Scholar 

  71. Lopez JJ, Edelman ER, Stamler A, et al. Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: a comparison of angiographic, echocardiographic and coronary flow parameters. J Pharmacol Exp Ther 1997;282:385–390.

    PubMed  CAS  Google Scholar 

  72. Sato K, Laham RJ, Pearlman JD, et al. Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 2000;70:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  73. Laham RJ, Rezaee M, Post M, et al. Delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 2000;292:795–802.

    PubMed  CAS  Google Scholar 

  74. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol Heart Circ Physiol 1994;266:H1588–H1595.

    CAS  Google Scholar 

  75. Lazarous DF, Scheinowitz M, Shou M, eta l. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995;91:145–153.

    PubMed  CAS  Google Scholar 

  76. Uchida Y, Yanagisawa-Miwa A, Nakamura F, et al. Angiogenic therapy of acute myocardial infarciton by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experiment study. Am Heart J 1995;130:1182–1188.

    Article  PubMed  CAS  Google Scholar 

  77. Shou M, Thirumurti V, Rajanayagam S. Effect of basic fibroblast growth factor on myocardial angiogenesis in dogs with mature collateral vessels. J Am Coll Cardiol 1997;29:1102–1106.

    Article  PubMed  CAS  Google Scholar 

  78. Villanueva FS, Abraham JA, Schreiner GF, et al. Myocardial Contrast Echocardiography can be used to assess the microvascular response to vascular endothelial growth factor-121. Circulation 2002;105:759–765.

    Article  PubMed  CAS  Google Scholar 

  79. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth facotr. J Vasc Surg 1992;16:181–191.

    Article  PubMed  CAS  Google Scholar 

  80. Takeshita S, Pu LQ, Stein LA, et al. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 1994;90:II228–II234.

    PubMed  CAS  Google Scholar 

  81. Edelman ER, Nugent MA, Smith LT, Karnovsky MJ. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest 1992;89:465–473.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yegin, A., Chronos, N.A. (2005). Preclinical Models and Experience to Date. In: Laham, R.J., Baim, D.S. (eds) Angiogenesis and Direct Myocardial Revascularization. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-934-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-934-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-153-0

  • Online ISBN: 978-1-59259-934-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics