Skip to main content

De-Orphanizing GPCRs and Drug Development

  • Chapter
The G Protein-Coupled Receptors Handbook

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1373 Accesses

Abstract

Traditionally, the family of G protein-coupled receptors (GPCRs) has been divided into “classical” GPCRs and olfactory (or gustatory) GPCRs. The classical GPCRs comprise receptors for all neurotransmitters and hormones, displaying a vast chemical diversity among their natural ligands. Odorant receptors are believed to bind volatile molecules, but the mechanisms of ligand binding in this group are less well-understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Civelli O, Nothacker HP, Saito Y, Wang Z, Lin S, Reinscheid RK. Discovery of novel neurotransmitters as natural ligands of orphan G protein-coupled receptors. Trends Neuro Sci 2001;24:230–237.

    Article  CAS  Google Scholar 

  2. Drews J. Drug discovery: a historical perspective. Science 2000;287:1960–1964.

    Article  PubMed  CAS  Google Scholar 

  3. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1988;335:358–360.

    Article  PubMed  CAS  Google Scholar 

  4. Bunzow JR, Van Tol HH, Grandy DK, et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988;336:783–787

    Article  PubMed  CAS  Google Scholar 

  5. Bonner TI, Buckley NJ, Young AC, Brann MR. Identification of a family of muscarinic acetylcholine receptor genes. Science 1987;237:527–532.

    Article  PubMed  CAS  Google Scholar 

  6. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561–564.

    Article  PubMed  CAS  Google Scholar 

  7. Libert F, Parmentier M, Lefort A, et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 1989;244:569–572.

    Article  PubMed  CAS  Google Scholar 

  8. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991;65:175–187.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S. Functional expression of a mammalian odorant receptor. Science 1998;279:237–242.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson S, Bergsma DJ, Chambers JK, et al. Orphan G-protein-coupled receptors: the next generation of drug targets? Br J Pharmacol 1998;125:1387–1392.

    Article  PubMed  CAS  Google Scholar 

  11. Reinscheid RK, Nothacker HP, Bourson A, et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995;270:792–794.

    Article  PubMed  CAS  Google Scholar 

  12. Meunier JC, Mollereau C, Toll L, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995;377:532–535.

    Article  PubMed  CAS  Google Scholar 

  13. Hinuma S, Shintani Y, Fukusumi S, et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2000;2:703–708.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang Y, Luo L, Gustafson EL, et al. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 2003;278:27,652–27,657.

    Article  PubMed  CAS  Google Scholar 

  15. Fukusumi S, Yoshida H, Fujii R, et al. A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem 2003;278:46,387–46,395.

    Article  PubMed  CAS  Google Scholar 

  16. Flores CA, Wang XM, Zhang KM, Mokha SS. Orphanin FQ produces gender-specific modulation of trigeminal nociception: behavioral and electrophysiological observations. Neuroscience 2001;105:489–498.

    Article  PubMed  CAS  Google Scholar 

  17. Erb K, Liebel JT, Tegeder I, Zeilhofer HU, Brune K, Geisslinger. Spinally delivered nociceptin/orphanin FQ reduces flinching behaviour in the rat formalin test. Neuroreport 1997;8:1967–1970.

    Article  PubMed  CAS  Google Scholar 

  18. Zeilhofer HU, Calo G. Nociceptin/orphanin FQ and its receptor—potential targets for pain therapy? J Pharmacol Exp Ther 2003;306:423–429.

    Article  PubMed  CAS  Google Scholar 

  19. Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK. Orphanin FQ is a functional anti-opioid peptide. Neuroscience 1996;75:333–337.

    Article  PubMed  CAS  Google Scholar 

  20. Murphy NP, Ly HT, Maidment NT. Intracerebroventricular orphanin FQ/nociceptin suppresses dopamine release in the nucleus accumbens of anaesthetized rats. Neuroscience 1996;75:1–4.

    Article  PubMed  CAS  Google Scholar 

  21. Rominger A, Forster S, Zentner J, et al. Comparison of the ORL1 receptor-mediated inhibition of noradrenaline release in human and rat neocortical slices. Br J Pharmacol 2002;135:800–806.

    Article  PubMed  CAS  Google Scholar 

  22. Bryant W, Janik J, Baumann M, Callahan P. Orphanin FQ stimulates prolactin and growth hormone release in male and female rats. Brain Res 1998;807:228–233.

    Article  PubMed  CAS  Google Scholar 

  23. Armstead WM. Role of Nociceptin/Orphanin FQ in the physiologic and pathologic control of the cerebral circulation. Exp Biol Med 2002;227:957–968.

    CAS  Google Scholar 

  24. Polidori C, de Caro G, Massi M. The hyperphagic effect of nociceptin/orphanin FQ in rats. Peptides 2000;21:1051–1062.

    Article  PubMed  CAS  Google Scholar 

  25. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 1997;9:194–197.

    Article  PubMed  CAS  Google Scholar 

  26. Mamiya T, Yamada K, Miyamoto Y, et al. Neuronal mechanism of nociceptin-induced modulation of learning and memory: involvement of N-methyl-D-aspartate receptors. Mol Psychiatry 2003;8:752–765.

    Article  PubMed  CAS  Google Scholar 

  27. McLeod RL, Parra LE, Mutter JC, et al. Nociceptin inhibits cough in the guinea-pig by activation of ORL(1) receptors. Br J Pharmacol 2001;132:1175–1178.

    Article  PubMed  CAS  Google Scholar 

  28. Bregola G, Zucchini S, Rodi D, et al. Involvement of the neuropeptide nociceptin/orphanin FQ in kainate seizures. J Neurosci 2002;22:10,030–10,038.

    PubMed  CAS  Google Scholar 

  29. Hao JX, Xu IS, Wiesenfeld-Hallin Z, Xu XJ. Anti-hyperalgesic and anti-allodynic effects of intrathecal nociceptin/orphanin FQ in rats after spinal cord injury, peripheral nerve injury and inflammation. Pain 1998; 76:385–393.

    Article  PubMed  CAS  Google Scholar 

  30. Ito S, Okuda-Ashitaka E, Minami T. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin. Neurosci Res 2001;41:299–332.

    Article  PubMed  CAS  Google Scholar 

  31. Jenck F, Moreau JL, Martin JR, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA 1997;94: 14,854–14,858.

    Article  PubMed  CAS  Google Scholar 

  32. Griebel G, Perrault G, Sanger DJ. Orphanin FQ, a novel neuropeptide with anti-stress-like activity. Brain Res 1999;836:221–224.

    Article  PubMed  CAS  Google Scholar 

  33. Jenck F, Wichmann J, Dautzenberg FM, et al. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci USA 2000;97:4938–4943.

    Article  PubMed  CAS  Google Scholar 

  34. Köster A, Montkowski A, Schulz S, et al. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci USA 1999;96: 10,444–10,449.

    Article  PubMed  Google Scholar 

  35. Meunier JC. Utilizing functional genomics to identify new pain treatments: the example of nociceptin. Am J Pharmacogenomics 2003;3:117–130.

    Article  PubMed  CAS  Google Scholar 

  36. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 1998;95:322–327.

    Article  PubMed  Google Scholar 

  37. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573–585.

    Article  PubMed  CAS  Google Scholar 

  38. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999;98:437–451.

    Article  PubMed  CAS  Google Scholar 

  39. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999;98:365–376.

    Article  PubMed  CAS  Google Scholar 

  40. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000;6:991–997.

    Article  PubMed  CAS  Google Scholar 

  41. Bingham S, Davey PT, Babbs AJ, et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain 2001;92:81–90.

    Article  PubMed  CAS  Google Scholar 

  42. Hirota K, Kushikata T, Kudo M, Kudo T, Smart D, Matsuki A. Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res 2003;981:143–150.

    Article  PubMed  CAS  Google Scholar 

  43. Rodgers RJ, Halford JC, Nunes de Souza RL, et al. SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J Neurosci 2001;13: 1444–1452.

    Article  PubMed  CAS  Google Scholar 

  44. Haynes AC, Chapman H, Taylor C, et al. Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. Regul Pept 2002;104:153–159.

    Article  PubMed  CAS  Google Scholar 

  45. Sutcliffe JG, de Lecea L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci 2002; 3:339–349.

    Article  PubMed  CAS  Google Scholar 

  46. Hinuma S, Habata Y, Fujii R, et al. A prolactin-releasing peptide in the brain. Nature 1998;393: 272–276.

    Article  PubMed  CAS  Google Scholar 

  47. Skinner DC, Caraty A. Prolactin release during the estradiol-induced LH surge in ewes: modulation by progesterone but no evidence for prolactin-releasing peptide involvement. J Endocrinol 2003;177:453–460.

    Article  PubMed  CAS  Google Scholar 

  48. Lawrence CB, Celsi F, Brennand J, Luckman SM. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci 2000;3:645,646.

    Article  PubMed  CAS  Google Scholar 

  49. Seal LJ, Small CJ, Dhillo WS, Kennedy AR, Ghatei MA, Bloom SR. Prolactin-releasing peptide releases corticotropin-releasing hormone and increases plasma adrenocorticotropin via the paraventricular nucleus of the hypothalamus. Neuroendocrinology 2002;76:70–78.

    Article  PubMed  CAS  Google Scholar 

  50. Lin SH, Arai AC, Espana RA, et al. Prolactin-releasing peptide (PrRP) promotes awakening and suppresses absence seizures. Neuroscience 2002;114:229–238.

    Article  PubMed  CAS  Google Scholar 

  51. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996;380:243–247.

    Article  PubMed  CAS  Google Scholar 

  52. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998;396:670–674.

    Article  PubMed  CAS  Google Scholar 

  53. Chambers J, Ames RS, Bergsma D, et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999;400:261–265.

    Article  PubMed  CAS  Google Scholar 

  54. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 1999;400:265–269.

    Article  PubMed  CAS  Google Scholar 

  55. Lembo PM, Grazzini E, Cao J, et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1999;1:267–271.

    Article  PubMed  CAS  Google Scholar 

  56. Hill J, Duckworth M, Murdock P, et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 2001;276:20,125–20,129.

    Article  PubMed  CAS  Google Scholar 

  57. Takekawa S, Asami A, Ishihara Y, et al. T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur J Pharmacol 2002;438:129–135.

    Article  PubMed  CAS  Google Scholar 

  58. Borowsky B, Durkin MM, Ogozalek K, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 2002;8:825–830.

    PubMed  CAS  Google Scholar 

  59. Shearman LP, Camacho RE, Sloan Stribling D, et al. Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol 2003;475:37–47.

    Article  PubMed  CAS  Google Scholar 

  60. Smith RG, Cheng K, Schoen WR, et al. A nonpeptidyl growth hormone secretagogue. Science 1993;260: 1640–1643.

    Article  PubMed  CAS  Google Scholar 

  61. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996;273:974–977.

    Article  PubMed  CAS  Google Scholar 

  62. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    Article  PubMed  CAS  Google Scholar 

  63. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908–913.

    Article  PubMed  CAS  Google Scholar 

  64. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 2001;50:227–232.

    Google Scholar 

  65. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002;346:1623–1630.

    Article  PubMed  Google Scholar 

  66. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003; 23:7973–7981.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang FL, Luo L, Gustafson E, et al. ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 2001;276:8608–8615.

    Article  PubMed  CAS  Google Scholar 

  68. Hollopeter G, Jantzen HM, Vincent D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001;409:202–207.

    Article  PubMed  CAS  Google Scholar 

  69. Storey F. The P2Y12 receptor as a therapeutic target in cardiovascular disease. Platelets 2001;12: 197–209.

    Article  PubMed  CAS  Google Scholar 

  70. Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 1998;251:471–476.

    Article  PubMed  CAS  Google Scholar 

  71. Ames RS, Sarau HM, Chambers JK, et al. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999;401:282–286.

    Article  PubMed  CAS  Google Scholar 

  72. Nothacker HP, Wang Z, McNeill AM, et al. Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. Nat Cell Biol 1999;1:383–385.

    Article  PubMed  CAS  Google Scholar 

  73. Mori M, Sugo T, Abe M, et al. Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun 1999;265:123–129.

    Article  PubMed  CAS  Google Scholar 

  74. Kojima M, Haruno R, Nakazato M, et al. Purification and identification of neuromedin U as an endogenous ligand for an orphan receptor GPR66 (FM3). Biochem Biophys Res Commun 2000;276:435–438.

    Article  PubMed  CAS  Google Scholar 

  75. Ohtaki T, Shintani Y, Honda S, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411:613–617.

    Article  PubMed  CAS  Google Scholar 

  76. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY. Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem 2002;277:19,276–19,280.

    Article  PubMed  CAS  Google Scholar 

  77. Masuda Y, Takatsu Y, Terao Y, et al. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun 2002;293:396–402.

    Article  PubMed  CAS  Google Scholar 

  78. Shimomura Y, Harada M, Goto M, et al. Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J Biol Chem 2002;277:35,826–35,832.

    Article  PubMed  CAS  Google Scholar 

  79. Fujii R, Yoshida H, Fukusumi S, et al. Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem 2002;277:34,010–34,016.

    Article  PubMed  CAS  Google Scholar 

  80. Tanaka H, Yoshida T, Miyamoto N, et al. Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA 2003;100:6251–6256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Reinscheid, R.K., Civelli, O. (2005). De-Orphanizing GPCRs and Drug Development. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_18

Download citation

Publish with us

Policies and ethics