Skip to main content

Conformational Plasticity of GPCR Binding Sites

Structural Basis for Evolutionary Diversity in Ligand Recognition

  • Chapter
The G Protein-Coupled Receptors Handbook

Abstract

Genome sequencing projects have identified the G protein-coupled receptor (GPCR) superfamily as one of the largest classes of proteins in mammalian genomes (1). For example, preliminary analyses of the human genome have revealed up to 600 GPCRs (2,3). Additionally, GPCRs are scored as the most common family in the human proteome at the Proteome Analysis Database of the European Bioinformatics Institute(see http://www.ebi.ac.uk/proteome/HUMAN/interpro/top15f.html), with more than 800 sequences. Based on phylogenetic analyses of the human genome, these receptors have been classified into five main families: glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 2002;520:97–101.

    Article  PubMed  CAS  Google Scholar 

  2. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  3. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291: 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  4. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003;63: 1256–1272.

    Article  PubMed  CAS  Google Scholar 

  5. Bourne HR. How receptors talk to trimeric G proteins. Curr Opin Cell Biol 1997; 9(2):134–142.

    Article  PubMed  CAS  Google Scholar 

  6. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000;21:90–113.

    Article  PubMed  CAS  Google Scholar 

  7. Ji TH, Grossmann M, Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 1998;273:17,299–17,302.

    Article  PubMed  CAS  Google Scholar 

  8. Okada T, Ernst OP, Palczewski K, Hofmann KP. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 2001;26:318–324.

    Article  PubMed  CAS  Google Scholar 

  9. Mirzadegan T, Benko G, Filipek S, Palczewski K. Sequence analyses of G protein-coupled receptors: similarities to rhodopsin. Biochemistry 2003;42:2759–2767.

    Article  PubMed  CAS  Google Scholar 

  10. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 1996;274:768–770.

    Article  PubMed  CAS  Google Scholar 

  11. Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, Hubbell WL. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 1996;35:12,470–12,478.

    Article  PubMed  CAS  Google Scholar 

  12. Abdulaev NG, Ridge KD. Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. Proc Natl Acad Sci USA 1998;95:12,854–12,859.

    Article  PubMed  CAS  Google Scholar 

  13. Miura S, Karnik SS. Constitutive activation of angiotensin II type 1 receptor alters the orientation of transmembrane helix-2. J Biol Chem 2002;277(27): 24,299–24,305.

    Article  PubMed  CAS  Google Scholar 

  14. Visiers I, Ballesteros JA, Weinstein H. Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol 2002;343:329–371.

    PubMed  Google Scholar 

  15. Donnelly D, Findlay JB, Blundell TL. The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels 1994;2(1):61–78.

    PubMed  CAS  Google Scholar 

  16. Horn F, van der Wenden EM, Oliveira L, IJzerman AP, Vriend G. Receptors coupling to G proteins: is there a signal behind the sequence? Proteins 2000;41:448–459.

    Article  PubMed  CAS  Google Scholar 

  17. Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O. Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J Biol Chem 2004; 279(9): 8126–8132.

    Article  PubMed  CAS  Google Scholar 

  18. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 2001;60:1–19.

    PubMed  CAS  Google Scholar 

  19. Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 1995; 25:366–428.

    CAS  Google Scholar 

  20. Barlow DJ, Thornton JM. Helix geometry in proteins. J Mol Biol 1988;201:601–619.

    Article  PubMed  CAS  Google Scholar 

  21. MacArthur MW, Thornton JM. Influence of proline residues on protein conformation. J Mol Biol 1991; 218(2):397–412.

    Article  PubMed  CAS  Google Scholar 

  22. von Heijne G. Proline kinks in transmembrane alpha-helices. J Mol Biol 1991;218:499–503.

    Article  Google Scholar 

  23. Sankararamakrishnan R, Vishveshwara S. Geometry of proline-containing alpha-helices in proteins. Int J Pept Protein Res 1992;39:356–363.

    Article  PubMed  CAS  Google Scholar 

  24. Cordes FS, Bright JN, Sansom MS. Proline-induced distortions of transmembrane helices. J Mol Biol 2002;323:951–960.

    Article  PubMed  CAS  Google Scholar 

  25. Deupi X, Olivella M, Govaerts C, Ballesteros JA, Campillo M, Pardo L. Ser and Thr residues modulate the conformation of Pro-kinked transmembrane alpha-helices. Biophys J 2004;86:105–115.

    PubMed  CAS  Google Scholar 

  26. Richardson JS, Richardson DC. Amino acid preferences for specific locations at the ends of alpha helices. Science 1988;240(4859):1648–1652.

    Article  PubMed  CAS  Google Scholar 

  27. Woolfson DN, Williams DH. The influence of proline residues on alpha-helical structure. FEBS Lett 1990; 277:185–188.

    Article  PubMed  CAS  Google Scholar 

  28. Orzaez M, Salgado J, Gimenez-Giner A, Perez-Paya E, Mingarro I. Influence of proline residues in transmembrane helix packing. J Mol Biol 2004;335(2):631–640.

    Article  PubMed  CAS  Google Scholar 

  29. Hong S, Ryu KS, Oh MS, Ji I, Ji TH. Roles of transmembrane prolines and proline-induced kinks of the lutropin/choriogonadotropin receptor. J Biol Chem 1997;272:4166–4171.

    Article  PubMed  CAS  Google Scholar 

  30. Ri Y, Ballesteros JA, Abrams CK, et al. The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys J 1999;76:2887–2898.

    PubMed  CAS  Google Scholar 

  31. Govaerts C, Blanpain C, Deupi X, et al. The TXP motif in the second transmembrane helix of CCR5. a structural determinant of chemokine-induced activation. J Biol Chem 2001;276:13,217–13,225.

    Article  PubMed  CAS  Google Scholar 

  32. Stitham J, Martin KA, Hwa J. The critical role of transmembrane prolines in human prostacyclin receptor activation. Mol Pharmacol 2002;61:1202–1210.

    Article  PubMed  CAS  Google Scholar 

  33. Slepkov ER, Chow S, Lemieux MJ, Fliegel L. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J 2004;379(pt 1):31–38.

    Article  PubMed  CAS  Google Scholar 

  34. Yun RH, Anderson A, Hermans J. Proline in alpha-helix: stability and conformation studied by dynamics simulation. Proteins 1991;10:219–228.

    Article  PubMed  CAS  Google Scholar 

  35. Sankararamakrishnan R, Vishveshwara S. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies. Proteins 1993;15(1):26–41.

    Article  PubMed  CAS  Google Scholar 

  36. Biggin PC, Breed J, Son HS, Sansom MS. Simulation studies of alamethicin-bilayer interactions. Biophys J 1997;72(2 pt 1):627–636.

    PubMed  CAS  Google Scholar 

  37. Tieleman DP, Shrivastava IH, Ulmschneider MR, Sansom MS. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 2001;44(2):63–72.

    Article  PubMed  CAS  Google Scholar 

  38. Bright JN, Shrivastava IH, Cordes FS, Sansom MS. Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 2002;64(6):303–313.

    Article  PubMed  CAS  Google Scholar 

  39. Sansom MS, Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci 2000;21:445–451.

    Article  PubMed  CAS  Google Scholar 

  40. Reiersen H, Rees AR. The hunchback and its neighbours: proline as an environmental modulator. Trends Biochem Sci 2001;26(11):679–684.

    Article  PubMed  CAS  Google Scholar 

  41. Monne M, Hermansson M, von Heijne G. A turn propensity scale for transmembrane helices. J Mol Biol 1999;288:141–145.

    Article  PubMed  CAS  Google Scholar 

  42. Senes A, Gerstein M, Engelman DM. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 2000;296:921–936.

    Article  PubMed  CAS  Google Scholar 

  43. Gray TM, Matthews BW. Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol 1984;175(1):75–81.

    Article  PubMed  CAS  Google Scholar 

  44. Ballesteros JA, Deupi X, Olivella M, Haaksma EE, Pardo L. Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation. Biophys J 2000;79:2754–2760.

    PubMed  CAS  Google Scholar 

  45. Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol 1994;1(3):157–163.

    Article  PubMed  CAS  Google Scholar 

  46. Brosig B, Langosch D. The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci 1998;7(4):1052–1056.

    Article  PubMed  CAS  Google Scholar 

  47. Li SC, Deber CM. Influence of glycine residues on peptide conformation in membrane environments. Int J Pept Protein Res 1992;40(3–4):243–248.

    PubMed  CAS  Google Scholar 

  48. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739–745.

    Article  PubMed  CAS  Google Scholar 

  49. Jacob J, Duclohier H, Cafiso DS. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Biophys J 1999;76(3):1367–1376.

    Article  PubMed  CAS  Google Scholar 

  50. Barnett-Norris J, Hurst DP, Buehner K, Ballesteros J, Guarnieri F, Reggio PH. Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation. Intl J Quantum Chem 2002; 88:76–86.

    Article  CAS  Google Scholar 

  51. Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA. Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 2002;277: 40,989–40,996.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez-Rodriguez ML, Vicente B, Deupi X, al. Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine 1a receptor ligands to explore the three-dimensional structure of the receptor. Mol Pharmacol 2002;62:15–21.

    Article  PubMed  CAS  Google Scholar 

  53. Liapakis G, Ballesteros JA, Papachristou S, Chan WC, Chen X, Javitch JA. The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the beta 2-adrenergic receptor. J Biol Chem 2000; 275:37,779–37,788.

    Article  PubMed  CAS  Google Scholar 

  54. van Rhee AM, Jacobson KA. Molecular architecture of G protein-coupled receptors. Drug Dev Res 1996; 37:1–38.

    Article  Google Scholar 

  55. Ambrosio C, Molinari P, Cotecchia S, Costa T. Catechol-binding serines of beta 2 adrenergic receptors control the equilibrium between active and inactive receptor states. Mol Pharmacol 2000;57:198–210.

    PubMed  CAS  Google Scholar 

  56. Javitch JA, Fu D, Chen J, Karlin A. Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 1995; 14:825–831.

    Article  PubMed  CAS  Google Scholar 

  57. Govaerts C, Lefort A, Costagliola S, et al. A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor. J Biol Chem 2001;276:22,991–22,999.

    Article  PubMed  CAS  Google Scholar 

  58. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 2002;99:5982–5987.

    Article  PubMed  CAS  Google Scholar 

  59. Neve KA, Cumbay MG, Thompson KR, et al. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol Pharmacol 2001;60(2):373–381.

    PubMed  CAS  Google Scholar 

  60. Lu ZL, Hulme EC. The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J Biol Chem 1999;274(11):7309–7315.

    Article  PubMed  CAS  Google Scholar 

  61. Lu ZL, Saldanha JW, Hulme EC. Transmembrane domains 4 and 7 of the M(1) muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch. J Biol Chem 2001;276(36):34,098–34,104.

    Article  PubMed  CAS  Google Scholar 

  62. Dawson JP, Weinger JS, Engelman DM. Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 2002;316:799–805.

    Article  PubMed  CAS  Google Scholar 

  63. Govaerts C, Bondue A, Springael JY, et al. Activation of CCR5 by chemokines involves an aromatic cluster between transmembrane helices 2 and 3. J Biol Chem 2003;278:1892–1903.

    Article  PubMed  CAS  Google Scholar 

  64. Peralvarez A, Barnadas R, Sabes M, Querol E, Padros E. Thr90 is a key residue of the bacteriorhodopsin proton pumping mechanism. FEBS Lett 2001;508:399–402.

    Article  PubMed  CAS  Google Scholar 

  65. Peleg G, Ghanouni P, Kobilka BK, Zare RN. Single-molecule spectroscopy of the beta 2 adrenergic receptor: observation of conformational substates in a membrane protein. Proc Natl Acad Sci USA 2001;98(15): 8469–8474.

    Article  PubMed  CAS  Google Scholar 

  66. Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK. Sequential binding of agonists to the beta 2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 2004;279(1):686–691.

    Article  PubMed  CAS  Google Scholar 

  67. Ghanouni P, Gryczynski Z, Steenhuis JJ, et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 2001;276(27): 24,433–24,436.

    Article  PubMed  CAS  Google Scholar 

  68. Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK. Structural instability of a constitutively active G protein-coupled receptor: Agonist-independent activation due to conformational flexibility. J Biol Chem 1997;272:2587–2590.

    Article  PubMed  CAS  Google Scholar 

  69. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 2003;31:294–297.

    Article  PubMed  CAS  Google Scholar 

  70. Kraulis J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J Appl Crystallogr 1991; 24:946–950.

    Article  Google Scholar 

  71. Merritt EA, Bacon DJ. Raster3D: photorealistic molecular graphics. Methods Enzymol 1997;277: 505–524.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Deupi, X., Govaerts, C., Shi, L., Javitch, J.A., Pardo, L., Ballesteros, J. (2005). Conformational Plasticity of GPCR Binding Sites. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_17

Download citation

Publish with us

Policies and ethics