Skip to main content

GPCR Interacting Proteins

Classes, Assembly, and Functions

  • Chapter
The G Protein-Coupled Receptors Handbook

Abstract

The complex transduction of ligand stimulation events at G-protein coupled receptors (GPCRs) by heterotrimetric G proteins has long been appreciated. In addition to this, recent data shows that other protein interactions assist and can fine-tune cellular signals. Scientists have identified other membrane and intracellular proteins that interact, directly or indirectly, with GPCRs. In fact, 50 or more proteins are described in current literature as GPCR interactive proteins. GPCR interacting proteins act as modulators of ligand-evoked signals. Membrane associated or intracellular GPCR interacting proteins have critical roles in mediating: ligand recognition, optimization of signal transduction, trafficking, receptor clustering, and/or compartmentalization. This chapter reviews four aspects of the GPCR interacting protein literature: (a) methods for identifying GPCR interacting proteins; (b) interaction domains on the GPCR; (c) facilitation and fine-tuning of GPCR signaling events by interacting proteins; and (d) particular analysis of proteins that are μ opioid receptor (μOR) interactive. Although GPCR dimerization is viewed by many as a type of protein interaction between the GPCRs, dimer-related protein interactions will not be discussed; an alternate section of this book is devoted to dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 1987; 48:847–853.

    Article  PubMed  CAS  Google Scholar 

  2. Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC. Role of heteromer formation in GABAB receptor function. Science 1999; 283:74–77.

    Article  PubMed  CAS  Google Scholar 

  3. Hall RA, Premont RT, Chow CW, et al. The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 1998; 392:626–630.

    Article  PubMed  CAS  Google Scholar 

  4. Zitzer H, Honck HH, Bachner D, Richter D, Kreienkamp HJ. Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. J Biol Chem 1999; 274: 32,997–33,001.

    Article  PubMed  CAS  Google Scholar 

  5. Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999; 274:19,894–19,900.

    Article  PubMed  CAS  Google Scholar 

  6. Fluhmann B, Muff R, Hunziker W, Fischer JA, Born W. A human orphan calcitonin receptor-like structure. Biochem Biophys Res Commun 1995; 206:341–347.

    Article  PubMed  CAS  Google Scholar 

  7. McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393:333–339.

    Article  PubMed  CAS  Google Scholar 

  8. Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999; 56:235–242.

    PubMed  CAS  Google Scholar 

  9. Becamel C, Galeotti N, Poncet J, et al. A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors. Biol Proced Online 2002; 4:94–104.

    Article  PubMed  CAS  Google Scholar 

  10. Becamel C, Alonso G, Galeotti N, et al. Synaptic multiprotein complexes associated with 5-HT2C receptors: a proteomic approach. EMBO J 2002; 21:2332–2342.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science 2001; 293:2101–2105.

    Article  PubMed  CAS  Google Scholar 

  12. Kawahashi Y, Doi N, Takashima H, et al. In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 2003; 3:1236–1243.

    Article  PubMed  CAS  Google Scholar 

  13. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science 1999; 285:751–753.

    Article  PubMed  CAS  Google Scholar 

  14. Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403:623–627.

    Article  PubMed  CAS  Google Scholar 

  15. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98:4569–4574.

    Article  PubMed  CAS  Google Scholar 

  16. Dev KK, Nakanishi S, Henley JM. Regulation of mglu(7) receptors by proteins that interact with the intracellular C-terminus. Trends Pharmacol Sci 2001; 22:355–361.

    Article  PubMed  CAS  Google Scholar 

  17. Stowell JN, Craig AM. Axon/dendrite targeting of metabotropic glutamate receptors by their cytoplasmic carboxy-terminal domains. Neuron 1999; 22:525–536.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang M, Wang W. Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res 2003; 36:530–538.

    Article  PubMed  CAS  Google Scholar 

  19. Garner CC, Nash J, Huganir RL. PDZ domains in synapse assembly and signalling. Trends Cell Biol 2000; 10:274–280.

    Article  PubMed  CAS  Google Scholar 

  20. Boudin H, Doan A, Xia J, et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 2000; 28:485–497.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Q, Fan JS, Zhang M. Interdomain chaperoning between PSD-95, Dlg, and Zo-1 (PDZ) domains of glutamate receptor-interacting proteins. J Biol Chem 2001; 276:43,216–43,220.

    Article  PubMed  CAS  Google Scholar 

  22. Fanning AS, Anderson JM. Protein modules as organizers of membrane structure. Curr Opin Cell Biol 1999; 11:432–439.

    Article  PubMed  CAS  Google Scholar 

  23. Xu XZ, Choudhury A, Li X, Montell C. Coordination of an array of signaling proteins through homo-and heteromeric interactions between PDZ domains and target proteins. J Cell Biol 1998; 142:545–555.

    Article  PubMed  CAS  Google Scholar 

  24. Shenolikar S, Weinman EJ. NHERF: targeting and trafficking membrane proteins. Am J Physiol Renal Physiol 2001; 280:F389–F395.

    PubMed  CAS  Google Scholar 

  25. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 1999; 401:286–290.

    Article  PubMed  CAS  Google Scholar 

  26. Kreienkamp HJ, Zitzer H, Richter D. Identification of proteins interacting with the rat somatostatin receptor subtype 2. J Physiol Paris 2000; 94:193–198.

    Article  PubMed  CAS  Google Scholar 

  27. Prezeau L, Richman JG, Edwards SW, Limbird LE. The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem 1999; 274: 13,462–13,469.

    Article  PubMed  CAS  Google Scholar 

  28. Li M, Bermak JC, Wang ZW, Zhou QY. Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 2000; 57:446–452.

    PubMed  CAS  Google Scholar 

  29. Ishii M, Kurachi Y. Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci 2003; 74:163–171.

    Article  PubMed  CAS  Google Scholar 

  30. Kovoor A, Chen CK, He W, Wensel TG, Simon MI, Lester HA. Co-expression of Gbeta5 enhances the function of two Ggamma subunit-like domain-containing regulators of G protein signaling proteins. J Biol Chem 2000; 275: 3397–3402.

    Article  PubMed  CAS  Google Scholar 

  31. Ferreira PA, Nakayama TA, Pak WL, Travis GH. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature 1996; 383:637–640.

    Article  PubMed  CAS  Google Scholar 

  32. Schneuwly S, Shortridge RD, Larrivee DC, Ono T, Ozaki M, Pak WL. Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc Natl Acad Sci USA 1989; 86:5390–5394.

    Article  PubMed  CAS  Google Scholar 

  33. Dwyer ND, Troemel ER, Sengupta P, Bargmann CI. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 1998; 93:455–466.

    Article  PubMed  CAS  Google Scholar 

  34. Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ. Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 1999; 274: 17,058–17,062.

    Article  PubMed  CAS  Google Scholar 

  35. Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001; 98:5258–5263.

    Article  PubMed  CAS  Google Scholar 

  36. Fan G, Shumay E, Wang H, Malbon CC. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001; 276:24,005–24,014.

    Article  PubMed  CAS  Google Scholar 

  37. Gorlin JB, Yamin R, Egan S, et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 1990; 111:1089–1105.

    Article  PubMed  CAS  Google Scholar 

  38. Zartler ER, Yan J, Mo H, Kline AD, Shapiro MJ. ID NMR Methods in ligand-receptor interactions. Curr Top Med Chem 2003; 3:25–37.

    Article  PubMed  CAS  Google Scholar 

  39. Hulme EC. Muscarinic acetylcholine receptors: typical G-coupled receptors. Symp Soc Exp Biol 1990; 44:39–54.

    PubMed  CAS  Google Scholar 

  40. Baneres JL, Parello J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J Mol Biol 2003; 329:815–829.

    Article  PubMed  CAS  Google Scholar 

  41. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999; 399:697–700.

    Article  PubMed  CAS  Google Scholar 

  42. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci 2000; 20:RC110.

    PubMed  CAS  Google Scholar 

  43. Brown D, Breton S. Sorting proteins to their target membranes. Kidney Int 2000; 57:816–824.

    Article  PubMed  CAS  Google Scholar 

  44. Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999; 55:1054–1059.

    PubMed  CAS  Google Scholar 

  45. Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 2000; 275: 31,438–31,443.

    Article  PubMed  CAS  Google Scholar 

  46. Haynes RL, Zheng T, Nicchitta CV. Structure and folding of nascent polypeptide chains during protein translocation in the endoplasmic reticulum. J Biol Chem 1997; 272:17,126–17,133.

    Article  PubMed  CAS  Google Scholar 

  47. Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 2003; 19:649–676.

    Article  PubMed  CAS  Google Scholar 

  48. Morello JP, Salahpour A, Petaja-Repo UE, et al. Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochemistry 2001; 40:6766–6775.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenfeld JL, Knoll BJ, Moore RH. Regulation of G-protein-coupled receptor activity by rab GTPases. Receptors Channels 2002; 8:87–97.

    Article  PubMed  CAS  Google Scholar 

  50. Grimes ML, Miettinen HM. Receptor tyrosine kinase and G-protein coupled receptor signaling and sorting within endosomes. J Neurochem 2003; 84:905–918.

    Article  PubMed  CAS  Google Scholar 

  51. Shenoy SK, Lefkowitz RJ. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 2003; 278:14,498–14,506.

    Article  PubMed  CAS  Google Scholar 

  52. Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF. Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 1999; 274:25,953–25,957.

    Article  PubMed  CAS  Google Scholar 

  53. Ciruela F, Soloviev MM, Chan WY, McIlhinney RA. Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1alpha: evidence for an anchoring function. Mol Cell Neurosci 2000; 15: 36–50.

    Article  PubMed  CAS  Google Scholar 

  54. Ciruela F, Soloviev MM, McIlhinney RA. Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem J 1999; 341:795–803.

    Article  PubMed  CAS  Google Scholar 

  55. Klein MG, Yao Y, Slosberg ED, Lima CD, Doki Y, Weinstein IB. Characterization of PKCI and comparative studies with FHIT, related members of the HIT protein family. Exp Cell Res 1998; 244:26–32.

    Article  PubMed  CAS  Google Scholar 

  56. Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, Hollt V. ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J Biol Chem 2003; 278: 9979–9985.

    Article  PubMed  CAS  Google Scholar 

  57. Morris AJ, Frohman MA, Engebrecht J. Measurement of phospholipase D activity. Anal Biochem 1997; 252:1–9.

    Article  PubMed  CAS  Google Scholar 

  58. Bockaert J, Marin P, Dumuis A, Fagni L. The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett 2003; 546:65–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, H., Willmore, C.B., Wang, J.B. (2005). GPCR Interacting Proteins. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_9

Download citation

Publish with us

Policies and ethics