Skip to main content

HLA Polymorphism and Disease Susceptibility

  • Chapter

Abstract

The human leukocyte antigen (HLA) region, on chromosome 6p21.3, contains more than 200 genes within this 3 Mb segment, many of which are involved in the function of the immune system (1). The HLA class I (HLA-A, B, and C) and class II (DRB1, DQB1, DPB1, and DQA1) loci encode cell surface heterodimeric proteins that bind antigenic peptides and are the most polymorphic genes in the human genome (see Fig. 1 for HLA region map). Moreover, most of this extensive allelic sequence diversity (i.e., >500 alleles at the HLA-B locus and >300 at the DRB1 locus) is functional and affects peptide binding and recognition of the HLA-peptide complex by the T-cell receptor. Statistical analysis of HLA class I and class II sequences has indicated, based on the ratio of nonsynonymous to synonymous substitutions in the polymorphic sequences encoding the peptide binding cleft of all class I and class II loci, that these polymorphic sequences have been subjected to balancing selection (2, 3). Analyses of allele frequency distributions (4) in various human populations have also supported the action of balancing selection for all HLA loci, with the exception of DPB1 (5). However, the Ewens-Watterson test (4), examining allele frequency distributions, is a relatively insensitive test for balancing selection, and the ratio of nonsynonymous to synonymous substitutions for DPB1 is consistent with balancing selection (6). Therefore, the DPB1 polymorphism is probably not neutral, but the selective pressures operating on DPB1 do appear to be different from those shaping the allele frequency distributions of the other HLA loci.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck S, Trowsdale J. The human major histocompatibility complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet. 2000;1:117–137.

    Article  PubMed  CAS  Google Scholar 

  2. Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988;335:167–170.

    Article  PubMed  CAS  Google Scholar 

  3. Hughes AL, Nei M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 1989;86:958–962.

    Article  PubMed  CAS  Google Scholar 

  4. Ewens WJ. The sampling theory of selectively neutral alleles. Theor Popul Biol 1972;3:87–112.

    Article  PubMed  CAS  Google Scholar 

  5. Mack SJ, Bugawan TL, Moonsamy PV, et al. Evolution of Pacific/Asian populations inferred from HLA class II allele frequency distributions. Tissue Antigens 2000;55:383–400.

    Article  PubMed  CAS  Google Scholar 

  6. Gyllensten U, Bergstrom T, Josefsson A, Sundvall M, Erlich HA. Rapid allelic diversification and intensified selection at antigen recognition sites of the Mhc class II DPB1 locus during hominoid evolution. Tissue Antigens 1996;47:212–221.

    PubMed  CAS  Google Scholar 

  7. Lechler and Warren, eds. HLA in health and disease, 2nd ed. Academic, 2000.

    Google Scholar 

  8. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996 4:399–408.

    Article  Google Scholar 

  9. Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ/heterodimer. J Exp Med 1989;169:345–350.

    Article  PubMed  CAS  Google Scholar 

  10. Vardal F, Johansen BH, Friede T, et al. The peptide binding motif of the disease associated HLA-DQ (alpha 1*0501, beta 1*0201) molecule. Eur J Immunol 1996;26:2764–2772.

    Article  Google Scholar 

  11. Fontenot AP, Kotzin BL. Chronic beryllium disease: immune-mediated destruction with implications for organ-specific autoimmunity. Tissue Antigens 2003;62:449–458.

    Article  PubMed  CAS  Google Scholar 

  12. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359:722, 723.

    Article  Google Scholar 

  13. Hill M, Moss P, Wordsworth P, Newsom-Davis J, Willcox NJ. T cell responses to D-penicillamine in drug-induced myasthenia gravis: recognition of modified DR1: peptide complexes. J Neuroimmunol 1999;97:146–153.

    Article  PubMed  CAS  Google Scholar 

  14. Hildesheim A, Apple RJ, Chen CJ, et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 2002;94:1780–1789.

    PubMed  CAS  Google Scholar 

  15. Erlich HA, Rotter JI, Chang JD, et al. Association of HLA-DPB1*0301 with IDDM in Mexican-Americans. Diabetes 1996;45:610–614.

    Article  PubMed  CAS  Google Scholar 

  16. Noble JA, Valdes AM, Thomson G, Erlich HA. The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes 2000;49:121–125.

    Article  PubMed  CAS  Google Scholar 

  17. Valdes AM, Noble JA, Genin E, Clerget-Darpoux F, Erlich HA, Thomson G. Modeling of HLA class II susceptibility to Type I diabetes reveals an effect associated with DPB1. Genet Epidemiol 2001;3:212–223.

    Article  Google Scholar 

  18. Noble JA, Valdes AM, Bugawan TL, Apple RJ, Thomson G, Erlich HA. The HLA class I A locus affects susceptibility to type 1 diabetes. Hum Immunol 2002;63:657–664.

    Article  PubMed  CAS  Google Scholar 

  19. Johannsson S, Lie BA, Pociot F, et al. HLA associations in type 1 diabetes: DPB1 alleles may act as markers of other HLA-complex susceptibility genes. Tissue Antigens 2003;61:344–351.

    Article  Google Scholar 

  20. Oksenberg JR, Barcellos LF, Cree BA, et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004;74:160–167.

    Article  PubMed  CAS  Google Scholar 

  21. Chabas D, Taheri S, Renier C, et al. The genetics of narcolepsy. Annu Rev Genomics Hum Genet 2003;4:459–483.

    Article  PubMed  CAS  Google Scholar 

  22. Trachtenberg EA, Yang H, Hayes E, et al. HLA class II haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and non-Jewish caucasian populations. Hum Immunol 2000;61:326–333.

    Article  PubMed  CAS  Google Scholar 

  23. Bugawan TL, Klitz W, Alejandrino M, et al. The association of specific HLA class I and II alleles with type 1 diabetes among Filipinos. Tissue Antigens 2002;59:452–469.

    Article  PubMed  CAS  Google Scholar 

  24. Redondo MJ, Kawasaki E, Mulgrew CL, et al. DR-and DQ-associated protection from type 1A diabetes: comparison of DRB1*1401 and DQA1(0102-DQB1*0602*. J Clin Endocrinol Metab 2000;85:3793–3797.

    Article  PubMed  CAS  Google Scholar 

  25. Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin dependent diabetes mellitus (IDDM): molecular analysis of 180 Caucasian, multiplex families. Am J Human Gen 1996;59:1134–1148.

    CAS  Google Scholar 

  26. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987;40:1–14.

    PubMed  CAS  Google Scholar 

  27. Sokal RR, Rohlf FJ. Biometry, 3rd ed. San Francisco: WH Freeman, 1995.

    Google Scholar 

  28. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 1986;324:163–166.

    Article  PubMed  CAS  Google Scholar 

  29. Saiki RK, Chang C-A, Levenson CH, et al. Diagnosis of sickle cell anemia and β-thalassemia with enzymatically amplified DNA and non-radioactive allele-specific oligonucleotide probes. N Engl J Med 1988;319:537.

    Article  PubMed  CAS  Google Scholar 

  30. Saiki R, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989;86:6230–6234.

    Article  PubMed  CAS  Google Scholar 

  31. Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci USA 1989;86:2757–2760.

    Article  PubMed  CAS  Google Scholar 

  32. Olerup O and Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 h: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992;39:225–235.

    Article  PubMed  CAS  Google Scholar 

  33. Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989;17:2503–2516.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Erlich, H.A. (2005). HLA Polymorphism and Disease Susceptibility. In: Peltz, G. (eds) Computational Genetics and Genomics. Humana Press. https://doi.org/10.1007/978-1-59259-930-1_10

Download citation

Publish with us

Policies and ethics