Skip to main content

Platelet Function Under Flow

  • Chapter
Platelet Function

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1295 Accesses

Abstract

As vertebrates have evolved high-pressure, high-flow circulatory systems, an extraordinarily effective hemostatic system has developed alongside to protect these organisms from hemorrhage. More than a century’s worth of evidence indicates that platelets are the blood cells chiefly responsible for maintaining hemostasis and causing thrombosis. Platelets are geared to monitor vascular integrity and effect hemostasis in the arterial circulation, as injuries to arteries (rather than veins) are much more likely to result in circulatory collapse and death. Furthermore, deployment of the hemostatic mechanism in the setting of vascular disease—particularly that caused by atherosclerosis—is largely responsible for the tremendous disease burden associated with vascular disease, being the culminating event in myocardial infarction and stroke. In this chapter, we review the characteristics of blood flow that influence platelet function and the cellular and molecular determinants that allow the platelets to carry out their hemostatic functions under flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turitto VT. Blood viscosity, mass transport, and thrombogenesis. Prog Hemost Thromb 1982;6:139–177.

    PubMed  CAS  Google Scholar 

  2. Rugger Z. Mechanisms initiating platelet thrombus formation. Thromb Haemost 1997;78:611–616.

    Google Scholar 

  3. Wootton DM, Ku DN. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1999;1:299–329.

    PubMed  CAS  Google Scholar 

  4. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996;88:1525–1541.

    PubMed  CAS  Google Scholar 

  5. Langille BL. Morphologic responses of endothelium to shear stress: reorganization of the adherens junction. Microcirculation 2001;8:195–206.

    PubMed  CAS  Google Scholar 

  6. Fujimura Y, Titani K, Holland LZ, et al. A heparin-binding domain of human von Willebrand factor. Characterization and localization to a tryptic fragment extending from amino acid residue Val-449 to Lys-728. J Biol Chem 1987;262:1734–1739.

    PubMed  CAS  Google Scholar 

  7. Resnick N, Gimbrone MA Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 1995;9:874–882.

    PubMed  CAS  Google Scholar 

  8. Turitto VT, Hall CL. Mechanical factors affecting hemostasis and thrombosis. Thromb Res 1998;92:S25–S31.

    PubMed  CAS  Google Scholar 

  9. Du X, Ginsberg MH. Integrin αIIbβ3 and platelet function. Thromb Haemost 1997;78:96–100.

    PubMed  CAS  Google Scholar 

  10. López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994;5:97–119.

    PubMed  Google Scholar 

  11. Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to subendothelium. Nature 1979;279:636–638.

    PubMed  CAS  Google Scholar 

  12. Olson JD, Moake JL, Collins MF, Michael BS. Adhesion of human platelets to purified solid-phase von Willebrand factor: studies of normal and Bernard-Soulier platelets. Thromb Res 1983;32:115–122.

    PubMed  CAS  Google Scholar 

  13. Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996;88:2939–2950.

    PubMed  CAS  Google Scholar 

  14. Novak L, Deckmyn H, Damjanovich S, Harsfalvi J. Shear-dependent morphology of von Willebrand factor bound to immobilized collagen. Blood 2002;99:2070–2076.

    PubMed  CAS  Google Scholar 

  15. Peterson DM, Stathopoulos NA, Giorgio TD, Hellums JD, Moake JL. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood 1987;69:625–628.

    PubMed  CAS  Google Scholar 

  16. Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996;84:289–297.

    PubMed  CAS  Google Scholar 

  17. Fredrickson BJ, Dong JF, McIntire LV, López JA. Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood 1998;92:3684–3693.

    PubMed  CAS  Google Scholar 

  18. Dong J, Schade AJ, Romo GM, et al. Novel gain-of-function mutations of platelet glycoprotein Ibα by valine mutagenesis in the Cys-Cys248 disulfide loop. Functional analysis under static and dynamic conditions. J Biol Chem 2000;275:27663–27670.

    PubMed  CAS  Google Scholar 

  19. Kumar AR, Dong JF, Cruz M, López JA, McIntire LV. Kinetics of GP Ibα-VWF-A1 tether bond under flow: effect of GP Ibα mutations on the association and dissociation rates. Biophys J, 2003;85:4099–4109.

    PubMed  CAS  Google Scholar 

  20. Andrews RK, Shen Y, Gardiner EE, Dong JF, López JA, Berndt MC. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999;82:357–364.

    PubMed  CAS  Google Scholar 

  21. López JA, Dong JF. Structure and function of the glycoprotein Ib-IX-V complex. Curr Opin Hematol 1997;4:323–329.

    Article  PubMed  Google Scholar 

  22. Uff S, Clemetson JM, Harrison T, Clemetson KJ, Emsley J. Crystal structure of the platelet glycoprotein Ib(alpha) N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 2002;277:35657–35663.

    PubMed  CAS  Google Scholar 

  23. Huizinga EG, Tsuji S, Romijn RA, et al. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 2002;297:1176–1179.

    PubMed  CAS  Google Scholar 

  24. Arya M, Anvari B, Romo GM, et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 2002;99:3971–3977.

    PubMed  CAS  Google Scholar 

  25. Shen Y, Romo GM, Dong J, et al. Requirement of leucine-rich repeats of glycoprotein (GP) Ibα for shear-dependent and static binding of von Willebrand factor to the platelet membrane GP Ib-IX-V complex. Blood 2000;95:903–910.

    PubMed  CAS  Google Scholar 

  26. Shen Y, Dong J, Romo GM, et al. Functional analysis of the C-terminal flanking sequence of platelet glycoprotein Iba using canine-human chimeras. Blood 2002;99:145–150.

    PubMed  CAS  Google Scholar 

  27. Dong J-F, Li CQ, López JA. Tyrosine sulfation of the GP Ib-IX complex: identification of sulfated residues and effect on ligand binding. Biochemistry 1994;33:13946–13953.

    PubMed  CAS  Google Scholar 

  28. Ward CM, Andrews RK, Smith AI, Berndt MC. Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibα. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibα as a binding site for von Willebrand factor and α-thrombin. Biochemistry 1996;35:4929–4938.

    PubMed  CAS  Google Scholar 

  29. Marchese P, Murata M, Mazzucato M, et al. Identification of three tyrosine residues of glycoprotein Ibα with distinct roles in von Willebrand factor and α-thrombin binding. J Biol Chem 1995;270:9571–9578.

    PubMed  CAS  Google Scholar 

  30. Dong J, Ye P, Schade AJ, et al. Tyrosine sulfation of glycoprotein Ibα. Role of electrostatic interactions in von Willebrand factor binding. J Biol Chem 2001;276:16690–16694.

    PubMed  CAS  Google Scholar 

  31. Pareti FI, Niiya K, McPherson JM, Ruggeri ZM. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem 1987;262:13835–13841.

    PubMed  CAS  Google Scholar 

  32. Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 1986;261:15310–15315.

    PubMed  CAS  Google Scholar 

  33. Rand JH, Patel ND, Schwartz E, Zhou SL, Potter BJ. 150-kD von Willebrand factor binding protein extracted from human vascular subendothelium is type VI collagen. J Clin Invest 1991;88:253–259.

    PubMed  CAS  Google Scholar 

  34. Murata K, Kotake C, Motoyama T. Collagen species in human aorta: with special reference to basement membrane-associated collagens in the intima and media and their alteration with atherosclerosis. Artery 1987;14:229–247.

    PubMed  CAS  Google Scholar 

  35. Murata K, Motayama T, Kotake C. Collagen types in various layers of the human aorta and their changes with the atherosclerotic process. Atherosclerosis 1986;60:251–262.

    PubMed  CAS  Google Scholar 

  36. Shekhonin BV, Domogatsky SP, Idelson GL, Koteliansky VE, Rukosuev VS. Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries. Atherosclerosis 1987;67:9–16.

    PubMed  CAS  Google Scholar 

  37. Gay S, Balleisen L, Remberger K, Fietzek PP, Adelmann BC, Kuhn K. Immunohistochemical evidence for the presence of collagen type III in human arterial walls, arterial thrombi, and in leukocytes, incubated with collagen in vitro. Klin Wochenschr 1975;53:899–902.

    PubMed  CAS  Google Scholar 

  38. McCullagh KG. Increased type I collagen in human atherosclerotic plaque. Atherosclerosis 1983;46:247–248.

    PubMed  CAS  Google Scholar 

  39. McCullagh KG, Ehrhart LA. Increased arterial collagen synthesis in experimental canine atherosclerosis. Atherosclerosis 1974;19:13–28.

    PubMed  CAS  Google Scholar 

  40. McCullagh KG, Duance VC, Bishop KA. The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J Pathol 1980;130:45–55.

    PubMed  CAS  Google Scholar 

  41. McCullagh KG, Ehrhart LA. Enhanced synthesis and accumulation of collagen in cholesterol-aggravated pigeon atherosclerosis. Atherosclerosis 1977;26:341–352.

    PubMed  CAS  Google Scholar 

  42. Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost 2001;86:189–197.

    PubMed  CAS  Google Scholar 

  43. Suzuki-Inoue K, Tulasne D, Shen Y, et al. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J Biol Chem 2002;277:21561–21566.

    PubMed  CAS  Google Scholar 

  44. Andrews RK, Suzuki-Inoue K, Shen Y, Tulasne D, Watson SP, Berndt MC. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood 2002;99:4219–4221.

    PubMed  CAS  Google Scholar 

  45. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood 2003;102:449–461.

    PubMed  CAS  Google Scholar 

  46. Elices MJ, Hemler ME. The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others. Proc Natl Acad Sci USA 1989;86:9906–9910.

    PubMed  CAS  Google Scholar 

  47. Moroi M, Jung SM. Integrin-mediated platelet adhesion. Front Biosci 1998;3:D719–D728.

    PubMed  CAS  Google Scholar 

  48. Languino LR, Gehlsen KR, Wayner E, Carter WG, Engvall E, Ruoslahti E. Endothelial cells use α2β1 integrin as a laminin receptor. J Cell Biol 1989;109:2455–2462.

    PubMed  CAS  Google Scholar 

  49. Guidetti G, Bertoni A, Viola M, Tira E, Balduini C, Torti M. The small proteoglycan decorin supports adhesion and activation of human platelets. Blood 2002;100:1707–1714.

    PubMed  CAS  Google Scholar 

  50. Smith C, Estavillo D, Emsley J, Bankston LA, Liddington RC, Cruz MA. Mapping the collagen-binding site in the I domain of the glycoprotein Ia/IIa (integrin alpha(2)beta(1)). J Biol Chem 2000;275:4205–4209.

    PubMed  CAS  Google Scholar 

  51. Nolte M, Pepinsky RB, Venyaminov SY, Koteliansky V, Gotwals PJ, Karpusas M. Crystal structure of the alpha1beta1 integrin I-domain: insights into integrin I-domain function. FEBS Lett 1999;452:379–385.

    PubMed  CAS  Google Scholar 

  52. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin alpha2beta1. Cell 2000;101:47–56.

    PubMed  CAS  Google Scholar 

  53. Savage B, Ginsberg MH, Ruggeri ZM. Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. Blood 1999;94:2704–2715.

    PubMed  CAS  Google Scholar 

  54. Nieswandt B, Brakebusch C, Bergmeier W, et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001;20:2120–2130.

    PubMed  CAS  Google Scholar 

  55. Bernardo A, Bergeron A, Sun CW, et al. Von Willebrand factor present in fibrillar collagen enhances platelet adhesion to collagen but also for collagen-induced platelet aggregation. J Thromb Haemost 2004;2:660–669.

    PubMed  CAS  Google Scholar 

  56. Kasirer-Friede A, Ware J, Leng L, Marchese P, Ruggeri ZM, Shattil SJ. Lateral clustering of platelet GP Ib-IX complexes leads to up-regulation of the adhesive function of integrin alpha IIbbeta 3. J Biol Chem 2002;277:11949–11956.

    PubMed  CAS  Google Scholar 

  57. Arya M, López JA, Romo GM, et al. Glycoprotein Ib-IX-mediated activation of integrin αIIbβ3: effects of receptor clustering and von Willebrand factor adhesion. J Thromb Haemost 2003;1:1150–1157.

    PubMed  CAS  Google Scholar 

  58. Yap CL, Hughan SC, Cranmer SL, et al. Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. Studies in human platelets and transfected Chinese hamster ovary cells. J Biol Chem 2000;275:41377–41388.

    PubMed  CAS  Google Scholar 

  59. Rathore V, Stapleton MA, Hillery CA, et al. PECAM-1 negatively regulates GPIb/V/IX signaling in murine platelets. Blood 2003;102:3658–3664.

    PubMed  CAS  Google Scholar 

  60. Patil S, Newman DK, Newman PJ. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood 2001;97:1727–1732.

    PubMed  CAS  Google Scholar 

  61. Jones KL, Hughan SC, Dopheide SM, Farndale RW, Jackson SP, Jackson DE. Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions. Blood 2001;98:1456–1463.

    PubMed  CAS  Google Scholar 

  62. Cicmil M, Thomas JM, Leduc M, Bon C, Gibbins JM. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets. Blood 2002;99:137–144.

    PubMed  CAS  Google Scholar 

  63. Ruan C, Du X, Xi X, Castaldi PA, Berndt MC. A murine antiglycoprotein Ib complex monoclonal antibody, SZ 2, inhibits platelet aggregation induced by both ristocetin and collagen. Blood 1987;69:570–577.

    PubMed  CAS  Google Scholar 

  64. Dormann D, Clemetson JM, Navdaev A, Kehrel BE, Clemetson KJ. Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib. Blood 2001;97:929–936.

    PubMed  CAS  Google Scholar 

  65. Kanaji S, Kanaji T, Furihata K, Kato K, Ware JL, Kunicki TJ. Convulxin binds to native, human glycoprotein Ibalpha (GPIbalpha). J Biol Chem. 2003;278:39452–39460.

    PubMed  CAS  Google Scholar 

  66. Du X, Magnenat E, Wells TN, Clemetson KJ. Alboluxin, a snake C-type lectin from Trimeresurus albolabris venom is a potent platelet agonist acting via GPIb and GPVI. Thromb Haemost 2002;87:692–698.

    CAS  Google Scholar 

  67. Goto S, Tamura N, Handa S, Arai M, Kodama K, Takayama H. Involvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions. Circulation 2002;106:266–272.

    PubMed  CAS  Google Scholar 

  68. Shrimpton CN, Borthakur G, Larrucea S, Cruz MA, Dong JF, López JA. Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med 2002;196:1057–1066.

    PubMed  CAS  Google Scholar 

  69. Locke D, Chen H, Liu Y, Liu C, Kahn ML. Lipid rafts orchestrate signaling by the platelet receptor glycoprotein VI. J Biol Chem 2002;277:18801–18809.

    PubMed  CAS  Google Scholar 

  70. Wonerow P, Obergfell A, Wilde JI, et al. Differential role of glycolipid-enriched membrane domains in glycoprotein VI-and integrin-mediated phospholipase Cgamma2 regulation in platelets. Biochem J 2002;364:755–765.

    PubMed  CAS  Google Scholar 

  71. Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 2003;35:1170–1174.

    PubMed  CAS  Google Scholar 

  72. Koyama T, Nishida K, Ohdama S, et al. Determination of plasma tissue factor antigen and its clinical significance. Br J Haematol 1994;87:343–347.

    PubMed  CAS  Google Scholar 

  73. Giesen PL, Rauch U, Bohrmann B, et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999;96:2311–2315.

    PubMed  CAS  Google Scholar 

  74. Falati S, Liu Q, Gross P, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003;197:1585–1598.

    PubMed  CAS  Google Scholar 

  75. Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992;359:848–851.

    PubMed  CAS  Google Scholar 

  76. Myers D, Wrobleski S, Londy F, et al. New and effective treatment of experimentally induced venous thrombosis with anti-inflammatory rPSGL-Ig. Thromb Haemost 2002;87:374–382.

    PubMed  CAS  Google Scholar 

  77. Myers DD Jr, Schaub R, Wrobleski SK, et al. P-selectin antagonism causes dose-dependent venous thrombosis inhibition. Thromb Haemost 2001;85:423–429.

    PubMed  CAS  Google Scholar 

  78. Eppihimer MJ, Schaub RG. P-Selectin-dependent inhibition of thrombosis during venous stasis. Arterioscler Thromb Vasc Biol 2000;20:2483–2488.

    PubMed  CAS  Google Scholar 

  79. Kumar A, Villani MP, Patel UK, Keith JC Jr, Schaub RG. Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation 1999;99:1363–1369.

    PubMed  CAS  Google Scholar 

  80. del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate co-agulation. Blood 2005; Mar, 1 [ePub].

    Google Scholar 

  81. Nesheim ME, Taswell JB, Mann KG. The contribution of bovine factor V and factor Va to the activity of prothrombinase. J Biol Chem 1979;254:10952–10962.

    PubMed  CAS  Google Scholar 

  82. Baglia FA, Badellino KO, Li CQ, Lopez JA, Walsh PN. Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 2002;277:1662–1668.

    PubMed  CAS  Google Scholar 

  83. Baglia FA, Shrimpton CN, Lopez JA, Walsh PN. The glycoprotein Ib-IX-V complex mediates localization of factor XI to lipid rafts on the platelet membrane. J Biol Chem 2003;278:21744–21750.

    PubMed  CAS  Google Scholar 

  84. Yun TH, Baglia FA, Myles T, et al. Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ibalpha with thrombin anion binding exosites I and II respectively. J Biol Chem 2003;278:48112–48119.

    PubMed  CAS  Google Scholar 

  85. Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost 1993;70:105–110.

    PubMed  CAS  Google Scholar 

  86. Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib-IX-V complex is a platelet counter-receptor for P-selectin. J Exp Med 1999;190:803–813.

    PubMed  CAS  Google Scholar 

  87. Katayama T, Ikeda Y, Handa M, et al. Immunoneutralization of glycoprotein Iba attenuates endotoxin-induced interactions of platelets and leukocytes with rat venular endothelium in vivo. Circ Res 2000;86:1031–1037.

    PubMed  CAS  Google Scholar 

  88. Dong JF, Moake JL, Nolasco L, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002;100:4033–4039.

    PubMed  CAS  Google Scholar 

  89. Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001;413:488–494.

    PubMed  CAS  Google Scholar 

  90. Savasan S, Lee SK, Ginsburg D, Tsai HM. ADAMTS13 gene mutation in congenital thrombotic thrombocytopenic purpura with previously reported normal VWF cleaving protease activity. Blood 2003;101:4449–4451.

    PubMed  CAS  Google Scholar 

  91. Moake JL. Thrombotic microangiopathies. N Engl J Med 2002;347:589–600.

    PubMed  CAS  Google Scholar 

  92. Zheng X, Majerus EM, Sadler JE. ADAMTS13 and TTP. Curr Opin Hematol 2002;9:389–394.

    PubMed  Google Scholar 

  93. Kokame K, Matsumoto M, Soejima K, et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci USA 2002;99:11902–11907.

    PubMed  CAS  Google Scholar 

  94. George JN. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol 2003;10:339–344.

    PubMed  Google Scholar 

  95. Park YD, Yoshioka A, Kawa K, et al. Impaired activity of plasma von Willebrand factor-cleaving protease may predict the occurrence of hepatic veno-occlusive disease after stem cell transplantation. Bone Marrow Transplant 2002;29:789–794.

    PubMed  Google Scholar 

  96. Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica 2003;88:1029–1034.

    PubMed  CAS  Google Scholar 

  97. Mannucci PM, Vanoli M, Forza I, Canciani MT, Scorza R. Von Willebrand factor cleaving protease (ADAMTS-13) in 123 patients with connective tissue diseases (systemic lupus erythematosus and systemic sclerosis). Haematologica 2003;88:914–918.

    PubMed  CAS  Google Scholar 

  98. Kavakli K, Canciani MT, Mannucci PM. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol 2002;19:467–473.

    PubMed  CAS  Google Scholar 

  99. Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Ann Biomed Eng 1994;22:445–455.

    PubMed  CAS  Google Scholar 

  100. Feng S, Resendiz JC, Christodoulides N, et al. Pathological shear stress stimulates the tyrosine phosphorylation of alpha-actinin associated with the glycoprotein Ib-IX complex. Biochemistry 2002;41:1100–1108.

    PubMed  CAS  Google Scholar 

  101. Razdan K, Hellums JD, Kroll MH. Shear-stress-induced von Willebrand factor binding to platelets causes the activation of tyrosine kinase(s). Biochem J 1994;302:681–686.

    PubMed  CAS  Google Scholar 

  102. Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 2000;40:173–181.

    PubMed  CAS  Google Scholar 

  103. Nomura S, Tandon NN, Nakamura T, Kambayashi J. Morphological differences between GPIb antibody-induced and shear stress-induced platelet aggregates. Haemostasis 2000;30:174–188.

    PubMed  CAS  Google Scholar 

  104. Merten M, Chow T, Hellums JD, Thiagarajan P. A new role for P-selectin in shear-induced platelet aggregation. Circulation 2000;102:2045–2050.

    PubMed  CAS  Google Scholar 

  105. Kawano K, Yoshino H, Aoki N, et al. Shear-induced platelet aggregation increases in patients with proximal and severe coronary artery stenosis. Clin Cardiol 2002;25:154–160.

    PubMed  Google Scholar 

  106. Tanigawa T, Nishikawa M, Kitai T, et al. Increased platelet aggregability in response to shear stress in acute myocardial infarction and its inhibition by combined therapy with aspirin and cilostazol after coronary intervention. Am J Cardiol 2000;85:1054–1059.

    PubMed  CAS  Google Scholar 

  107. Ajzenberg N, Denis CV, Veyradier A, Girma JP, Meyer D, Baruch D. Complete defect in vWF-cleaving protease activity associated with increased shear-induced platelet aggregation in thrombotic microangiopathy. Thromb Haemost 2002;87:808–811.

    PubMed  CAS  Google Scholar 

  108. Jen CJ, McIntire LV. Characteristics of shear-induced aggregation in whole blood. J Lab Clin Med 1984;103:115–124.

    PubMed  CAS  Google Scholar 

  109. Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 1986;78:1456–1461.

    PubMed  CAS  Google Scholar 

  110. Alkhamis TM, Beissinger RL, Chedian JR. Effect of red blood cells on platelet adhesion and aggregation in low-stress shear flow. ASAIO Trans 1987;33:636–642.

    PubMed  CAS  Google Scholar 

  111. Alkhamis TM, Beissinger RL, Chediak JR. Artificial surface effect on red blood cells and platelets in laminar shear flow. Blood 1990;75:1568–1575.

    PubMed  CAS  Google Scholar 

  112. Reimers RC, Sutera SP, Joist JH. Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms. Blood 1984;64:1200–1206.

    PubMed  CAS  Google Scholar 

  113. Goldsmith HL, Bell DN, Braovac S, Steinberg A, McIntosh F. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys J 1995;69:1584–1595.

    Article  PubMed  CAS  Google Scholar 

  114. Goldsmith HL, Yu SS, Marlow J. Fluid mechanical stress and the platelet. Thromb Diath Haemorrh 1975;34:32–41.

    PubMed  CAS  Google Scholar 

  115. Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science 1980;207:541–543.

    PubMed  CAS  Google Scholar 

  116. Glaumann H, Bergstrand A, Ericsson JLE. Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol 1975;64:356–377.

    PubMed  CAS  Google Scholar 

  117. Sutera SP, Nowak MD, Joist JH, Zeffren DJ, Bauman JE. A programmable, computer-controlled cone-plate viscometer for the application of pulsatile shear stress to platelet suspensions. Biorheology 1988;25:449–459.

    PubMed  CAS  Google Scholar 

  118. Zhang JN, Bergeron AL, Yu Q, et al. Platelet aggregation and activation under complex patterns of shear stress. Thromb Haemost 2002;88:817–821.

    PubMed  Google Scholar 

  119. Dong JF, Berndt MC, Schade A, McIntire LV, Andrews RK, López JA. Ristocetin-dependent, but not botrocetin-dependent, binding of von Willebrand factor to the platelet glycoprotein Ib-IX-V complex correlates with shear-dependent interactions. Blood 2001;97:162–168.

    PubMed  CAS  Google Scholar 

  120. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980;17:17–24.

    PubMed  CAS  Google Scholar 

  121. Ikeda Y, Handa M, Kamata T, et al. Transmembrane calcium influx associated with von Willebrand factor binding to GP Ib in the initiation of shear-induced platelet aggregation. Thromb Haemost 1993;69:496–502.

    PubMed  CAS  Google Scholar 

  122. Ikeda Y, Handa M, Kawano K, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest 1991;87:1234–1240.

    Article  PubMed  CAS  Google Scholar 

  123. Cooke BM, Usami S, Perry I, Nash GB. A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc Res 1993;45:33–45.

    PubMed  CAS  Google Scholar 

  124. Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. Description of an in vitro platelet function analyzer—PFA-100. Semin Thromb Hemost 1995;21(suppl 2):106–112.

    PubMed  Google Scholar 

  125. Heilmann EJ, Kundu SK, Sio R, Garcia C, Gomez R, Christie DJ. Comparison of four commercial citrate blood collection systems for platelet function analysis by the PFA-100 system. Thromb Res 1997;87:159–164.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

López, J.A., del Conde, I., Dong, JF. (2005). Platelet Function Under Flow. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics