Skip to main content

The Role of Oligomerization in G Protein-Coupled Receptor Maturation

  • Chapter
The G Protein-Coupled Receptors Handbook

Abstract

A large body of evidence now shows that the basic functional unit of seven transmembrane-spanning G protein-coupled receptors (GPCRs) is a dimer, with the possibility of the existence of higher order oligomeric species. GPCR oligomerization has been demonstrated to be a physiological process that defines receptor pharmacology and function (1,2). There is substantial evidence indicating that these receptors are assembled as dimers and, possibly, oligomers prior to cell-surface expression (Fig. 1). Although it has generally been accepted that constitutive GPCR oligomers exist at the plasma membrane, there is evidence demonstrating that the extent of oligomerization at the plasma membrane may be altered by ligand induction (35) (Fig. 1). For many other classes of cell-surface receptors, oligomerization has been found to be a prerequisite for activation and signaling. For example, the epidermal growth factor receptor, a prototypical member of the tyrosine kinase (TK) family, requires a ligand-induced dimeric configuration for the auto-phosphorylation of tyrosine residues on the cytoplasmic domain and subsequent recruitment of various signaling proteins (6). With the exception of the insulin receptor, agonist-induced dimerization appears to be the rule of thumb for TKs. Conversely, a large proportion of receptors belonging to the cytokine receptor superfamily have been reported as intracellularly derived dimers at the plasma membrane (710). Ligand binding triggers a conformational change in these receptors, facilitating Janus kinase-mediated phosphorylation of various cytosolic substrates (11). Although there is a wealth of knowledge regarding the formation and functional significance of oligomerization in these other receptor families, progress is still being made to determine the cellular implications of the relatively novel concept of GPCR oligomerization.

Maturation process of a GPCR oligomer. GPCR monomers are synthesized in the endoplasmic reticulum (ER) and inserted in the membrane sequentially as transmembrane domain pairs (1). Folding of the polypeptide is mediated by specific ER-resident molecular chaperones, which may also function to mediate dimeric assembly (2,3). Higher order oligomeric assembly may occur with other dimers in the ER (4A) and these complexes will then be trafficked to the cell surface as constitutively formed GPCR oligomers (5A). Alternatively, ER-formed dimers may traffic to the plasma membrane (4B, 5B) and form higher order oligomeric units upon agonist induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. George SR, O’Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002;1:808–820.

    Article  PubMed  CAS  Google Scholar 

  2. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2: 274–286.

    Article  PubMed  CAS  Google Scholar 

  3. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000;288:154–157.

    Article  PubMed  CAS  Google Scholar 

  4. Cornea A, Janovick JA, Maya-Nunez G, Conn PM. Gonadotropin-releasing hormone receptor microaggregation. Rate monitored by fluorescence resonance energy transfer. J Biol Chem 2001;276:2153–2158.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng ZJ, Miller LJ. Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 2001; 276: 48,040–48,047.

    PubMed  CAS  Google Scholar 

  6. Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002; 110:669–672.

    Article  PubMed  CAS  Google Scholar 

  7. Constantinescu SN, Keren T, Socolovsky M, Nam H, Henis YI, Lodish HF. Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc Natl Acad Sci USA 2001; 98: 4379–4384.

    Article  PubMed  CAS  Google Scholar 

  8. Devos R, Guisez Y, Van der Heyden J, et al. Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J Biol Chem 1997;272: 18,304–18,310.

    Article  PubMed  CAS  Google Scholar 

  9. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 1999;283:987–990.

    Article  PubMed  CAS  Google Scholar 

  10. Gent J, van Kerkhof P, Roza M, Bu G, Strous GJ. Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci USA 2002;99:9858–9863.

    Article  PubMed  CAS  Google Scholar 

  11. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell 1995;80:213–223.

    Article  PubMed  CAS  Google Scholar 

  12. Audigier Y, Friedlander M, Blobel G. Multiple topogenic sequences in bovine opsin. Proc Natl Acad Sci USA 1987;84:5783–5787.

    Article  PubMed  CAS  Google Scholar 

  13. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA 1980;77:1496–500.

    Article  PubMed  CAS  Google Scholar 

  14. Friedlander M, Blobel G. Bovine opsin has more than one signal sequence. Nature 1985;318: 338–343.

    Article  PubMed  CAS  Google Scholar 

  15. Sabatini DD, Kreibich G, Morimoto T, Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol 1982;92:1–22.

    Article  PubMed  CAS  Google Scholar 

  16. Singer SJ, Maher PA, Yaffe MP. On the transfer of integral proteins into membranes. Proc Natl Acad Sci USA 1987;84:1960–1964.

    Article  PubMed  CAS  Google Scholar 

  17. Wessels HP, Spiess M. Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell 1988;55:61–70.

    Article  PubMed  CAS  Google Scholar 

  18. Lemmon MA, Engelman DM. Specificity and promiscuity in membrane helix interactions. FEBS Lett 1994; 346:17–20.

    Article  PubMed  CAS  Google Scholar 

  19. Popot JL, Gerchman SE, Engelman DM. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. J Mol Biol 1987;198:655–676.

    Article  PubMed  CAS  Google Scholar 

  20. Marti T. Refolding of bacteriorhodopsin from expressed polypeptide fragments. J Biol Chem 1998;273: 9312–9322.

    Article  PubMed  CAS  Google Scholar 

  21. Ridge KD, Lee SS, Abdulaev NG. Examining rhodopsin folding and assembly through expression of polypeptide fragments. J Biol Chem 1996;271:7860–7867.

    Article  PubMed  CAS  Google Scholar 

  22. Ridge KD, Lee SS, Yao LL. In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci USA 1995;92:3204–3208.

    Article  PubMed  CAS  Google Scholar 

  23. Schoneberg T, Liu J, Wess J. Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J Biol Chem 1995;270:18,000–18,006.

    Article  PubMed  CAS  Google Scholar 

  24. Karpa KD, Lin R, Kabbani N, Levenson R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol 2000;58: 677–683.

    PubMed  CAS  Google Scholar 

  25. Zhu X, Wess J. Truncated V2 vasopressin receptors as negative regulators of wild-type V2 receptor function. Biochemistry 1998;37:15,773–15,784.

    Article  PubMed  CAS  Google Scholar 

  26. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem 1997;272:30,603–30,606.

    Article  PubMed  CAS  Google Scholar 

  27. Grosse R, Schoneberg T, Schultz G, Gudermann T. Inhibition of gonadotropin-releasing hormone receptor signaling by expression of a splice variant of the human receptor. Mol Endocrinol 1997;11:1305–1318.

    Article  PubMed  CAS  Google Scholar 

  28. Coge F, Guenin SP, Renouard-Try A, et al. Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human alpha1A-adrenoceptors. Biochem J 1999;343(Pt 1):231–239.

    Article  PubMed  CAS  Google Scholar 

  29. Colley NJ, Cassill JA, Baker EK, Zuker CS. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA 1995;92:3070–3074.

    Article  PubMed  CAS  Google Scholar 

  30. Le Gouill C, Parent JL, Caron CA, et al. Selective modulation of wild type receptor functions by mutants of G-protein-coupled receptors. J Biol Chem 1999;274:12,548–12,554.

    Article  PubMed  Google Scholar 

  31. Lee SP, O’Dowd BF, Ng GY, et al. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol 2000;58:120–128.

    PubMed  CAS  Google Scholar 

  32. Terrillon S, Durroux T, Mouillac B, et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo-and heterodimers during biosynthesis. Mol Endocrinol 2003;17:677–691.

    Article  PubMed  CAS  Google Scholar 

  33. Issafras H, Angers S, Bulenger S, et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 2002;277: 34,666–34,673.

    Article  PubMed  CAS  Google Scholar 

  34. Floyd DH, Geva A, Bruinsma SP, Overton MC, Blumer KJ, Baranski TJ. C5a receptor oligomerization. II. Fluorescence resonance energy transfer studies of a human G protein-coupled receptor expressed in yeast. J Biol Chem 2003;278:35,354–35,361.

    Article  PubMed  CAS  Google Scholar 

  35. Karpa KD, Lidow MS, Pickering MT, Levenson R, Bergson C. N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells. Mol Pharmacol 1999; 56:1071–1078.

    PubMed  CAS  Google Scholar 

  36. Lanctot PM, Leclerc PC, Escher E, Leduc R, Guillemette G. Role of N-glycosylation in the expression and functional properties of human AT1 receptor. Biochemistry 1999;38:8621–8627.

    Article  PubMed  CAS  Google Scholar 

  37. Wu G, Zhao G, He Y. Distinct pathways for the trafficking of angiotensin II and adrenergic receptors from the endoplasmic reticulum to the cell surface: Rab1-independent transport of a G protein-coupled receptor. J Biol Chem 2003;278:47,062–47,069.

    Article  PubMed  CAS  Google Scholar 

  38. Robbins MJ, Ciruela F, Rhodes A, McIlhinney RA. Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. J Neurochem 1999;72:2539–2547.

    Article  PubMed  CAS  Google Scholar 

  39. He J, Xu J, Castleberry AM, Lau AG, Hall RA. Glycosylation of beta(1)-adrenergic receptors regulates receptor surface expression and dimerization. Biochem Biophys Res Commun 2002;297:565–572.

    Article  PubMed  CAS  Google Scholar 

  40. Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. Heterodimerization of alpha 2A-and beta 1-adrenergic receptors. J Biol Chem 2003;278:10,770–10,777.

    Article  PubMed  CAS  Google Scholar 

  41. Aridor M, Balch WE. Membrane fusion: timing is everything. Nature 1996;383:220–221.

    Article  PubMed  CAS  Google Scholar 

  42. Bass J, Chiu G, Argon Y, Steiner DF. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol 1998;141:637–646.

    Article  PubMed  CAS  Google Scholar 

  43. Boyd GW, Low P, Dunlop JI, et al. Assembly and cell surface expression of homomeric and heteromeric 5-HT3 receptors: the role of oligomerization and chaperone proteins. Mol Cell Neurosci 2002;21:38–50.

    Article  PubMed  CAS  Google Scholar 

  44. Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 1996;15:1495–1506.

    PubMed  CAS  Google Scholar 

  45. Hebert DN, Foellmer B, Helenius A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 1996;15:2961–2968.

    PubMed  CAS  Google Scholar 

  46. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003;4: 181–191.

    Article  PubMed  CAS  Google Scholar 

  47. Schulz A, Grosse R, Schultz G, Gudermann T, Schoneberg T. Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J Biol Chem 2000;275: 2381–2389.

    Article  PubMed  CAS  Google Scholar 

  48. Morello JP, Salahpour A, Laperriere A, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 2000;105:887–895.

    Article  PubMed  CAS  Google Scholar 

  49. Rozell TG, Davis DP, Chai Y, Segaloff DL. Association of gonadotropin receptor precursors with the protein folding chaperone calnexin. Endocrinology 1998;139:1588–1593.

    Article  PubMed  CAS  Google Scholar 

  50. Siffroi-Fernandez S, Giraud A, Lanet J, Franc JL. Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Effects on the maturation of the receptor. Eur J Biochem 2002;269:4930–4937.

    Article  PubMed  CAS  Google Scholar 

  51. Graves PN, Vlase H, Bobovnikova Y, Davies TF. Multimeric complex formation by the thyrotropin receptor in solubilized thyroid membranes. Endocrinology 1996;137:3915–3920.

    Article  PubMed  CAS  Google Scholar 

  52. Latif R, Graves P, Davies TF. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. J Biol Chem 2002;277:45,059–45,067.

    Article  PubMed  CAS  Google Scholar 

  53. Jorgensen CS, Ryder LR, Steino A, et al. Dimerization and oligomerization of the chaperone calreticulin. Eur J Biochem 2003;270:4140–4148.

    Article  PubMed  CAS  Google Scholar 

  54. Ou WJ, Bergeron JJ, Li Y, Kang CY, Thomas DY. Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem 1995;270:18,051–18,059.

    Article  PubMed  CAS  Google Scholar 

  55. Chadli A, Ladjimi MM, Baulieu EE, Catelli MG. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J Biol Chem 1999;274: 4133–4139.

    Article  PubMed  CAS  Google Scholar 

  56. Wearsch PA, Nicchitta CV. Endoplasmic reticulum chaperone GRP94 subunit assembly is regulated through a defined oligomerization domain. Biochemistry 1996;35:16,760–16,769.

    Article  PubMed  CAS  Google Scholar 

  57. Papazian DM. Potassium channels: some assembly required. Neuron 1999;23:7–10.

    Article  PubMed  CAS  Google Scholar 

  58. Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 1999;22:537–548.

    Article  PubMed  CAS  Google Scholar 

  59. Ma D, Zerangue N, Lin YF, et al. Role of ER export signals in controlling surface potassium channel numbers. Science 2001;291:316–319.

    Article  PubMed  CAS  Google Scholar 

  60. Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC. Role of heteromer formation in GABAB receptor function. Science 1999;283:74–77.

    Article  PubMed  CAS  Google Scholar 

  61. White JH, Wise A, Main MJ, et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998;396:679–682.

    Article  PubMed  CAS  Google Scholar 

  62. Jones KA, Borowsky B, Tamm JA, et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998;396:674–679.

    Article  PubMed  CAS  Google Scholar 

  63. Kaupmann K, Malitschek B, Schuler V, et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998;396:683–687.

    Article  PubMed  CAS  Google Scholar 

  64. Ng GY, Clark J, Coulombe N, et al. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 1999;274:7607–7610.

    Article  PubMed  CAS  Google Scholar 

  65. Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ. Intracellular retention of recombinant GABAB receptors. J Biol Chem 1998;273:26,361–26,367.

    Article  PubMed  CAS  Google Scholar 

  66. Martin SC, Russek SJ, Farb DH. Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol Cell Neurosci 1999;13:180–191.

    Article  PubMed  CAS  Google Scholar 

  67. Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J. Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 1999;38:13,263–13,269.

    Article  PubMed  CAS  Google Scholar 

  68. Calver AR, Robbins MJ, Cosio C, et al. The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci 2001;21:1203–1210.

    PubMed  CAS  Google Scholar 

  69. Pagano A, Rovelli G, Mosbacher J, et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 2001;21:1189–1202.

    PubMed  CAS  Google Scholar 

  70. Uberti MA, Hall RA, Minneman KP. Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 2003;64:1379–1390.

    Article  PubMed  CAS  Google Scholar 

  71. Taguchi K, Yang M, Goepel M, Michel MC. Comparison of human alpha1-adrenoceptor subtype coupling to protein kinase C activation and related signalling pathways. Naunyn Schmiedebergs Arch Pharmacol 1998;357: 100–110.

    Article  PubMed  CAS  Google Scholar 

  72. Theroux TL, Esbenshade TA, Peavy RD, Minneman KP. Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 1996;50:1376–1387.

    PubMed  CAS  Google Scholar 

  73. Hirasawa A, Sugawara T, Awaji T, Tsumaya K, Ito H, Tsujimoto G. Subtype-specific differences in subcellular localization of alpha1-adrenoceptors: chlorethylclonidine preferentially alkylates the accessible cell surface alpha1-adrenoceptors irrespective of the subtype. Mol Pharmacol 1997;52:764–770.

    PubMed  CAS  Google Scholar 

  74. Hilairet S, Belanger C, Bertrand J, Laperriere A, Foord SM, Bouvier M. Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin. J Biol Chem 2001;276:42,182–42,190.

    Article  PubMed  CAS  Google Scholar 

  75. McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393:333–339.

    Article  PubMed  CAS  Google Scholar 

  76. Kuwasako K, Shimekake Y, Masuda M, et al. Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling. J Biol Chem 2000;275: 29,602–29,609.

    Article  PubMed  CAS  Google Scholar 

  77. Steiner S, Muff R, Gujer R, Fischer JA, Born W. The transmembrane domain of receptor-activity-modifying protein 1 is essential for the functional expression of a calcitonin gene-related peptide receptor. Biochemistry 2002;41:11,398–11,404.

    Article  PubMed  CAS  Google Scholar 

  78. Kamitani S, Asakawa M, Shimekake Y, Kuwasako K, Nakahara K, Sakata T. The RAMP2/CRLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells. FEBS Lett 1999;448: 111–114.

    Article  PubMed  CAS  Google Scholar 

  79. Hilairet S, Foord SM, Marshall FH, Bouvier M. Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J Biol Chem 2001;276:29,575–29,581.

    Article  PubMed  CAS  Google Scholar 

  80. Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999;55:1054–1059.

    PubMed  CAS  Google Scholar 

  81. Kuwasako K, Kitamura K, Onitsuka H, et al. Rat RAMP domains involved in adrenomedullin binding specificity. FEBS Lett 2002;519:113–116.

    Article  PubMed  CAS  Google Scholar 

  82. Miret JJ, Rakhilina L, Silverman L, Oehlen B. Functional expression of heteromeric calcitonin gene-related peptide and adrenomedullin receptors in yeast. J Biol Chem 2002;277:6881–6887.

    Article  PubMed  CAS  Google Scholar 

  83. Christopoulos A, Christopoulos G, Morfis M, et al. Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 2003;278:3293–3297.

    Article  PubMed  CAS  Google Scholar 

  84. Muff R, Buhlmann N, Fischer JA, Born W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or-3. Endocrinology 1999;140:2924–2927.

    Article  PubMed  CAS  Google Scholar 

  85. Baker EK, Colley NJ, Zuker CS. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J 1994;13:4886–4895.

    PubMed  CAS  Google Scholar 

  86. Colley NJ, Baker EK, Stamnes MA, Zuker CS. The cyclophilin homolog ninaA is required in the secretory pathway. Cell 1991;67:255–263.

    Article  PubMed  CAS  Google Scholar 

  87. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 1989;337:476–478.

    Article  PubMed  CAS  Google Scholar 

  88. Shieh BH, Stamnes MA, Seavello S, Harris GL, Zuker CS. The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein. Nature 1989;338:67–70.

    Article  PubMed  CAS  Google Scholar 

  89. Stamnes MA, Shieh BH, Chuman L, Harris GL, Zuker CS. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 1991; 65:219–227.

    Article  PubMed  CAS  Google Scholar 

  90. Webel R, Menon I, O’Tousa JE, Colley NJ. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem 2000;275:24,752–24,759.

    Article  PubMed  CAS  Google Scholar 

  91. Ferreira PA, Nakayama TA, Travis GH. Interconversion of red opsin isoforms by the cyclophilin-related chaperone protein Ran-binding protein 2. Proc Natl Acad Sci USA 1997;94:1556–1561.

    Article  PubMed  CAS  Google Scholar 

  92. Ferreira PA, Nakayama TA, Pak WL, Travis GH. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature 1996;383:637–640.

    Article  PubMed  CAS  Google Scholar 

  93. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S. Functional expression of a mammalian odorant receptor. Science 1998;279:237–242.

    Article  PubMed  CAS  Google Scholar 

  94. Gimelbrant AA, Haley SL, McClintock TS. Olfactory receptor trafficking involves conserved regulatory steps. J Biol Chem 2001;276:7285–7290.

    Article  PubMed  CAS  Google Scholar 

  95. McClintock TS, Landers TM, Gimelbrant AA, et al. Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Brain Res Mol Brain Res 1997; 48: 270–278.

    Article  PubMed  CAS  Google Scholar 

  96. Gimelbrant AA, Stoss TD, Landers TM, McClintock TS. Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells. J Neurochem 1999;72:2301–2311.

    Article  PubMed  CAS  Google Scholar 

  97. Dwyer ND, Troemel ER, Sengupta P, Bargmann CI. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 1998;93:455–466.

    Article  PubMed  CAS  Google Scholar 

  98. Ichise T, Kano M, Hashimoto K, et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 2000;288:1832–1835.

    Article  PubMed  CAS  Google Scholar 

  99. Xiao B, Tu JC, Worley PF, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Curr Opin Neurobiol 2000;10:370–374.

    Article  PubMed  CAS  Google Scholar 

  100. Brakeman PR, Lanahan AA, O’Brien R, et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997;386:284–288.

    Article  PubMed  CAS  Google Scholar 

  101. Tu JC, Xiao B, Yuan JP, et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998;21:717–726.

    Article  PubMed  CAS  Google Scholar 

  102. Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF. Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 1999;274:25,953–25,957.

    Article  PubMed  CAS  Google Scholar 

  103. Ango F, Robbe D, Tu JC, et al. Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol Cell Neurosci 2002;20:323–329.

    Article  PubMed  CAS  Google Scholar 

  104. Ciruela F, Soloviev MM, McIlhinney RA. Co-expression of metabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increases the cell surface expression of the receptor. Biochem J 1999;341(pt 3): 795–803.

    Article  PubMed  CAS  Google Scholar 

  105. Ciruela F, Soloviev MM, Chan WY, McIlhinney RA. Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1alpha: evidence for an anchoring function. Mol Cell Neurosci 2000;15: 36–50.

    Article  PubMed  CAS  Google Scholar 

  106. Abe H, Misaka T, Tateyama M, Kubo Y. Effects of coexpression with Homer isoforms on the function of metabotropic glutamate receptor 1alpha. Mol Cell Neurosci 2003;23:157–168.

    Article  PubMed  CAS  Google Scholar 

  107. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001;3:492–498.

    Article  PubMed  CAS  Google Scholar 

  108. Leclerc PC, Auger-Messier M, Lanctot PM, Escher E, Leduc R, Guillemette G. A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling. Endocrinology 2002;143:4702–4710.

    Article  PubMed  CAS  Google Scholar 

  109. Xu Z, Hirasawa A, Shinoura H, Tsujimoto G. Interaction of the alpha(1B)-adrenergic receptor with gC1q-R, a multifunctional protein. J Biol Chem 1999;274:21,149–21,154.

    Article  PubMed  CAS  Google Scholar 

  110. Hirasawa A, Awaji T, Xu Z, Shinoura H, Tsujimoto G. Regulation of subcellular localization of alpha1-adrenoceptor subtypes. Life Sci 2001;68:2259–2267.

    Article  PubMed  CAS  Google Scholar 

  111. Pupo AS, Minneman KP. Specific interactions between gC1qR and alpha1-adrenoceptor subtypes. J Recept Signal Transduct Res 2003;23:185–195.

    Article  PubMed  CAS  Google Scholar 

  112. Daunt DA, Hurt C, Hein L, Kallio J, Feng F, Kobilka BK. Subtype-specific intracellular trafficking of alpha2-adrenergic receptors. Mol Pharmacol 1997;51:711–720.

    PubMed  CAS  Google Scholar 

  113. Bunzow JR, Sonders MS, Arttamangkul S, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 2001;60:1181–1188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kong, M.M.C., So, C.H., O’Dowd, B.F., George, S.R. (2005). The Role of Oligomerization in G Protein-Coupled Receptor Maturation. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_13

Download citation

Publish with us

Policies and ethics