Skip to main content

Phosphoproteomics of Human Platelets

  • Chapter
  • 1286 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Platelets circulate freely in the blood, playing a critical role in wound healing by forming plugs and initiating repair processes and in underlying thrombotic diseases such as myocardial infarction or stroke (1). Normally platelets are found in the blood in a nonadhesive, resting state. Interactions with structures in the subendothelial matrix initiate a rapid platelet activation, resulting in the formation of vascular plugs and release of intracellular substances that initiate repair processes. Genetic defects may result in bleeding disorders such as Glanzmann’s thrombasthenia and Bernard-Soulier syndrome (2). The high clinical relevance of arterial thrombosis, the limited knowledge about the underlying mechanisms at the molecular level, and the small number of available antiplatelet drugs (3) show the necessity for gaining more profound insights into this system. One important event in regulating the platelet function is the phosphorylation/dephosphorylation of multiple proteins on various tyrosine, serine, and threonine residues within intracellular signaling cascades. To understand the exact mechanisms, it is essential to identify proteins involved in the signaling pathways and to localize their phosphorylation sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown AS, Erusalimsky JD, Martin JF. In: von Bruchhausen F, Walter U, eds. Platelets and Their Factors. Springer-Verlag, Berlin, 1997, pp. 3–19.

    Google Scholar 

  2. Nurden AT. Inherited abnormalities of platelets. Thromb Haemost 1999;82:468–480.

    PubMed  CAS  Google Scholar 

  3. Fitzgerald DJ. Vascular biology of thrombosis: the role of platelet-vessel wall adhesion. Neurology 2001;57:S1–S4.

    Article  PubMed  CAS  Google Scholar 

  4. Wilkins M, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996;13:19–50.

    PubMed  CAS  Google Scholar 

  5. Blackstock W, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Tibtech 1999;17:121–127.

    CAS  Google Scholar 

  6. Marcus K, Meyer HE. (2003) Two-dimensional polyacrylamide gel electrophoresis for platelet proteomics. In: Gibbins J, Mahaut-Smith MP, eds. Platelets and Megacaryocytes, Vol. 2, Perspectives and Techniques. Methods in Biology Series. Humana, Totowa, NJ.

    Google Scholar 

  7. Lottspeich F. Proteome analysis: a pathway to the functional analysis of proteins. Angew Chem Int Ed Eng 1999;38:2476–2492.

    Article  CAS  Google Scholar 

  8. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutation in mammals. Humangenetik 1975;26:231–243.

    PubMed  CAS  Google Scholar 

  9. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975;250:4007–4021.

    PubMed  CAS  Google Scholar 

  10. Görg A, Postel W, Günther S. Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 1988;9:531–546.

    Article  PubMed  Google Scholar 

  11. Campell KP, MacLennan DH, Jorgensen AO. Staining of Ca2+ binding proteins, calsequestrin, calmodulin, torponin C and S-100 with the cationic carbocyanine dye’ stains-all’. J Biol Chem 1983;258:11267–11273.

    Google Scholar 

  12. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular mass exceeding 10,000 daltons. Anal Chem 1988;60:2299–2301.

    Article  PubMed  CAS  Google Scholar 

  13. Yamagata A, Kristensen DB, Takeda Y, et al. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics 2002;2:1267–1276.

    Article  PubMed  CAS  Google Scholar 

  14. Karas M, Gluckmann M, Schafer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 2000;35:1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Fenn JB. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64–71.

    Article  PubMed  CAS  Google Scholar 

  16. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 1996;93:14440–14445.

    Article  PubMed  CAS  Google Scholar 

  17. Jensen ON, Larsen MR, Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins 1998;2:74–89.

    Article  PubMed  Google Scholar 

  18. Zhang W, Chait BT. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 2000;72:2482–2489.

    Article  PubMed  CAS  Google Scholar 

  19. Creasy DM, Cottrell JS. Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2002;10:1426–1434.

    Article  Google Scholar 

  20. Spengler B, Kirsch D. Peptides sequencing by matrix assisted laser desorption mass spectrometry. Rapid Commun Mass Spectrom 1992;6:105–108.

    Article  PubMed  CAS  Google Scholar 

  21. Kaufmann R, Kirsch D, Spengler B. Sequencing of peptides in a time of flight mass spectrometer: evaluation of postsource decay following matrix assisted laser desorption/ionization (MALDI). Int J Mass Spectrom Ion Proc 1994;131:355–385.

    Article  CAS  Google Scholar 

  22. Biemann K. Mass spectrometry of peptides and proteins. Annu Rev Biochem 1992;61:977–1010.

    Article  PubMed  CAS  Google Scholar 

  23. Eng J, McCormack AL, Yates JR III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994;5:976–989.

    Article  CAS  Google Scholar 

  24. Yates JR III, Eng JK, McCormack AL, Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 1995;67:1426–1436.

    Article  PubMed  CAS  Google Scholar 

  25. Linscheid M. Die Kopplung von Flüssigkeitschromatographie mit Massenspektrometrie. CLB Chemie Labor Biotechnik 1990;41:125–133.

    Google Scholar 

  26. Wilm M, Shevchenko A, Houthaeve T, et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996;379:466–469.

    Article  PubMed  CAS  Google Scholar 

  27. Mortz E, Sareneva T, Haebel S, Julkunen I, Roepstorff P. Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 1996;17:925–931.

    Article  PubMed  CAS  Google Scholar 

  28. McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 2001;5:591–602.

    Article  PubMed  CAS  Google Scholar 

  29. Jensen ON, Larsen MR, Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins 1998;2:74–89.

    Article  PubMed  Google Scholar 

  30. Kussmann M, Hauser K, Kissmehl R, Breed J, Plattner H, Roepstorff P. Comparison of in vivo and in vitro phosphorylation of the exocytosis-sensitive protein PP63/parafusin by differential MALDI mass spectrometric peptide mapping. Biochemistry 1999;38:7780–7790.

    Article  PubMed  CAS  Google Scholar 

  31. Wilm M, Neubauer G, Mann M. Parent ion scans of unseparated peptide mixtures. Anal Chem 1996;68:527–533

    Article  PubMed  CAS  Google Scholar 

  32. Steen H, Küster B, Fernandez M, Pandey A, Mann M. Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. Anal Chem 2001;73:1440–1448.

    Article  PubMed  CAS  Google Scholar 

  33. Hunter AP, Games DE. Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid Commun Mass Spectrom 1994;8:559–570.

    Article  PubMed  CAS  Google Scholar 

  34. Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD. Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 2001;73:170–176.

    Article  PubMed  CAS  Google Scholar 

  35. Larsen MR, Roepstorff P. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis Fresenius. J Anal Chem 2000;366:677–690.

    Article  CAS  Google Scholar 

  36. Pandey A, Andersen JS, Mann M. Use of mass spectrometry to study signaling pathways. STKE 2001;37:PL1.

    Google Scholar 

  37. Figeys D, Gygi SP, Zhang Y, Watts J, Gu M, Aebersold R. Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and. Electrophoresis 1998;19:1811–1818.

    Article  PubMed  CAS  Google Scholar 

  38. Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 1999;71:2883–2892.

    Article  PubMed  CAS  Google Scholar 

  39. Marcus K, Moebius J, Meyer HE. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem 2003;376:973–993.

    Article  PubMed  CAS  Google Scholar 

  40. Sickmann A, Meyer HE. Phosphoamino acid analysis. Proteomics 2001;2:200–206.

    Article  Google Scholar 

  41. Dunn MJ. Electroblotting of proteins from 2-D polyacrylamide gels. Methods Mol Biol 1999;112:313–318.

    PubMed  CAS  Google Scholar 

  42. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 1984;3–4:203–209.

    Article  Google Scholar 

  43. Marcus K, Immler D, Sternberger J, Meyer HE. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis 2000;21:2622–2636.

    Article  PubMed  CAS  Google Scholar 

  44. Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998;808:23–41.

    Article  PubMed  CAS  Google Scholar 

  45. Butt E, Bernhardt M, Smolenski A, et al. Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 2000;275:5179–5187.

    Article  PubMed  CAS  Google Scholar 

  46. Lehr S, Kotzka J, Herkner A, et al. Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Biochemistry 2000;39:10898–10907.

    Article  PubMed  CAS  Google Scholar 

  47. Butt E, Gambaryan S, Gottfert N, Galler A, Marcus K, Meyer HE. Actin binding of human LIM and SH3 protein is regulated by cGMP-and cAMP-dependent protein kinase phosphorylation on serine 146. J Biol Chem 2003;278:15601–15607.

    Article  PubMed  CAS  Google Scholar 

  48. Fujitani K, Kambayashi J, Sakon M, et al. Identification of mu-, m-calpains and calpastatin and capture of mu-calpain activation in endothelial cells. J Cell Biochem 1997;66:197–209.

    Article  PubMed  CAS  Google Scholar 

  49. Hayashi M, Suzuki H, Kawashima S, Saido TC, Inomata M. The behaviour of calpain-generated N-and C-terminal fragments of talin in integrin-mediated signaling pathways. Arch Biochem Biophys 1999;15:133–142.

    Article  Google Scholar 

  50. Annan RS, Carr SA. Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal Chem 1996;68:3413–3421.

    Article  PubMed  CAS  Google Scholar 

  51. Schuuring E, Verhoeven E, Litvinov S, Michalides RJ. The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol 1993;13:2891–2898.

    PubMed  CAS  Google Scholar 

  52. Huang C, Liu J, Haudenschild CC, Zhan X. The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem 1998;273:25770–25776.

    Article  PubMed  CAS  Google Scholar 

  53. Campbell DH, Sutherland RL, Daly RJ. Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res 1999;59:5376–5385.

    PubMed  CAS  Google Scholar 

  54. van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E. The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. J Biol Chem 1997;272:7374–7380.

    Article  PubMed  Google Scholar 

  55. Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X. Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem 1997;272:13911–13915.

    Article  PubMed  CAS  Google Scholar 

  56. Naka M, Saitoh M, Hidaka H. Two phosphorylated forms of myosin in thrombinstimulated platelet. Arch Biochem Biophys 1988;261:235–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Marcus, K., Meyer, H.E. (2005). Phosphoproteomics of Human Platelets. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics