Skip to main content

SNP Discovery and Genotyping

Methods and Applications

  • Chapter
Computational Genetics and Genomics
  • 801 Accesses

Abstract

The identification of genes affecting complex traits (i.e., biological traits affected by several genetic and environmental factors) is a very difficult and challenging task (13). For many complex traits, the observable variation between individuals is quantitative; hence, loci affecting such traits are generally termed quantitative trait loci (QTLs). In contrast with monogenic traits, it is impossible to identify all the genomic regions responsible for complex trait variation without additional information on how these regions segregate (1,4). A key development in complex trait analysis was the establishment of large collections of molecular/genetic markers. With the discovery of a large amount of single nucleotide polymorphisms (SNPs) in human and model organisms, correlating SNP markers with phenotype in a segregating population has become a useful tool in QTL studies (5). In both linkage and association mapping, the development of high-throughput methods to discover and genotype polymorphism markers has enabled whole-genome scanning to detect individual loci possible (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000;405:847–856.

    Article  PubMed  CAS  Google Scholar 

  2. Mackay TF. The genetic architecture of quantitative traits. Annu Rev Genet 2001;35:303–339.

    Article  PubMed  CAS  Google Scholar 

  3. Darvasi A, Pisante-Shalom A. Complexities in the genetic dissection of quantitative trait loci. Trends Genet 2002;18:489–491.

    Article  PubMed  CAS  Google Scholar 

  4. Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 2002;3:43–52.

    Article  PubMed  CAS  Google Scholar 

  5. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997;278:1580–1581.

    Article  PubMed  CAS  Google Scholar 

  6. Taillon-Miller P, Piernot EE, Kwok PY. Efficient approach to unique single-nucleotide polymorphism discovery. Genome Res 1999;9:499–505.

    Article  PubMed  CAS  Google Scholar 

  7. Nowotny P, Kwon JM, Goate AM. SNP analysis to dissect human traits. Curr Opin Neurobiol 2001;11: 637–641.

    Article  PubMed  CAS  Google Scholar 

  8. Carlson CS, Newman TL, Nickerson DA. SNPing in the human genome. Curr Opin Chem Biol 2001;5: 78–85.

    Article  PubMed  CAS  Google Scholar 

  9. Underhill PA, Jin L, Lin AA, et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 1997;7:996–1005.

    PubMed  CAS  Google Scholar 

  10. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989;5:874–879.

    Article  PubMed  CAS  Google Scholar 

  11. Petersen DC, Laten A, Zeier MD, Grimwood A, Rensburg EJ, Hayes VM. Novel mutations and SNPs identified in CCR2 using a new comprehensive denaturing gradient gel electrophoresis assay. Hum Mutat 2002;20:253–259.

    Article  PubMed  CAS  Google Scholar 

  12. Irizarry K, Kustanovich V, Li C, et al. Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat Genet 2000;26:233–236.

    Article  PubMed  CAS  Google Scholar 

  13. Picoult-Newberg L, Ideker TE, et al. Mining SNPs from EST databases. Genome Res 1999;9:167–174.

    PubMed  CAS  Google Scholar 

  14. Grupe A, Germer S, Usuka J, et al. In silico mapping of complex disease-related traits in mice. Science 2001;292:1915–1918.

    Article  PubMed  CAS  Google Scholar 

  15. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273: 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  16. Lander ES. The new genomics: global views of biology. Science 1996;274:536–539.

    Article  PubMed  CAS  Google Scholar 

  17. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229.

    Article  PubMed  CAS  Google Scholar 

  18. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999;22:139–144.

    Article  PubMed  CAS  Google Scholar 

  19. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29:229–232.

    Article  PubMed  CAS  Google Scholar 

  20. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature 2001;411: 199–204.

    Article  PubMed  CAS  Google Scholar 

  21. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001;294:1719–1723.

    Article  PubMed  CAS  Google Scholar 

  22. Dawson E, Abecasis GR, Bumpstead S, et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002;418:544–548.

    Article  PubMed  CAS  Google Scholar 

  23. Tabor HK, Risch NJ, Myers RM. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002;3:391–397.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng S, Grow MA, Pallaud C, et al. A multilocus genotyping assay for candidate markers of cardiovascular disease risk. Genome Res 1999;9:936–949.

    Article  PubMed  CAS  Google Scholar 

  25. Ioannidis JP, Ntzani EE, Trikalinos TA. Contopoulos-ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001;29:306–309.

    Article  PubMed  CAS  Google Scholar 

  26. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003;33: 177–182.

    Article  PubMed  CAS  Google Scholar 

  27. Sunyaev S, Ramensky V, Koch I, Lathe W, III, Kondrashov AS, Bork P. Prediction of deleterious human alleles. Hum Mol Genet 2001;10:591–597.

    Article  PubMed  CAS  Google Scholar 

  28. Arnheim N, Strange C, Erlich H. Use of pooled DNA samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: studies of the HLA class II loci. Proc Natl Acad Sci USA 1985;82: 6970–6974.

    Article  PubMed  CAS  Google Scholar 

  29. Pacek P, Sajantila A, Syvanen AC. Determination of allele frequencies at loci with length polymorphism by quantitative analysis of DNA amplified from pooled samples. PCR Methods Appl 1993;2:313–317.

    PubMed  CAS  Google Scholar 

  30. Shaw SH, Carrasquillo MM, Kashuk C, Puffenberger EG, Chakravarti A. Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome Res 1998;8:111–123.

    PubMed  CAS  Google Scholar 

  31. Barcellos LF, Klitz W, Field LL, et al. Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 1997;61:734–747.

    PubMed  CAS  Google Scholar 

  32. Germer S, Holland MJ, Higuchi R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 2000;10:258–266.

    Article  PubMed  CAS  Google Scholar 

  33. Chen J, Germer S, Higuchi R, Berkowitz G, Godbold J, Wetmur JG. Kinetic polymerase chain reaction on pooled DNA: a high-throughput, high-efficiency alternative in genetic epidemiological studies. Cancer Epidemiol Biomarkers Prev 2002;11:131–136.

    PubMed  CAS  Google Scholar 

  34. Kwok PY. Approaches to allele frequency determination. Pharmacogenomics 2000;1:231–235.

    Article  PubMed  CAS  Google Scholar 

  35. Sham P, Bader JS, Craig I, O’Donovan M, Owen M. DNA pooling: a tool for large-scale association studies. Nat Rev Genet 2002;3:862–871.

    Article  PubMed  CAS  Google Scholar 

  36. Breen G, Harold D, Ralston S, Shaw D, St Clair D. Determining SNP allele frequencies in DNA pools. Biotechniques 2000;28:464–466, 468, 470.

    PubMed  CAS  Google Scholar 

  37. Hoogendoorn B, Norton N, Kirov G, et al. Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Hum Genet 2000;107:488–493.

    Article  PubMed  CAS  Google Scholar 

  38. Mohlke KL, Erdos MR, Scott LJ, et al. High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc Natl Acad Sci USA 2002;99:16,928–16,933.

    Article  PubMed  CAS  Google Scholar 

  39. Neve B, Froguel P, Corset L, Vaillant E, Vatin V, Boutin P. Rapid SNP allele frequency determination in genomic DNA pools by pyrosequencing. Biotechniques 2002;32:1138–1142.

    PubMed  CAS  Google Scholar 

  40. Norton N, Williams NM, Williams HJ, et al. Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Hum Genet 2002;110:471–478.

    Article  PubMed  CAS  Google Scholar 

  41. Sasaki T, Tahira T, Suzuki A, et al. Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet 2001;68:214–218.

    Article  PubMed  CAS  Google Scholar 

  42. Wasson J, Skolnick G, Love-Gregory L, Permutt MA. Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology. Biotechniques 2002;32:1144–1146, 1148, 1150 passim.

    PubMed  CAS  Google Scholar 

  43. Werner M, Sych M, Herbon N, Illig T, Konig IR, Wjst M. Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. Hum Mutat 2002;20:57–64.

    Article  PubMed  CAS  Google Scholar 

  44. Xiao M, Latif SM, Kwok PY. Kinetic FP-TDI assay for SNP allele frequency determination. Biotechniques 2003;34:190–197.

    PubMed  CAS  Google Scholar 

  45. Bansal A, van den Boom D, Kammerer S, et al. Association testing by DNA pooling: an effective initial screen. Proc Natl Acad Sci USA 2002;99:16,871–16,874.

    Article  PubMed  CAS  Google Scholar 

  46. Rollinson S, Allan JM, Law GR, et al. High-throughput association testing on DNA pools to identify genetic variants that confer susceptibility to acute myeloid leukemia. Cancer Epidemiol Biomarkers Prev 2004;13: 795–800.

    PubMed  CAS  Google Scholar 

  47. Shifman S, Bronstein M, Sternfeld M, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002;71:1296–1302.

    Article  PubMed  CAS  Google Scholar 

  48. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2001;2: 235–258.

    Article  PubMed  CAS  Google Scholar 

  49. Gut IG. Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 2001;17:475–492.

    Article  PubMed  CAS  Google Scholar 

  50. Germer S, Higuchi R. Single-tube genotyping without oligonucleotide probes. Genome Res 1999;9: 72–78.

    PubMed  CAS  Google Scholar 

  51. Chou Q, Russell M, Birch DE, Raymond J, Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 1992;20:1717–1723.

    Article  PubMed  CAS  Google Scholar 

  52. Lawyer FC, Stoffel S, Saiki RK, et al. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl 1993;2:275–287.

    PubMed  CAS  Google Scholar 

  53. Tada M, Omata M, Kawai S, et al. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 1993;53:2472–2474.

    PubMed  CAS  Google Scholar 

  54. Birch DE. Simplified hot start PCR. Nature 1996;381:445, 446.

    Article  PubMed  Google Scholar 

  55. Germer S, Higuchi R. Homogeneous allele-specific PCR in SNP genotyping. In: Kwok PY, ed. Single nucleotide polymorphisms: methods and protocols. Totowa, NJ: Humana, 2002.

    Google Scholar 

  56. Barcellos L, Germer, S, Klitz W. DNA pooling methods for association mapping of complex disease loci. In: Carrington M, Hoelzel AR, eds. Molecular epidemiology: a practical approach. Oxford: Oxford University Press, 2001.

    Google Scholar 

  57. Shifman S, Pisante-Shalom A, Yakir B, Darvasi A. Quantitative technologies for allele frequency estimation of SNPs in DNA pools. Mol Cell Probes 2002;16:429–434.

    Article  PubMed  CAS  Google Scholar 

  58. Le Hellard S, Ballereau SJ, Visscher PM, et al. SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis. Nucleic Acids Res 2002;30:e74.

    Article  PubMed  Google Scholar 

  59. Rossant J, McKerlie C. Mouse-based phenogenomics for modelling human disease. Trends Mol Med 2001; 7:502–507.

    Article  PubMed  CAS  Google Scholar 

  60. Paigen K. A miracle enough: the power of mice. Nat Med 1995;1:215–220.

    Article  PubMed  CAS  Google Scholar 

  61. Joyner AL. Gene targeting: a practical approach. New York: Oxford University Press, 1999.

    Google Scholar 

  62. Yu Y, Bradley A. Engineering chromosomal rearrangements in mice. Nat Rev Genet 2001;2:780–790.

    Article  PubMed  CAS  Google Scholar 

  63. Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2001;2:769–779.

    Article  PubMed  CAS  Google Scholar 

  64. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420:520–562.

    Article  PubMed  CAS  Google Scholar 

  65. Lindblad-Toh K, Winchester E, Daly MJ, et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet 2000;24:381–386.

    Article  PubMed  CAS  Google Scholar 

  66. Klein RF, Allard J, Avnur Z, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004;303:229–232.

    Article  PubMed  CAS  Google Scholar 

  67. Liao G, Wang J, Guo J, et al. In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science 2004;306:690–695.

    Article  PubMed  CAS  Google Scholar 

  68. Karp CL, Grupe A, Schadt E, et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 2000;1: 221–226.

    Article  PubMed  CAS  Google Scholar 

  69. Noble JA, White AM, Lazzeroni LC, et al. A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes. Diabetes 2003;52:1579–1582.

    Article  PubMed  CAS  Google Scholar 

  70. Cowles CR, Hirschhorn JN, Altshuler D, et al. Detection of regulatory variation in mouse genes. Nat Genet 2002;32:432–437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, J., Aud, D., Germer, S., Higuchi, R. (2005). SNP Discovery and Genotyping. In: Peltz, G. (eds) Computational Genetics and Genomics. Humana Press. https://doi.org/10.1007/978-1-59259-930-1_5

Download citation

Publish with us

Policies and ethics