Skip to main content

Structure-Function of the Platelet Cytoskeleton

  • Chapter
Platelet Function

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1363 Accesses

Abstract

Platelet activation results in a rapid series of reproducible morphological events that transform the nonsticky, discoid circulating platelet into a sticky, spikey glue. This morphological transformation depends on actin and is a common feature of all cell-based clotting systems across evolution. An exciting recent discovery is the identification of the protein complex that mediates the actin polymerization underlying this event, Arp2/3 (1). This chapter presents the background for this discovery by first reviewing the morphology of resting and activated platelets. Then examples of other proteins involved in stabilizing and reorganizing the platelet actin cytoskeleton are described, and the findings that place Arp2/3 at the center of these events are presented. Finally, a model integrating the various activities of these proteins with the morphological changes of activation is proposed. The chapter focuses on the actin cytoskeleton, although platelets also have microtubules 2 and a vimentin-like intermediate filament protein 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li Z, Kim ES, Bearer EL. The Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 2002;99:4466–4474.

    PubMed  CAS  Google Scholar 

  2. Haydon GB, Taylor DA. Microtubules in hamster platelets. J Cell Biol 1965;26:673–676.

    PubMed  CAS  Google Scholar 

  3. Tablin F, Taube D. Platelet intermediate filaments: detection of a vimentinlike protein in human and bovine platelets. Cell Motil Cytoskel 1987;8:61–67.

    CAS  Google Scholar 

  4. Bearer EL, Prakash JM, Li Z. Actin dynamics in platelets. Int Rev Cytol 2002;217:137–182.

    PubMed  CAS  Google Scholar 

  5. Davidson EH, et al. A genomic regulatory network for development of genetic fine mapping of the Miyoshi myopathy locus and exclusion of eight candidate genes. Science 2002;295:1669–1678.

    PubMed  CAS  Google Scholar 

  6. Brent R. Genomic biology. Cell 2000;100:169–183.

    PubMed  CAS  Google Scholar 

  7. Fox JE. The platelet cytoskeleton. Thromb Haemost 1993;70:884–893.

    PubMed  CAS  Google Scholar 

  8. Hartwig JH, Bokoch GM, et al. Platelet morphology. In Schafer JL, ed. Thrombosis and hemorrhage, 2nd ed. Williams & Wilkins, Baltimore, 1999, pp. 207–228.

    Google Scholar 

  9. David-Ferreira JF. The blood platelet: electron icroscopic studies. Int Rev Cytol 1974;17:99–148.

    Google Scholar 

  10. O’Brien JR, Woodhouse MA. Platelets. Their size, shape and stickiness in vitro: degranulation and propinquity. Exp Biol Med 1968;3:90–102.

    CAS  Google Scholar 

  11. Witke W, Sharpe AH, et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 1995;81:41–51.

    PubMed  CAS  Google Scholar 

  12. Massberg S, et al. Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 2004;103:136–142.

    PubMed  CAS  Google Scholar 

  13. Hauser W, et al. Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 1999;96:8120–8125.

    PubMed  CAS  Google Scholar 

  14. Aszodi A, et al. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP-and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 1999;18:37–48.

    PubMed  CAS  Google Scholar 

  15. Wandersee NJ, et al. Hematopoietic cells from spectrin-deficient mice are sufficient to induce thrombotic events in hematopoietically ablated recipients. Blood 1998;92:4856–4863.

    PubMed  CAS  Google Scholar 

  16. Azam M, Andrabi SS, et al. Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001;21:2213–2220.

    PubMed  CAS  Google Scholar 

  17. Witke W, et al. Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci USA 2001;98:3832–3836.

    PubMed  CAS  Google Scholar 

  18. Hartwig JH, Bokoch GM, et al. Thrombin receptor ligation and activatd rac uncap actin filament bared ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995;82:643–653.

    PubMed  CAS  Google Scholar 

  19. Hartwig JH. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992;118:1421–142.

    PubMed  CAS  Google Scholar 

  20. Croce K, et al. Inhibition of calpain blocks platelet secretion, aggregation, and spreading. J Biol Chem 1999;274:36321–36327.

    PubMed  CAS  Google Scholar 

  21. Bearer EL. Platelet membrane skeleton revealed by quick-freeze deep-etch. Anat Rec 1990;227:1–11.

    PubMed  CAS  Google Scholar 

  22. White JG, Burris S, Escolar G. Influence of thrombin in suspension, surface activation, and high shear on platelet surface GPIb/IX distribution. J Lab Clin Med 1999;133:245–252.

    PubMed  CAS  Google Scholar 

  23. Allen RD, Zacharski LR, et al. Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy. J Cell Biol 1979;83:126–142.

    PubMed  CAS  Google Scholar 

  24. Bearer EL. Cytoskeletal domains in the activated platelet. Cell Motil Cytoskel 1995;30:50–66.

    CAS  Google Scholar 

  25. Nachmias VT, Golla R, et al. Vinculin in relation to stress fibers in spread platelets. Cell Motil Cytoskel 1991;20:190–202.

    CAS  Google Scholar 

  26. Reinhard M, et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 1995;14:1583–1589.

    PubMed  CAS  Google Scholar 

  27. Reinhard M, et al. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 1992;11:2063–2070.

    PubMed  CAS  Google Scholar 

  28. Reinhard M, Jarchau T, Walter U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci 2001;26:243–249.

    PubMed  CAS  Google Scholar 

  29. Bearer EL, Prakash JM, et al. VASP protects actin filaments from gelsolin: an in vitro study with implications for platelet actin reorganizations. Cell Motil Cytoskel 2000;47:351–364.

    CAS  Google Scholar 

  30. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 2000;275:22607–22610.

    PubMed  CAS  Google Scholar 

  31. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629–635.

    PubMed  CAS  Google Scholar 

  32. Kaitlina SY. Functional specificity of actin isoforms. Int Rev Cytol 2001;202:35–98.

    Article  Google Scholar 

  33. Pollard TD. Genomics, the cytoskeleton and motilit. Nature 2001;409:842–843.

    PubMed  CAS  Google Scholar 

  34. Zucker-Franklin D, et al. The actin and myosin filaments of human and bovine blood platelets. J Clin Invest 1972;51:419–430.

    PubMed  CAS  Google Scholar 

  35. Fox JE, Phillips DR. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 1981;292:650–652.

    PubMed  CAS  Google Scholar 

  36. Pollard TD, Cooper JA. Actin and actin-binding proteins: a critical review. Annu Rev Biochem 1986;55:987–1035.

    PubMed  CAS  Google Scholar 

  37. Pollard TD. Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments. J Cell Biol 1986;103:2747–2754.

    PubMed  CAS  Google Scholar 

  38. Pollard TD, Mooseker MS. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol 1981;88:654–659.

    PubMed  CAS  Google Scholar 

  39. Goldschmidt-Clermont MF, Furman MI, et al. The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 1992;3:1015–1024.

    PubMed  CAS  Google Scholar 

  40. Pantaloni D, Carlier M-F. How profilin promotes actin filament assembly in the presence of thymosin β4. Cell 1993;75:1007–1014.

    PubMed  CAS  Google Scholar 

  41. Bearer EL, Miller K. Alberts B. Changes in platelet actin-binding-proteins with activation detected by F-actin affinity chromatography. J Cell Biol 1987;105:195a.

    Google Scholar 

  42. Fox JE, Phillips DR. Polymerization and organization of actin filaments within platelets. Semin Hematol 1983;20:650–652.

    Google Scholar 

  43. Nachmias VYT. The cytoskeleton of the blood platelet. Adv Cell Biol 1988;2:181–211.

    Google Scholar 

  44. Safer D, Elzinga M, et al. Thymosin beta 4 and Fx, and actin-sequestering peptide, are indistinguishable. J Biol Chem 1991;266:4029–4032.

    PubMed  CAS  Google Scholar 

  45. Weber A, Nachmias VT, et al. Interaction of thymosin b4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochem J 1992;31:6179–6185.

    CAS  Google Scholar 

  46. Nachmias VT, Golla R. Cap Z, a calcium insensitive capping protein in resting and activated platelets. FEBS Lett 1996;378:258–262.

    PubMed  CAS  Google Scholar 

  47. Barkalow K, Witke W, et al. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol 1996;134:389–399.

    PubMed  CAS  Google Scholar 

  48. Stossel TP. The machinery of cell crawling. Sci Am 1994;271:54–55, 58–63.

    Article  PubMed  CAS  Google Scholar 

  49. Stossel TP. Cell crawling two decades after Abercrombie. Biochem Soc Symp 1999;65:267–280.

    PubMed  CAS  Google Scholar 

  50. Kwiatkowski DJ. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol 1999;11:103–108.

    PubMed  CAS  Google Scholar 

  51. Carlier M-F, Laurent V, et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover; implication in actin-based motilit. J Cell Biol 1997;136:1307–1322.

    PubMed  CAS  Google Scholar 

  52. Cohen I, et al. A tropomyosin-like protein from human platelets. J Mol Biol 1972;68:383–387.

    PubMed  CAS  Google Scholar 

  53. Takubo T, et al. Localization of myosin, actin, alpha-actinin, tropomyosin and vinculin in surface-activated, spreading human platelets. Biotech Histochem 1998;73:310–315.

    Article  PubMed  CAS  Google Scholar 

  54. Onji T, et al. Tropomyosin-caldesmon/actomyosin systems in platelets and arterial smooth muscle: results from exchange experiments. Biochim Biophys Acta 1989;999:248–253.

    PubMed  CAS  Google Scholar 

  55. der Terrossian E, et al. Caldesmon is present in human and pig erythrocytes. Biochem Biophys Res Commun 1989;159:395–401.

    Google Scholar 

  56. Pittenger MF, Kazzaz JA, Helfman DM. Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol 1994;6:96–104.

    PubMed  CAS  Google Scholar 

  57. Tang N, Ostap EM. Motor domain-dependent localization of myolb(myr-1). Curr Biol 2001;11:1131–1135.

    PubMed  CAS  Google Scholar 

  58. Cooper JA, et al. Actin dynamics: tropomyosin provides stability. Curr Biol 2002;12:R523–R525.

    PubMed  CAS  Google Scholar 

  59. Blanchoin L, Pollard TD, Hitchcock-Degregori SE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomysoin. Curr Biol 2001;11:1300–1304.

    PubMed  CAS  Google Scholar 

  60. Amann KJ, Pollard TD. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol 2001;3:306–310.

    PubMed  CAS  Google Scholar 

  61. Halbrugge M, Walter U. Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 1989;185:41–50.

    PubMed  CAS  Google Scholar 

  62. Egile C, Loisel TP, et. Al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 1999;146:1319–1332.

    PubMed  CAS  Google Scholar 

  63. Bear JE, et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 2002;109:509–521.

    PubMed  CAS  Google Scholar 

  64. Bear JE, Krause M, Gertler FB. Regulating cellular actin assembly. Curr Opin Cell Biol 2001;13:158–166.

    PubMed  CAS  Google Scholar 

  65. Bachmann C, et al. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 1999;274:23549–23557.

    PubMed  CAS  Google Scholar 

  66. Svitkina TM, et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 2003;160:409–421.

    PubMed  CAS  Google Scholar 

  67. Vignjevic D, et al. Formation of filopodia-like bundles in vitro from a dendritic network. J Cell Biol 2003;160:951–962.

    PubMed  CAS  Google Scholar 

  68. Harbeck B, Huttelmaier S, et al. Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 2000;275:30817–30825.

    PubMed  CAS  Google Scholar 

  69. Horstrup K, Jablonka B, et al. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in tact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 1994;225:21–27.

    PubMed  CAS  Google Scholar 

  70. Lambrechts A, et al. cAMP-dependent protein kinase phosphorylation of EVL, a Mena/VASP relative, regulates its interaction with actin and SH3 domains. J Biol Chem 2000;275:36143–36151.

    PubMed  CAS  Google Scholar 

  71. Abel K, Mieskes G, et al. Dephosphorylation of the focal adhesion protein VASP in vitro and in intact human platelets. FEBS Lett 1995;370:184–188.

    PubMed  CAS  Google Scholar 

  72. Garcia Arguinzonis MI, et al. Increased spreading, Rac/p21-activated kinase (PAK) activity, and compromised cell motility in cells deficient in vasodilator-stimulated phosphoprotein (VASP). J Biol Chem 2002;277:45604–45610.

    PubMed  CAS  Google Scholar 

  73. Gertler FB, Comer AR, et al. Enabled, a dosage-sensitive suppressor of utations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev 1995;9:521–533.

    PubMed  CAS  Google Scholar 

  74. Kwiatkowski AV, Gertler FB, Loureiro JJ. Function and regulation of Ena/VASP proteins. Trends Cell Biol 2003;13:386–392.

    PubMed  CAS  Google Scholar 

  75. DeMille MM, Kimmel BE, Rubin GM. A Drosophila gene regulated by rough and glass shows similarity to ena and VASP. Gene 1996;183:103–108.

    PubMed  CAS  Google Scholar 

  76. Theriot JA, Rosenblatt J, et al. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 1994;76:505–517.

    PubMed  CAS  Google Scholar 

  77. Welch MD, Iwamatsu A, et al. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 1997;385:265–269.

    PubMed  CAS  Google Scholar 

  78. Bear JE, et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 2000;101:717–728.

    PubMed  CAS  Google Scholar 

  79. Geese M, et al. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 2002;13:2383–2396.

    PubMed  CAS  Google Scholar 

  80. Krause M, et al. The Ena/VASP enigma. J Cell Sci 2002;115:4721–4726.

    PubMed  CAS  Google Scholar 

  81. Niebuhr K, Ebel F, et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 1997;16:5433–5444.

    PubMed  CAS  Google Scholar 

  82. Laurent V, Loisel TP, et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol 1999;144:1245–1258.

    PubMed  CAS  Google Scholar 

  83. Loureiro JJ, et al. Critical roles of phosphorylation and actin binding motifs, but not the central proline-rich region, for Ena/vasodilator-stimulated phosphoprotein (VASP) function during cell migration. Mol Biol Cell 2002;13:2533–2546.

    PubMed  CAS  Google Scholar 

  84. Bearer EL. Anionic lipid domains in cell membranes. Thesis, Department of Biochemistry and Biophysics, University of California, San Francisco, 1983.

    Google Scholar 

  85. Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skelton and its attachment to actin filaments. J Cell Biol 1991;112:407–425.

    PubMed  CAS  Google Scholar 

  86. Boyles J, Fox JEB, et al. Organization of the cytoskeleton in resting, discoid platelets: reservation of actin filaments by a modified fixation that prevents osmium damage. J Cell Biol 1985;101:1463.

    PubMed  CAS  Google Scholar 

  87. Fox JE. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membrane. J Biol Chem 1985;260:11970–11977.

    PubMed  CAS  Google Scholar 

  88. Fox JE, Boyles JK, et al. Indentification of a membrane skeleton in platelets. J Cell Biol 1988;102:1748–1757.

    Google Scholar 

  89. Hartwig JH, Kwiatkowski D.J. Actin-binding proteins. Curr Opin Cell Biol 1991;3:87–97.

    PubMed  CAS  Google Scholar 

  90. Hartwig JH, et al. The elegant platelet: signals controlling actin assembly. Thromb Haemost 1999;82:392–398.

    PubMed  CAS  Google Scholar 

  91. Bertagnolli ME, Beckerle MC. Regulated membrane-cytoskeleton linkages in platelets. Ann NY Acad Sci 1994;714:8–100.

    Google Scholar 

  92. Kovacsovics TJ, Hartwig JH. Thrombin-induced GPIb centralization on the platelet surface requires actin actin assembly and myosin II activation. Blood 1996;87:618–629.

    PubMed  CAS  Google Scholar 

  93. Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991;112:407–425.

    PubMed  CAS  Google Scholar 

  94. Jennings LK, et al. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem 1981;256:6927–6932.

    PubMed  CAS  Google Scholar 

  95. Hoffmeister KM, et al. Mechanisms of cold-induced platelet actin assembly. J Biol Chem 2001;276:24751–24759.

    PubMed  CAS  Google Scholar 

  96. Hoffmeister KM, et al. Glycosylation restores survival of chilled blood platelets. Science 2003;301:1531–1534.

    PubMed  CAS  Google Scholar 

  97. Hoffmeister KM, et al. The clearance mechanism of chilled blood platelets. Cell 2003;112:87–97.

    PubMed  CAS  Google Scholar 

  98. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 1993;104:613–627.

    PubMed  Google Scholar 

  99. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997;59:575–599.

    PubMed  CAS  Google Scholar 

  100. Stark F, Golla R, Nachmias V. Formation and contraction of a microfilamentous shell in saponin-permeabilized platelets. J Cell Biol 1991;112:903–913.

    PubMed  CAS  Google Scholar 

  101. Fox JE, Goll DE, et al. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem 1985;260:1060–1066.

    PubMed  CAS  Google Scholar 

  102. Fox JE, et al. Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 1987;69:537–545.

    PubMed  CAS  Google Scholar 

  103. Fox JE, Phillips DR. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem 1982;257:4120–4126.

    PubMed  CAS  Google Scholar 

  104. Phillips DR, et al. Integrin tyrosine phosphorylation in platelet signaling. Curr Opin Cell Biol 2001;13:546–554.

    PubMed  CAS  Google Scholar 

  105. Phillips DR, Nannizzi-Alaimo L, Prasad KS. Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost 2001;86:246–258.

    PubMed  CAS  Google Scholar 

  106. Jenkins AL, et al. Tyrosine phosphorylation of the beta3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J Biol Chem 1998;273:13878–13885.

    PubMed  CAS  Google Scholar 

  107. Gilligan DM, et al. The junctional complex of the membrane skeleton. Semin Hematol 1993;30:74–83.

    PubMed  CAS  Google Scholar 

  108. Matsuoka Y, Li X, Bennett V. Adducin: structure, function and regulation. Cell Mol Life Sci 2000;57:884–895.

    PubMed  CAS  Google Scholar 

  109. Gilligan DM, Sarid R, Weese J. Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain. Blood 2002;99:2418–2426.

    PubMed  CAS  Google Scholar 

  110. Stark F, Golla R, et al. Formation and contraction of a microfilamentous shell in saponin-permeabilized platelets. J Cell Biol 1991;112:903–913.

    PubMed  CAS  Google Scholar 

  111. Barkalow KL, et al. Alpha-adducin dissociates from F-actin and spectrin during platelet activation. J Cell Biol 2003;161:557–570.

    PubMed  CAS  Google Scholar 

  112. Kalhammer G, Bahler M. Unconventional myosins. Essays Biochem 2000;35:33–42.

    PubMed  CAS  Google Scholar 

  113. Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta 2000;1496:3–22.

    PubMed  CAS  Google Scholar 

  114. Baker JP, Titus MA. Myosins: matching functions with motors. Curr Opin Cell Biol 1998;10:80–86.

    PubMed  CAS  Google Scholar 

  115. Hasson T, Mooseker MS. The growing family of myosin motors and their role in neurons and sensory cells. Curr Opin Neurobiol 1997;7:615–623.

    PubMed  CAS  Google Scholar 

  116. D’Apolito M, et al. Cloning of the murine non-muscle myosin heavy chain IIA gene ortholog of human MYH9 responsible for May-Hegglin, Sebastian, Fechtner, and Epstein syndromes. Gene 2002;286:215–222.

    PubMed  CAS  Google Scholar 

  117. Di Pumpo M, et al. Defective expression of GPIb/IX/V complex in platelets from patients with May-Hegglin anomaly and Sebastian syndrome. Haematologica 2002;87:943–947.

    PubMed  Google Scholar 

  118. Heath KE, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 2001;69:1033–1045.

    PubMed  CAS  Google Scholar 

  119. Krueger EW, et al. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 2003;14:1085–1096.

    PubMed  CAS  Google Scholar 

  120. Vidal C, et al. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 2002;100:4462–4469.

    PubMed  CAS  Google Scholar 

  121. Shcherbina A, et al. WASP and N-WASP in human platelets differ in sensitivity to protease calpain. Blood 2001;98:2988–2991.

    PubMed  CAS  Google Scholar 

  122. Blanchoin L, Pollard TD, et al. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol, 2000;10:1273–1282.

    PubMed  CAS  Google Scholar 

  123. Davidson MM, Haslan RJ. Dephosphorylation of cofilin in stimulated platelets:roles for a GTP-binding protein and Ca2+. Biochem J 1994;301:41–47.

    PubMed  CAS  Google Scholar 

  124. Harbeck B, et al. Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 2000;275:30817–30825.

    PubMed  CAS  Google Scholar 

  125. Huttelmaier S, et al. Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett 1999;451:68–74.

    PubMed  CAS  Google Scholar 

  126. Huttelmaier S, et al. The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4,5-bisphosphate. Curr Biol 1998;8:479–488.

    PubMed  CAS  Google Scholar 

  127. Butt E, Abel K, et al. cAMP-and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 1994;269:14509–14517.

    PubMed  CAS  Google Scholar 

  128. Yin HL, Stossel TP. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 1979;281: 583–586.

    PubMed  CAS  Google Scholar 

  129. Sun HQ, Yamamoto M, et al. Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 1999;274:33179–33182.

    PubMed  CAS  Google Scholar 

  130. Yin HL, Hartwig JH, et al. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem 1981;256:9693–9697.

    PubMed  CAS  Google Scholar 

  131. Bearer EL. Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. J Cell Biol 1991;115:1629–1638.

    PubMed  CAS  Google Scholar 

  132. Wang YL. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol 1985;101:597–602.

    PubMed  CAS  Google Scholar 

  133. Imaoka T, Lynham JA, Haslam RJ. Purification and characterization of the 47,000-dalton protein phosphorylated during degranulation of human platelets. J Biol Chem 1983;258:11404–11414.

    PubMed  CAS  Google Scholar 

  134. Niwa R, et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002;108:233–246.

    PubMed  CAS  Google Scholar 

  135. McGough A. F-actin-binding proteins. Curr Opin Struct Biol 1998;8:166–176.

    PubMed  CAS  Google Scholar 

  136. Bamburg JR, McGough A, Ono S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 1999;9:364–370.

    PubMed  CAS  Google Scholar 

  137. McGough A, et al. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 1997;138:771–781.

    PubMed  CAS  Google Scholar 

  138. Chan AY, Bailly M, et al. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 2000;148:531–542.

    PubMed  CAS  Google Scholar 

  139. Arber S, Barbayannis FA, et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998;393:805–809.

    PubMed  CAS  Google Scholar 

  140. Yang N, Higuchi O, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998;393:809–812.

    PubMed  CAS  Google Scholar 

  141. Zebda N, et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol 2000;151:1119–1128.

    PubMed  CAS  Google Scholar 

  142. Loisel TP, Boujemaa R, et al. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 1999;401:613–616.

    PubMed  CAS  Google Scholar 

  143. Rogers SL, et al. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol 2003;162:1079–1088.

    PubMed  CAS  Google Scholar 

  144. Machesky LM, Atkinson SJ, et al. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilinagarose. J Cell Biol 1994;127:107–115.

    PubMed  CAS  Google Scholar 

  145. Bearer EL, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. Curr Drug Targets Infect Disord 2002;2:247–264.

    PubMed  CAS  Google Scholar 

  146. Tilney LG, DeRosier DJ, et al. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J Cell Biol 1992;118:83–93.

    PubMed  CAS  Google Scholar 

  147. Welch MD, Rosenblat J, et al. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 1998;128:105–108.

    Google Scholar 

  148. Bearer EL. Fluorescence microscopy of single actin filaments labeled by conjugation to rhodamine. Biol Bull 1992;115:1629–1638.

    Google Scholar 

  149. Higgs HN, Pollard TD. regulation of actin filament networks through the Arp2/3 complex: activation by a diverse arrray of proteins. Annu Rev Biochem 2001;70:649–676.

    PubMed  CAS  Google Scholar 

  150. Mullins RD, Heuser JA, et al. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 1998;95:6181–6186.

    PubMed  CAS  Google Scholar 

  151. Pantaloni D, Boujemaa R, et al. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat Cell Biol 2000;2:385–391.

    PubMed  CAS  Google Scholar 

  152. Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and readmilling of actin filament array in lamellipodia. J Cell Biol 1999;145:1009–1026.

    PubMed  CAS  Google Scholar 

  153. Bearer EL. An actin-associated protein present in the microtubule organizing center and the growth cones. of PC-12 cells. J Neurosci 1992;12:750–761.

    PubMed  CAS  Google Scholar 

  154. Bearer EL. 2E4(kaptin): a novel actin-associated protein from human blood platelets found in lamellipodia and the tips of the stereocilia of the inner ear. Eur J Cell Biol 1999;78:117–126.

    PubMed  CAS  Google Scholar 

  155. Bearer EL. Actin and actin-associated proteins in Xenopus embryos: relationship to cytoarchitecture and gastrulation. In Pederson R, ed. Cytoskeleton in development. Academic Press, New York, 1992, p. 26.

    Google Scholar 

  156. Tilney LG, Tilney MS, DeRosier DJ. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 1992;8:257–274.

    PubMed  CAS  Google Scholar 

  157. Berg JS, et al. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 2002;4:246–250.

    PubMed  CAS  Google Scholar 

  158. Wehrle-Haller B, Imhof B. The inner lives of focal adhesions. Trends Cell Biol 2002;12:382–389.

    PubMed  CAS  Google Scholar 

  159. Condeelis J. LIfe at the leading edge: the formation of cell protrusions. Annu Rev Cell Biol 1993;9:411–444.

    PubMed  CAS  Google Scholar 

  160. Sheetz MP, et al. Extension of filopodia by motor-dependent actin assembly. Cell Motil Cytoskel 1992;22:160–169.

    CAS  Google Scholar 

  161. Brahmbhatt AA, et al. ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. Genetic fine mapping of the Miyoshi myopathy locus and exclusion of eight candidate genes. J Biol Chem 2003;278:13016–13025.

    PubMed  CAS  Google Scholar 

  162. Les Erickson F, et al. Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Mol Biol Cell 2003;14:4173–4180.

    PubMed  CAS  Google Scholar 

  163. Bearer EL, Chen AF, et al. 2E4/Kaptin (KPTN)—a candidate gene for the hearing loss locus, DFNA4. Ann Hum Genet 2000;64:189–119.

    PubMed  CAS  Google Scholar 

  164. Lazarides E, Burridge K. Alpha-actinin: immunofluorescent localization of a muscle sructural protein in nonmuscle cells. Cell 1975;6:289–298.

    PubMed  CAS  Google Scholar 

  165. Matsudaira P. Modular organization of actin crosslinking proteins. Trends Bichem Sci 1991;16:87–92.

    CAS  Google Scholar 

  166. Otey CA, Pavalko FM, et al. An interaction between α-actinin and β1 integrin subunit. J Cell Biol 1990;111:721–729.

    PubMed  CAS  Google Scholar 

  167. Fukami K, Furuhashi K, et al. Requirements of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature 1992;359:150–152.

    PubMed  CAS  Google Scholar 

  168. Greenwood JA, Theibert AB, et al. Restructuring of focal adhesion plaques by PI-3 kinase. Regulation of PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol 2000;150:627–642.

    PubMed  CAS  Google Scholar 

  169. Izaguirre G, Aguirre L, et al. Tyrosine phosphorylation of α-actin in activated platelets. J Biol Chem 1999;274:3712–37020.

    Google Scholar 

  170. Izaguirre G, Aguirre L, et al. The cytoskeltal/nonmuscle isofor of a actin is phosphorylated during degranulation of human platelets. J Biol Chem 2001;276:28,676–28,685.

    PubMed  CAS  Google Scholar 

  171. Maguire PB, Fitzgerald DJ. Platelet proteomics. J Thromb Haemost 2003;1:1593–1601.

    PubMed  CAS  Google Scholar 

  172. Lindemann S, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001;154:485–490.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bearer, E.L. (2005). Structure-Function of the Platelet Cytoskeleton. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics