Skip to main content

Nuclear Imaging in Cardiovascular Medicine

  • Chapter
Essential Cardiology

Abstract

Nuclear imaging harnesses the unique properties of radiopharmaceuticals in allowing us to non-invasively image physiological phenomena, anatomical structures, and metabolic reactions, as well as various physiological spaces and compartments in patients (1). Nuclear imaging plays an important role in the noninvasive evaluation of patients with established or suspected coronary artery disease. A number of different radiopharmaceuticals and scintigraphic imaging techniques are available for obtaining important diagnostic and prognostic information about myocardial per-fusion, metabolism, cardiac function, and myocardial necrosis in patients with cardiovascular disorders. This chapter briefly describes various cardiac nuclear imaging techniques, their applications in clinical practice, and the recent developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain D, Strauss HW. Introduction to nuclear cardiology. In: Dilsizian V, Narula J, eds. Atlas of Nuclear Cardiology. London, Current Science 2003, pp. 1–18.

    Google Scholar 

  2. Kaul S, Boucher CA, Newell JB, et al. Determination of the quantitative thallium imaging variables that optimize detection of coronary artery disease. J Am Coll Cardiol 1986;7:527–537.

    PubMed  CAS  Google Scholar 

  3. Wackers FJTh, Fetterman RC, Mattera JA, Clements JP. Quantitative planar thallium-201 stress scintigraphy: a critical evaluation of the method. Sem Nucl Med 1985;15:46–66.

    Article  CAS  Google Scholar 

  4. Jain D, Zaret BL. Nuclear imaging techniques for the assessment of myocardial viability. Cardiol Clin 1995;13;43–57.

    PubMed  CAS  Google Scholar 

  5. Wackers FJTh. The maze of myocardial perfusion imaging protocols in 1994. J Nucl Cardiol 1994;1:180–188.

    Article  PubMed  CAS  Google Scholar 

  6. Dilsizian V, Rocco T, Freedman N, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    Article  PubMed  CAS  Google Scholar 

  7. Kayden DS, Sigal S, Soufer R, et al. Thallium-201 for assessment of myocardial viability: quantitative comparison of 24-hour redistribution imaging with imaging after reinjection at rest. J Am Coll Cardiol 1991;18:1480–1486.

    PubMed  CAS  Google Scholar 

  8. Jain D. 99mTechnetium labeled myocardial perfusion imaging agents. Semi Nucl Med 1999;29;221–236.

    Article  CAS  Google Scholar 

  9. Zaret BL, Rigo P, Wackers FJTh, et al., and the Tetrofosmin International Trial Group. Myocardial perfusion imaging with technetium-99m tetrofosmin: comparison to thallium-201 imaging and coronary angiography in a phase III multicenter trial. Circulation 1995;91:313–319.

    PubMed  CAS  Google Scholar 

  10. Jain D, Wackers FJTh, Mattera J, et al. Biokinetics of 99mTc-tetrofosmin: myocardial perfusion imaging agent: implications for a one day imaging protocol. J Nucl Med 1993;34:1254–1259.

    PubMed  CAS  Google Scholar 

  11. Joseph B, Bhargava KK, Kandimala J, et al. The nuclear imaging agent sestamibi is a substrate for both MDR1 and MDR2 p-glycoprotein genes. Eur J Nucl Med 2003;30:1024–1031.

    Article  CAS  Google Scholar 

  12. Vanzetto G, Fagret D, Pasqualini R, et al. Biodistribution, dosimetry, and safety of myocardial perfusion imaging agent 99mTcN-NOET in healthy volunteers. J Nucl Med 2000;41:141–148.

    PubMed  CAS  Google Scholar 

  13. Iskandrian AS, Heo J, Kong B, et al. Use of technetium-99m isonitrile in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease and comparison with coronary angiography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989;64:270–275.

    Article  PubMed  CAS  Google Scholar 

  14. Eagle KA, Singer DE, Brewster DC, et al. Dipyridamole-thallium scanning in patients undergoing vascular surgery: optimizing preoperative evaluation of cardiac risk. JAMA 1987;257:2185–2189.

    Article  PubMed  CAS  Google Scholar 

  15. Samady H, Wackers FJ, Zaret BL, et al. Pharmacological stress perfusion imaging with adenosine: role of simultaneous low level treadmill exercise. J Nucl Cardiol 2002;9:188–196.

    Article  PubMed  Google Scholar 

  16. Taillefer R, Amyot R, Turpin S, et al. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Cardiol 1996;3:204–211.

    Article  PubMed  CAS  Google Scholar 

  17. Lette J, Tatum JL, Fraser S, et al. Safety of dipyridamole testing in 73,806 patients: the Multicenter Dipyridamole Safety Study. J Nucl Cardiol 1995;2:3–17.

    Article  PubMed  CAS  Google Scholar 

  18. Holly TA, Satran A, Bromet DS, et al. The impact of adjunctive adenosine infusion during exercise myocardial perfusion imaging: results of the Both Exercise and Adenosine Stress Test (BEAST) trial. J Nucl Cardiol 2003;10:291–296.

    Article  PubMed  Google Scholar 

  19. Glover DK, Ruiz M, Takehana K, et al. Pharmacological stress myocardial perfusion imaging with the potent and selective A(2A) adenosine receptor agonists ATL193 and ATL146e administered by either intravenous infusion or bolus injection. Circulation 2001;104:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  20. Udelson JE, Heller GV, Wackers FJ, et al. Randomized, controlled dose-ranging study of the selective adenosine A2A receptor agonist binodenoson for pharmacological stress as an adjunct to myocardial perfusion imaging. Circulation 2004;109:457–464.

    Article  PubMed  CAS  Google Scholar 

  21. Calnon DA, Glover DK, Beller GA, et al. Effects of dobutamine stress on myocardial blood flow, 99mTc sestamibi uptake, and systolic wall thickening in the presence of coronary artery stenoses: implications for dobutamine stress testing. Circulation 1997;96:2353–2360.

    PubMed  CAS  Google Scholar 

  22. Shehata AR, Ahlberg AW, Gillam LD, et al. Direct comparison of arbutamine and dobutamine stress testing with myocardial perfusion imaging and echocardiography in patients with coronary artery disease. Am J Cardiol 1997;80:716–720.

    Article  PubMed  CAS  Google Scholar 

  23. Wackers FJ. Science, art, and artifacts: how important is quantification for the practicing physician interpreting myocardial perfusion studies? J Nucl Cardiol 1994;1:S109–S117.

    PubMed  CAS  Google Scholar 

  24. Ficaro EP, Corbett JR. Advances in quantitative perfusion SPECT imaging. J Nucl Cardiol 2004;11:62–70.

    Article  PubMed  Google Scholar 

  25. Heller GV, Links J, Bateman TM, et al. American Society of Nuclear Cardiology and Society of Nuclear Medicine joint position statement: attenuation correction of myocardial perfusion SPECT scintigraphy. J Nucl Cardiol 2004;11:229–230.

    Article  PubMed  Google Scholar 

  26. Panjrath G, Jain D. Myocardial perfusion imaging in a patient with chest pain. J Nucl Cardiol 2004;11:515–517.

    Article  PubMed  Google Scholar 

  27. Wackers FJ, Zaret BL. Radionuclide stress myocardial perfusion imaging: the future gatekeeper for coronary angiography [editorial]. J Nucl Cardiol 1995;2:358–359.

    Article  PubMed  CAS  Google Scholar 

  28. Bateman TM, O’Keefe JH, Dong VM, et al. Coronary angiographic rates after stress single photon emission computed tomographic scintigraphy. J Nucl Cardiol 1995;2:217–223.

    Article  PubMed  CAS  Google Scholar 

  29. Jain D, Lahiri A, Raftery EB. Lung thallium uptake on rest, stress and redistribution cardiac imaging: state-of-the-art-review. Am J Card Imag 1990;4:303–309.

    Google Scholar 

  30. Gill JB, Ruddy TD, Newell JB, et al. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987;317:1485–1489.

    Article  Google Scholar 

  31. Taylor AJ, Sackett MC, Beller GA. The degree of ST-segment depression on symptom-limited exercise testing: relation to the myocardial ischemic burden as determined by thallium-201 scintigraphy. Am J Cardiol 1995;75:228–231.

    Article  PubMed  CAS  Google Scholar 

  32. Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 1998;32:57–62.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas GS, Miyamoto MI, Morello P, et al. Technetium-99m sestamibi myocardial perfusion imaging predicts clinical outcome in the community outpatient setting: The Nuclear Utility in the Community (NUC) Study. J Am Coll Cardiol 2004;43:213–223.

    Article  PubMed  Google Scholar 

  34. Raiker K, Sinusas AJ, Wackers FJ, Zaret BL. One-year prognosis of patients with normal planar or single-photon emission computed tomographic technetium 99m labeled sestamibi exercise imaging. J Nucl Cardiol 1994;1:449–456.

    PubMed  CAS  Google Scholar 

  35. Gibson RS, Watson DD, Craddock GB, et al. Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 1983;68:321–336.

    PubMed  CAS  Google Scholar 

  36. Jain D, Wackers FJTh, Zaret BL. Radionuclide imaging techniques in the thrombolytic era. In: Becker R, ed. Modern Era of Coronary Thrombolysis, 1st ed. Kluwer Academic Publishers, Norwell, MA, 1994, pp. 195–218.

    Google Scholar 

  37. Udelson JE, Beshansky JR, Ballin DS, et al. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia: a randomized controlled trial. JAMA 2002;288:2693–2700.

    Article  PubMed  Google Scholar 

  38. Abbott BG, Abdel-Aziz I, Nagula S, et al. Selective use of single-photon emission computed tomography myocardial perfusion imaging in a chest pain center. Am J Cardiol 2001;87:1351–1355.

    Article  PubMed  CAS  Google Scholar 

  39. Abbott BG, Jain D. Nuclear cardiology in the evaluation of acute chest pain in the emergency department. Echocardiography 2000;17:597–604.

    Article  PubMed  CAS  Google Scholar 

  40. Abbott BG, Jain D. Impact of myocardial perfusion imaging on clinical management and the utilization of hospital resources in suspected acute coronary syndromes. Nucl Med Comm 2003;24:1061–1069.

    Article  CAS  Google Scholar 

  41. Jain D, Fleisher LA, Zaret BL. Diagnosing perioperative myocardial infarction in noncardiac surgery. Int Anesthesi-ology Clin 1992;30:199–216.

    Article  CAS  Google Scholar 

  42. Leppo JA. Preoperative cardiac risk assessment for noncardiac surgery. Am J Cardiol 1995;75:42D–51D.

    Article  PubMed  CAS  Google Scholar 

  43. Fleisher LA, Rosenbaum SH, Nelson AH, et al. Preoperative dipyridamole thallium imaging and Holter monitoring as a predictor of perioperative cardiac events and long term outcome. Anesthesiology 1995;83:906–917.

    Article  PubMed  CAS  Google Scholar 

  44. Ragosta M, Beller GA, Watson DD, et al. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–1641.

    PubMed  CAS  Google Scholar 

  45. Caner B, Beller GA. Are technetium-99m-labeled myocardial perfusion agents adequate for detection of myocardial viability? Clin Cardiol 1998;4:235–242.

    Google Scholar 

  46. He ZX, Verani MS, Liu XJ, Nitrate-augmented myocardial imaging for assessment of myocardial viability [editorial]. J Nucl Cardiol 1995;2:352–357.

    Article  PubMed  CAS  Google Scholar 

  47. Borges-Neto S, Shaw LJ, Kesler KL, et al. Prediction of severe coronary artery disease by combined rest and exercise radionuclide angiocardiography and tomographic perfusion imaging with technetium 99m-labeled sestamibi: a comparison with clinical and electrocardiographic data. J Nucl Cardiol 1997;4:189–194.

    Article  PubMed  CAS  Google Scholar 

  48. Lee KL, Proyer DB, Pieper KS, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease: a comparison with clinical and catheterization variables. Circulation 1990;82:1705–1717.

    PubMed  CAS  Google Scholar 

  49. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–691.

    Article  Google Scholar 

  50. Schwartz RG, McKenzie B, Alexander J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med 1987;82:1109–1118.

    Article  PubMed  CAS  Google Scholar 

  51. Jain D, Zaret BL. Antimyosin cardiac imaging: will it play a role in the detection of doxorubicin cardiotoxicity? (editorial) J Nucl Med 1990;31:1970–1975.

    PubMed  CAS  Google Scholar 

  52. Jain D. Cardiotoxicity of doxorubicin and other anthracyclines derivatives. J Nucl Cardiol 2000;7:53–62.

    Article  PubMed  CAS  Google Scholar 

  53. Mitani I, Jain D, Joska TM, et al. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol 2003;10:132–139.

    Article  PubMed  Google Scholar 

  54. Bonow RP, Kent KM, Rosing DR, et al. Exercise-induced ischemia in mildly symptomatic patients with coronary artery disease and preserved left ventricular function: identification of subgroups at risk of death during medical therapy. N Engl J Med 1984;311:1339–1345.

    Article  PubMed  CAS  Google Scholar 

  55. Zaret BL, Jain D. Monitoring of left ventricular function with miniaturized non-imaging detectors. In: Zaret BL, Beller GA, eds. Nuclear Cardiology: State of the Art and Future Directions, 2nd ed. Mosby Year Book, St. Louis, 1999, pp. 191–200.

    Google Scholar 

  56. Burg MM, Jain D, Soufer R, et al. Role of behavioral and psychological factors in mental stress induced silent left ventricular dysfunction in coronary artery disease. J Am Coll Cardiol 1993;22:440–448.

    Article  PubMed  CAS  Google Scholar 

  57. Jain D, Burg MM, Soufer RS, Zaret BL. Prognostic significance of mental stress induced left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol 1995;76:31–35.

    Article  PubMed  CAS  Google Scholar 

  58. Jiang W, Babyak M, Krantz DS, et al. Mental stress-induced myocardial ischemia and cardiac events. JAMA 1996;275:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  59. Krantz DS, Santiago HT, Kop WJ, et al. Prognostic value of mental stress testing in coronary artery disease. Am J Cardiol 1999;84:1292–1297.

    Article  PubMed  CAS  Google Scholar 

  60. Jain D, Lahiri A, Raftery EB. Immunoscintigraphy for detecting acute myocardial infarction without electrocardiographic changes. Br Med J 1990;300:151–153.

    CAS  Google Scholar 

  61. Dec GW, Palacios I, Yasuda T, et al. Antimyosin antibody cardiac imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol 1990;16:97–104.

    PubMed  CAS  Google Scholar 

  62. Ballester M, Bordes R, Tazelaar HD, et al. Evaluation of biopsy classification for rejection: relation to detection of myocardial damage by monoclonal antimyosin antibody imaging. J Am Coll Cardiol 1998;31:1357–1361.

    Article  PubMed  CAS  Google Scholar 

  63. Carrio I, Estorch M, Berna L, et al. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36(11):2044–2049.

    PubMed  CAS  Google Scholar 

  64. Narula J, Petrov A, Pak C, et al. Hyperacute visualization of myocardial ischemic injury: comparison of Tc-99m glucarate, thallium-201 and indium-111-antimyosin. J Am Coll Cardiol 1994;23:317.

    Google Scholar 

  65. Mariani G, Villa G, Rossettin PF, et al. Detection of acute myocardial infarction by 99mTc-labeled D-glucaric acid imaging in patients with chest pain. J Nucl Med 1999;40:1832–1839.

    PubMed  CAS  Google Scholar 

  66. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 2000;356:209–212.

    Article  PubMed  CAS  Google Scholar 

  67. Blankenberg F, Mari C, Strauss HW. Imaging cell death in vivo. Q J Nucl Med 2003;47:337–348.

    PubMed  CAS  Google Scholar 

  68. Schelbert HR. Positron emission tomography as a biochemical probe for human myocardial ischemia. In: Zaret BL, Kaufman L, Dunn R, Berson A, eds. Frontiers of Cardiac Imaging. Raven Press, New York, 1993, pp. 53–70.

    Google Scholar 

  69. Bax JJ, Patton JA, Poldermans D, et al. 18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications. Semin Nucl Med 2000;30:281–298.

    Article  PubMed  CAS  Google Scholar 

  70. Jain D, McNulty PH. Exercise-induced myocardial ischemia: can this be imaged with F-18-fluorodeoxyglucose? (editorial) J Nucl Cardiol 2000;7:286–288.

    Article  PubMed  CAS  Google Scholar 

  71. He ZX, Shi RF, Wu YJ, et al. Direct imaging of exercise induced myocardial ischemia in coronary artery disease. Circulation 2003;108:1208–1213.

    Article  PubMed  CAS  Google Scholar 

  72. Gould KL, Taegtmeyer H. Myocardial ischemia, fluorodeoxyglucose, and severity of coronary artery stenosis: the complexities of metabolic remodeling in hibernating myocardium (letter to the editor and response). Circulation 2004;109:e167–e170.

    Article  PubMed  Google Scholar 

  73. Berry CR, Garg PK, DeGrado TR, et al. Para-[18F]fluorobenzylguanidine kinetics in a canine coronary artery occlusion model. J Nucl Cardiol 1996;3:119–129.

    Article  PubMed  CAS  Google Scholar 

  74. Morita K, Tsukamoto E, Tamaki N. Perfusion-BMIPP mismatch: specific finding or artifact? Int J Cardiovasc Imaging 2002;18:279–282.

    Article  PubMed  Google Scholar 

  75. Narula J, Petrov A, Bianchi C, et al. Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab’)2 specific for the proliferating smooth muscle cells of human atheroma. Imaging with conventional and charge-modified antibody fragments. Circulation 1995;92:474–484.

    PubMed  CAS  Google Scholar 

  76. Jain D, Kulkarni P, Kolodgie FD, et al. Noninvasive imaging of atherosclerotic plaques with In-111 labeled lipid-seeking coproporphyrin. J Am Coll Cardiol 2000;35(Suppl A):493–A.

    Google Scholar 

  77. Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin-5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–1473.

    Article  PubMed  CAS  Google Scholar 

Recommended Reading

  1. Dilsizian V, Narula J, eds. Atlas of Nuclear Cardiology, 1st ed. Current Medicine, 2003.

    Google Scholar 

  2. Gerson MC. Cardiac Nuclear Medicine, 3rd ed. McGraw-Hill, New York, 1997.

    Google Scholar 

  3. Heller GV, Hendel RC. Nuclear Cardiology: Practical Applications, 1st ed. McGraw-Hill, New York, 2004.

    Google Scholar 

  4. Iskandrian AS, Verani MS. New Developments in Cardiac Nuclear Imaging, 1st ed. Futura Publishing, 1998.

    Google Scholar 

  5. Zaret BL, Beller GA, eds. Nuclear Cardiology: State of the Art and Future Directions, 3rd ed. Mosby Year Book, St. Louis, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jain, D., Zaret, B.L. (2005). Nuclear Imaging in Cardiovascular Medicine. In: Rosendorff, C. (eds) Essential Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-918-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-918-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-370-1

  • Online ISBN: 978-1-59259-918-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics