Skip to main content

Macroscopical Findings on Soil-Embedded Skeletal Remains Allowing the Exclusion of a Forensically Relevant Lay Time

  • Chapter
Book cover Forensic Pathology Reviews

Part of the book series: Forensic Pathology Reviews ((FPR,volume 3))

Abstract

So far, a reliable determination of the postmortem interval (PMI) of human bones or skeletal remains is possible neither by morphological examinations nor by extensive technical investigations. Concerning forensic osteological practice, in most cases, the question of the length of the PMI can be restricted to the exclusion of a forensically relevant lay time (in the present context corresponding to a PMI of >50 years). We reviewed 21 original publications from the literature and surveyed the results on the basis of our own experience with macroscopical findings of soil-embedded bones with known lay times. A total of 1259 bones and the respective findings were evaluated. Eleven macromorphological findings are presented that are of relevance when present and, in addition, five findings that are relevant through their absence for the determination of a PMI of more than 50 years. In none of the reviewed publications were these criteria described in soil-embedded bones with a lay time of less than 50 years. These elaborated findings are a basis for the macromorphological exclusion of a forensically relevant lay time of soil-embedded skeletal remains in a given case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byers SN (2002) Introduction to Forensic Anthropology—A Textbook. Allyn & Bacon, Boston.

    Google Scholar 

  2. Verhoff MA, Heidorn F, Kreutz K (2002) Die interindividuelle morphologische Variabilität als Ursache von Fehldeutungen in der forensischen Osteologie am Beispiel einer Rippe. Arch Kriminol 210, 112–120.

    PubMed  Google Scholar 

  3. Kreutz K, Verhoff MA (2002) Forensische Anthropologie. Lehmanns Media-LOB.de, Berlin

    Google Scholar 

  4. Verhoff MA, Kreutz K (2003) Verletzungsspuren an Knochenfunden—Analyse und Beurteilung. Arch Kriminol 212, 41–52.

    PubMed  Google Scholar 

  5. Rathburn TA, Buikstra JE (1984) Human Identification—Case Studies in Forensic Anthropology. Charles C. Thomas, Springfield.

    Google Scholar 

  6. Leopold D (1998) Identifikation unbekannter Toter. Schmidt-Römhild, Lübeck.

    Google Scholar 

  7. Nafte N (2002) Flesh and Bone. Carolina Academic Press, Durham.

    Google Scholar 

  8. Hunger H (1978) Methoden der Liegezeitbestimmung menschlicher Knochen. In Hunger H, Leopold D, eds., Identifikation. Johann Ambrosius Barth, Leipzig, pp. 63–99.

    Google Scholar 

  9. Földes V, Kósa F, Virágos-Kis E, Rengei B, Ferke A (1980) Atomabsorptions-spektrometrische Untersuchung des Gehaltes an anorganischen Substanzen von Skelettfunden zur Ermittlung der Dauer des Begrabenseins in der Erde. Arch Kriminol 166, 105–111.

    PubMed  Google Scholar 

  10. Bass WM (1984) Time interval since death—a difficult decision. In Rathburn TA, Buikstra JE, eds., Human Identification—Case Studies in Forensic Anthropology. Charles C. Thomas, Springfield, pp. 136–147.

    Google Scholar 

  11. Penning R, Riepert T (2003) Identifikation und forensische Osteologie. In Madea B, Brinkmann B, eds., Handbuch gerichtliche Medizin, Vol. 2. Springer, Berlin, Heidelberg, pp. 1117–1270.

    Google Scholar 

  12. Bonte W, Johansson J, Garbe G, Berg S (1976) Die Bestimmung des Aminosäurenspektrums als Hilfsmittel bei der Datierung von Skelettfunden. Arch Kriminol 158, 163–174.

    PubMed  CAS  Google Scholar 

  13. Krause D, Jachau K (2003) Identifizierung/Osteologie. In Madea B, ed., Praxis Rechtsmedizin. Springer, Berlin, Heidelberg, New York, pp. 72–76.

    Google Scholar 

  14. Berg S, Rolle R, Seemann H (1981) Der Archäologe und der Tod—Archäologie und Gerichtsmedizin. C.J. Bucher, Munich, Luzern, pp. 94–97.

    Google Scholar 

  15. Haglund WD (2003) Forensic Taphonomy. In James SH, Nordby JJ, eds., Forensic Science. CRC Press, Boca Raton, pp. 99–112.

    Google Scholar 

  16. Benecke M (2001) A brief history of forensic entomology. Forensic Sci Int 120, 2–14.

    Article  PubMed  CAS  Google Scholar 

  17. Szibor R, Schubert C, Schöning R, Krause D, Wendt U (1998) Pollen analysis reveals murder season. Nature 395, 449–450.

    Article  PubMed  CAS  Google Scholar 

  18. Berg S, Specht W (1958) Untersuchungen zur Bestimmung der Liegezeit von Skeletteilen. Dtsch Z Gerichtl Med 47, 209–241.

    Article  CAS  Google Scholar 

  19. Bell LS, Skinner MF, Jones SL (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82, 129–140.

    Article  PubMed  CAS  Google Scholar 

  20. Berg S, Protsch von Zieten R (1998) Die Datierung von Skelettfunden. In Leopold, D, ed., Identifikation unbekannter Toter. Schmidt-Römhild, Lübeck, pp. 107–128.

    Google Scholar 

  21. Berg S, Specht W (1958) Eine neue Technik als naturwissenschaftlicher Beitrag zur Altersbestimmung von Knochenfunden. Arch Kriminol 122, 43–65.

    Google Scholar 

  22. Armstrong WG, Tarlo LBH (1966) Amino acid components in fossil calcified tissues. Nature 210, 481–482.

    Article  PubMed  CAS  Google Scholar 

  23. Castellano M, Villanueva EC, von Frenckel R (1984) Estimating the date of bone remains. A multivariate study. J Forensic Sci 29, 527–534.

    PubMed  CAS  Google Scholar 

  24. Jarvis DR (1997) Nitrogen levels in long bones from coffin burials interred for periods of 26–90 years. Forensic Sci Int 85, 199–208.

    Article  PubMed  CAS  Google Scholar 

  25. Haglund WD, Sorg M (1997) Method and theory of forensic taphonomy research. In Haglund WD, Sorg M, eds., Forensic Taphonomy. CRC Press, Boca Raton, pp. 13–26.

    Google Scholar 

  26. Hunger H (1967) Untersuchungen zum Problem der Liegezeitbestimmung an menschlichen Skeletten. Med Thesis, Karl-Marx-University Leipzig, Germany.

    Google Scholar 

  27. Kunter M (1988) Rekonstruktion, Konservierung und Reproduktion. In Knussmann R, ed., Anthropologie, Vol. I/1. Gustav Fischer, Stuttgart, pp. 551–615.

    Google Scholar 

  28. Herrmann B, Gruppe G, Hummel S, Piepenbrink H, Schutkowski H (1990) Prähistorische Anthropologie. Springer, Berlin, Heidelberg.

    Google Scholar 

  29. Sledzik P (1998) Forensic taphonomy: postmortem decomposition and decay. In Reichs KJ, ed., Forensic Osteology—Advances in the Identification of Human Remains, 2nd ed. Charles C. Thomas, Springfield, pp. 109–119.

    Google Scholar 

  30. Berg S (1962) Zur Todeszeitbestimmung bei Skelettfunden. Beitr Gerichtl Med 22, 18–30.

    Google Scholar 

  31. Münnich KO (1960) Die C14-Methode. Geologische Rundschau 49, 237–244.

    Article  Google Scholar 

  32. Taylor RE, Suchery JM, Payen CA, Slota PJ Jr. (1989) The use of radiocarbon (C-14) to identify skeletal materials of forensic science interest. J Forensic Sci 34, 1196–1205.

    PubMed  CAS  Google Scholar 

  33. Neis P, Hille R, Paschke M, Pilwat G, Schnabel A, Niess C, Bratzke H (1999) Strontium-90 for determination of time since death. Forensic Sci Int 99, 47–51.

    Article  PubMed  CAS  Google Scholar 

  34. Swift B, Lauder I, Black S, Norris J (2001) An estimation of the post-mortem interval in human skeletal remains: a radionuclide and trace element approach. Forensic Sci Int 117, 73–87.

    Article  PubMed  CAS  Google Scholar 

  35. Knight B (1969) Methods of dating skeletal remains. Med Sci Law 9, 247–252.

    PubMed  CAS  Google Scholar 

  36. Knight B, Lauder I (1969) Methods of dating skeletal remains. Hum Biol 41, 322–341.

    PubMed  CAS  Google Scholar 

  37. Verhoff MA, Wiesbrock UO, Kreutz K (2004) Makroskopische Befunde zum Ausschluss einer forensisch relevanten Erdliegezeit bei Knochenfunden—eine Literaturauswertung. Arch Kriminol 213, 1–14.

    PubMed  Google Scholar 

  38. Herrmann B, Newesely H (1982) Dekompositionsvorgänge des Knochens unter langer Liegezeit—1. Die mineralische Phase. Anthrop Anz 40, 19–31.

    CAS  Google Scholar 

  39. Piepenbrink H (1984) Beispiele biogener Dekompositionserscheinungen an Knochen unter längerer Liegezeit. Anthropol Anz 42, 241–251.

    PubMed  CAS  Google Scholar 

  40. Pfeiffer S, Milne S, Stevenson RM (1998) The natural decomposition of adipocere. J Forensic Sci 43, 368–370.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Verhoff, M.A., Kreutz, K. (2005). Macroscopical Findings on Soil-Embedded Skeletal Remains Allowing the Exclusion of a Forensically Relevant Lay Time. In: Tsokos, M. (eds) Forensic Pathology Reviews. Forensic Pathology Reviews, vol 3. Humana Press. https://doi.org/10.1007/978-1-59259-910-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-910-3_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-416-6

  • Online ISBN: 978-1-59259-910-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics