Skip to main content

Regulation of Endothelial Barrier Function

Contributions of the Transcellular and Paracellular Pathways

  • Chapter
  • 758 Accesses

Abstract

The vascular endothelium, consisting of a monolayer of endothelial cells and extracellular matrix, represents the major barrier to exchange of liquid and solutes across the vessel wall. Thus, minute changes in the endothelial monolayer with respect to its permeability to plasma proteins can have marked effects on the tissue fluid balance and can lead to edema. The paracellular and transcellular pathways control endothelial barrier function. Under physiological conditions, the endothelial barrier is described as being restrictive in that only small molecules (<3 nm) can move through the barrier via the paracellular route, whereas macromolecules are actively transported via the transcellular pathway. This restrictive barrier is required to establish the transendothelial oncotic pressure gradient that maintains tissue fluid homeostasis. Endothelial permeability to albumin, the main plasma protein, is the primary determinant of the oncotic pressure gradient and hence maintains the barrier function of the endothelium. The transcellular pathway, by transporting albumin through the endothelial cell, contributes to maintenance of the barrier function of the endothelium. This pathway is comprised of cargo-containing plasmalemmal vesicles, the caveolae. Recent data indicate that the formation, fission, and transport of caveolae in endothelial cells are dynamic processes that are regulated by coherent actions of the albumin-binding proteins caveolin-1 and dynamin. The activity of these proteins is positively regulated by Src-mediated phosphorylation. Pro-inflammatory mediators and growth factors, by binding endothelial cell-surface receptors, initiate a series of events that lead to the opening of intercellular junctions, thereby allowing passage of albumin across the endothelial monolayer by the paracellular route, disrupting the barrier function of the endothelium. Activation of the small-guanosine-5′-triphosphate (GTP)-binding protein RhoA has been shown to play a primary role in regulating paracellular permeability by modulating the integrity of the intercellular junctional protein complexes. This review focuses on the distinct contributions of caveolae-mediated transcellular and Rhomediated paracellular pathways and their respective roles in regulating endothelial permeability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pappenheimer, J. R., Renkin, E. M., Borrero, L. M. (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167, 13–46.

    CAS  PubMed  Google Scholar 

  2. Renkin, E. M., Watson, P. D., Sloop, C. H., Joyner, W. M., and Curry, F. E. (1977) Transport pathways for fluid and large molecules in microvascular endothelium of the dog“s paw. Microvasc. Res. 14, 205–214.

    Article  CAS  PubMed  Google Scholar 

  3. Lum, H. and Malik, A. B. (1994) Regulation of vascular endothelial barrier function. Am. J. Physiol. 267, L223–L241.

    CAS  PubMed  Google Scholar 

  4. Michel, C. C. and Curry, F. E. (1999) Microvascular permeability. Physiol. Rev. 79, 703–761.

    CAS  PubMed  Google Scholar 

  5. Majno, G., Palade, G. E., and Schoefl, G. I. (1961) Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J. Biophys. Biochem. Cytol. 11, 607–626.

    CAS  PubMed  Google Scholar 

  6. Majno, G. and Palade, G. E. (1961) Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J. Biophys. Biochem. Cytol. 11, 571–605.

    Article  CAS  PubMed  Google Scholar 

  7. Milici, A. J., Watrous, N. E., Stukenbrok, H., and Palade, G. E. (1987) Transcytosis of albumin in capillary endothelium. J. Cell Biol. 105, 2603–2612.

    Article  CAS  PubMed  Google Scholar 

  8. Palade, G. F., Simionescu, M., and Simionescu, N. (1981) Differentiated microdomains on the luminal surface of the capillary endothelium. Biorheology 18, 563–568.

    CAS  PubMed  Google Scholar 

  9. Predescu, D. and Palade, G. E. (1993) Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am. J. Physiol. 265, H725–H733.

    CAS  PubMed  Google Scholar 

  10. Schnitzer, J. E., Liu, J., and Oh, P. (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14,399–14,404.

    Article  CAS  PubMed  Google Scholar 

  11. Palade, G. E. (1953) Fine structure of blood capillaries. J. Appl. Physiol. 24, 1424–1436.

    Google Scholar 

  12. Liu, P. and Anderson, R. G. (1995) Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27,179–27,185.

    Article  CAS  PubMed  Google Scholar 

  13. Smart, E. J., Graf, G. A., McNiven, M. A., et al. (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.

    CAS  PubMed  Google Scholar 

  14. Minshall, R. D., Tiruppathi, C., Vogel, S. M., et al. (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J. Cell Biol. 150, 1057–1070.

    Article  CAS  PubMed  Google Scholar 

  15. John, T. A., Vogel, S. M., Tiruppathi, C., Malik, A. B., and Minshall, R. D. (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am. J. Physiol. Lung Cell Mol. Physiol. 284, L187–L196.

    CAS  PubMed  Google Scholar 

  16. Rothberg, K. G., Ying, Y. S., Kamen, B. A., and Anderson, R. G. (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938.

    Article  CAS  PubMed  Google Scholar 

  17. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., and Anderson, R. G. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.

    Article  CAS  PubMed  Google Scholar 

  18. Schnitzer, J. E., Oh, P., Pinney, E., and Allard, J. (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232.

    Article  CAS  PubMed  Google Scholar 

  19. Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. chem. 273, 5419–5422.

    Article  CAS  PubMed  Google Scholar 

  20. Scherer, P. E., Lewis, R. Y., Volonte, D., et al. (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. chem. 272, 29,337–29,346.

    Article  CAS  PubMed  Google Scholar 

  21. Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., Kurzchalia, T. V. (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6, 911–927.

    CAS  PubMed  Google Scholar 

  22. Fra, A. M., Masserini, M., Palestini, P., Sonnino, S., and Simons, K. (1995) A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett. 375, 11–14.

    Article  CAS  PubMed  Google Scholar 

  23. Sargiacomo, M., Scherer, P. E., Tang, Z., et al. (1995) Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92, 9407–9411.

    Article  CAS  PubMed  Google Scholar 

  24. Simionescu, M., Gafencu, A., and Antohe, F. (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc. Res. Tech. 57, 269–288.

    Article  CAS  PubMed  Google Scholar 

  25. Minshall, R. D., Tiruppathi, C., Vogel, S. M., and Malik, A. B. (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem. Cell. Biol. 117, 105–112.

    Article  CAS  PubMed  Google Scholar 

  26. Schnitzer, J. E., Carley, W. W., and Palade, G. E. (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc. Natl. Acad. Sci. USA 85, 6773–6777.

    Article  CAS  PubMed  Google Scholar 

  27. Schnitzer, J. E., Ulmer, J. B., and Palade, G. E. (1990) A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc. Natl. Acad. Sci. USA 87, 6843–6847.

    Article  CAS  PubMed  Google Scholar 

  28. Schnitzer, J. E. (1992) gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol. 262, H246–H254.

    CAS  PubMed  Google Scholar 

  29. Schnitzer, J. E. and Oh, P. (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. chem. 269, 6072–6082.

    CAS  PubMed  Google Scholar 

  30. Tiruppathi, C., Finnegan, A., and Malik, A. B. (1996) Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc. Natl. Acad. Sci. USA 93, 250–254.

    Article  CAS  PubMed  Google Scholar 

  31. Tiruppathi, C., Song, W., Bergenfeldt, M., Sass, P., and Malik, A. B. (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J. Biol. chem. 272, 25,968–25,975.

    Article  CAS  PubMed  Google Scholar 

  32. Vogel, S. M., Easington, C. R., Minshall, R. D., et al. (2001) Evidence of transcellular permeability pathway in microvessels. Microvasc. Res. 61, 87–101.

    Article  CAS  PubMed  Google Scholar 

  33. Vogel, S. M., Minshall, R. D., Pilipovic, M., Tiruppathi, C., and Malik, A. B. (2001) Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L1512-L1522.

    Google Scholar 

  34. Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N. (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102, 1304–1311.

    Article  CAS  PubMed  Google Scholar 

  35. Predescu, S. A., Predescu, D. N., and Palade, G. E. (1997) Plasmalemmal vesicles function as transcytotic carriers for small proteins in the continuous endothelium. Am. J. Physiol. 272, H937–H949.

    CAS  PubMed  Google Scholar 

  36. Siflinger-Birnboim, A., Schnitzer, J., Lum, H., et al. (1991) Lectin binding to gp60 decreases specific albumin binding and transport in pulmonary artery endothelial monolayers. J. Cell. Physiol. 149, 575–584.

    Article  CAS  PubMed  Google Scholar 

  37. Niles, W. D. and Malik, A. B. (1999) Endocytosis and exocytosis events regulate vesicle traffic in endothelial cells. J. Membr. Biol. 167, 85–101.

    Article  CAS  PubMed  Google Scholar 

  38. Rothman, J. E. (2002) Lasker Basic Medical Research Award. The machinery and principles of vesicle transport in the cell. Nat. Med. 8, 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  39. Schnitzer, J. E., Allard, J., and Oh, P. (1995) NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am. J. Physiol. 268, H48–H55.

    CAS  PubMed  Google Scholar 

  40. Predescu, D., Horvat, R., Predescu, S., and Palade, G. E. (1994) Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Proc. Natl. Acad. Sci. USA 91, 3014–3018.

    Article  CAS  PubMed  Google Scholar 

  41. Schnitzer, J. E., Oh, P., and McIntosh, D. P. (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274, 239–242.

    Article  CAS  PubMed  Google Scholar 

  42. Oh, P., McIntosh, D. P., and Schnitzer, J. E. (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114.

    Article  CAS  PubMed  Google Scholar 

  43. Parton, R. G. (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42, 155–166.

    CAS  PubMed  Google Scholar 

  44. Predescu, S. A., Predescu, D. N., Palade, G. E. (2001) Endothelial transcytotic machinery involves supramolecular protein-lipid complexes. Mol. Biol. Cell 12, 1019–1033.

    CAS  PubMed  Google Scholar 

  45. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., et al. (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J. Cell Biol. 126, 111–126.

    Article  CAS  PubMed  Google Scholar 

  46. Parton, R. G., Joggerst, B., and Simons, K. (1994) Regulated internalization of caveolae. J. Cell Biol. 127, 1199–215.

    Article  CAS  PubMed  Google Scholar 

  47. Glenney, J. R., Jr. (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. chem. 264, 20,163–20,166.

    CAS  PubMed  Google Scholar 

  48. Li, S., Seitz, R., Lisanti MP. (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J. Biol. chem. 271, 3863–8.

    Article  CAS  PubMed  Google Scholar 

  49. Ahn, S., Maudsley, S., Luttrell, L. M., Lefkowitz, R. J., and Daaka, Y. (1999) Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J. Biol. chem. 274, 1185–1188.

    Article  CAS  PubMed  Google Scholar 

  50. Ahn, S., Kim, J., Lucaveche, C. L., et al. (2002) Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J. Biol. chem. 277, 26,642–26,651.

    Article  CAS  PubMed  Google Scholar 

  51. Orth, J. D., Krueger, E. W., Cao, H., and McNiven, M. A. (2002) The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl. Acad. Sci. USA 99, 167–172.

    Article  CAS  PubMed  Google Scholar 

  52. Murthy, K. S. and Makhlouf, G. M. (2000) Heterologous desensitization mediated by G protein-specific binding to caveolin. J. Biol. chem. 275, 30,211–30,219.

    Article  CAS  PubMed  Google Scholar 

  53. Igishi, T. and Gutkind, J. S. (1998) Tyrosine kinases of the Src family participate in signaling to MAP kinase from both Gq and Gi-coupled receptors. Biochem. Biophys. Res. Commun. 244, 5–10.

    Article  CAS  Google Scholar 

  54. Ellis, C. A., Malik, A. B., Gilchrist, A., et al. (1999) Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. J. Biol. chem. 274, 13,718–13,727.

    Article  CAS  PubMed  Google Scholar 

  55. Li, S., Couet, J., and Lisanti, M. P. (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. chem. 271, 29,182–29,190.

    Article  CAS  PubMed  Google Scholar 

  56. Anderson, R. G. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225.

    Article  CAS  PubMed  Google Scholar 

  57. Drab, M., Verkade, P., Elger, M., et al. (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452.

    Article  CAS  PubMed  Google Scholar 

  58. Razani, B., Engelman, J. A., Wang, X. B., et al. (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. chem. 276, 38,121–38,138.

    Article  CAS  PubMed  Google Scholar 

  59. Schubert, W., Frank, P. G., Woodman, S. E., et al. (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J. Biol. chem. 277, 40,091–40,098.

    Article  CAS  PubMed  Google Scholar 

  60. Dudek, S. M. and Garcia, J. G. (2001) Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487–1500.

    CAS  PubMed  Google Scholar 

  61. Bazzoni, G., Dejana, E., and Lampugnani, M. G. (1999) Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr. Opin. Cell Biol. 11, 573–581.

    Article  CAS  PubMed  Google Scholar 

  62. Dejana, E. (1997) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J. Clin. Invest. 100, S7–S10.

    CAS  PubMed  Google Scholar 

  63. Dejana, E., Spagnuolo, R., and Bazzoni, G. (2001) Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb. Haemost. 86, 308–315.

    CAS  PubMed  Google Scholar 

  64. Rabiet, M. J., Plantier, J. L., Rival, Y., Genoux, Y., Lampugnani, M. G., and Dejana, E. (1996) Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler. Thromb. Vasc. Biol. 16, 488–496.

    CAS  PubMed  Google Scholar 

  65. Corada, M., Mariotti, M., Thurston, G., et al. (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl. Acad. Sci. USA 96, 9815–9820.

    Article  CAS  PubMed  Google Scholar 

  66. Hordijk, P. L., Anthony, E., Mul, F. P., Rientsma, R., Oomen, L. C., and Roos, D. (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J. Cell Sci. 112, 1915–1923.

    CAS  PubMed  Google Scholar 

  67. Sandoval, R., Malik, A., Minshall, R., Kouklis, P., Ellis, C., and Tiruppathi, C. (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J. Physiol. 533, 433–445.

    Article  CAS  PubMed  Google Scholar 

  68. Anastasiadis, P. Z., Moon, S. Y., Thoreson, M. A., et al. (2000) Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2, 637–644.

    Article  CAS  PubMed  Google Scholar 

  69. Noren, N. K., Liu, B. P., Burridge, K., and Kreft, B. (2000) 120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567–580.

    Article  CAS  PubMed  Google Scholar 

  70. Garcia, J. G., Verin, A. D., and Schaphorst, K. L. (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin. Thromb. Hemost. 22, 309–315.

    Article  CAS  PubMed  Google Scholar 

  71. Coughlin, S. R., Scarborough, R. M., Vu, T. K., and Hung, D. T. (1992) Thrombin receptor structure and function. Cold Spring Harb. Symp. Quant. Biol. 57, 149–154.

    CAS  PubMed  Google Scholar 

  72. Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature 407, 258–264.

    Article  CAS  PubMed  Google Scholar 

  73. Vu, T. K., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  74. Kozasa, T., Jiang, X., Hart, M. J., et al. (1998) 115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109–2111.

    Google Scholar 

  75. Holinstat, M., Mehta, D., Kozasa, T., Minshall, R. D., and Malik, A. B. (2003) Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J. Biol. chem. 278, 28,793–28,798.

    Google Scholar 

  76. Mehta, D., Rahman, A., and Malik, A. B. (2001) Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J. Biol. chem. 276, 22,614–22,620.

    Article  CAS  PubMed  Google Scholar 

  77. Sah, V. P., Seasholtz, T. M., Sagi, S. A., and Brown, J. H. (2000) The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40, 459–489.

    Article  CAS  PubMed  Google Scholar 

  78. van Nieuw Amerongen, G. P., Draijer, R., Vermeer, M. A., and van Hinsbergh, V. W. (1998) Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ. Res. 83, 1115–1123.

    Google Scholar 

  79. van Nieuw Amerongen, G. P., van Delft, S., Vermeer, M. A., Collard, J. G., and van Hinsbergh, V. W. (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87, 335–340.

    Google Scholar 

  80. Essler, M., Amano, M., Kruse, H. J., Kaibuchi, K., Weber, P. C., and Aepfelbacher, M. (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. chem. 273, 21,867–21,874.

    Article  CAS  PubMed  Google Scholar 

  81. Olofsson, B. (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell. Signal. 11, 545–554.

    Article  CAS  PubMed  Google Scholar 

  82. Sasaki, T. and Takai, Y. (1998) The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control. Biochem. Biophys. Res. Commun. 245, 641–645.

    Article  CAS  PubMed  Google Scholar 

  83. Ridley, A. J. (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477.

    Article  CAS  PubMed  Google Scholar 

  84. Sandoval, R., Malik, A. B., Naqvi, T., Mehta, D., and Tiruppathi, C. (2001) Requirement for Ca2+ signaling in the mechanism of thrombin-induced increase in endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L239–L247.

    CAS  PubMed  Google Scholar 

  85. Gao, X., Kouklis, P., Xu, N., et al. (2000) Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1218–L1225.

    CAS  PubMed  Google Scholar 

  86. Venkatachalam, K., van Rossum, D. B., Patterson, R. L., Ma, H. T., and Gill, D. L. (2002) The cellular and molecular basis of store-operated calcium entry. Nat. Cell Biol. 4, E263–E272.

    Article  CAS  PubMed  Google Scholar 

  87. Berridge, M. J. (1995) Capacitative calcium entry. Biochem. J. 312, 1–11.

    CAS  PubMed  Google Scholar 

  88. Putney, J. W., Jr. (1999) TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. Proc. Natl. Acad. Sci. USA 96, 14,669–14,671.

    Article  CAS  PubMed  Google Scholar 

  89. Putney, J. W., Jr., Broad, L. M., Braun, F. J., Lievremont, J. P., and Bird, G. S. (2001) Mechanisms of capacitative calcium entry. J. Cell Sci. 114, 2223–2229.

    CAS  PubMed  Google Scholar 

  90. Nilius, B. and Droogmans, G. (2001) Ion channels and their functional role in vascular endothelium. Physiol. Rev. 81, 1415–1459.

    CAS  PubMed  Google Scholar 

  91. Mehta, D., Ahmmed, G. U., Paria, B. C., et al. (2003) RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J. Biol. chem. 278, 33,492–33,500.

    Article  CAS  PubMed  Google Scholar 

  92. Moore, T. M., Brough, G. H., Babal, P., Kelly, J. J., Li, M., and Stevens, T. (1998) Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am. J. Physiol. 275, L574–L582.

    CAS  PubMed  Google Scholar 

  93. Brough, G. H., Wu, S., Cioffi, D., et al. (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, storeoperated Ca2+ entry pathway. FASEB J. 15, 1727–1738.

    Article  CAS  PubMed  Google Scholar 

  94. Parekh, A. B., Terlau, H., and Stuhmer, W. (1993) Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature 364, 814–818.

    Article  CAS  PubMed  Google Scholar 

  95. Randriamampita, C. and Tsien, R. Y. (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364, 809–814.

    Article  CAS  PubMed  Google Scholar 

  96. Su, Z., Csutora, P., Hunton, D., Shoemaker, R. L., Marchase, R. B., and Blalock, J. E. (2001) A store-operated nonselective cation channel in lymphocytes is activated directly by Ca(2+) influx factor and diacylglycerol. Am. J. Physiol. Cell Physiol. 280, C1284–C1292.

    CAS  PubMed  Google Scholar 

  97. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99, 7461–7466.

    Article  CAS  PubMed  Google Scholar 

  98. Bird, G. S. and Putney, J. W., Jr. (1993) Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J. Biol. chem. 268, 21,486–21,488.

    CAS  PubMed  Google Scholar 

  99. Fasolato., C., Hoth, M., and Penner, R. (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J. Biol. chem. 268, 20,737–20,740.

    CAS  PubMed  Google Scholar 

  100. Rosado, J. A. and Sage, S. O. (2000) A role for the actin cytoskeleton in the initiation and maintenance of storemediated calcium entry in human platelets. Trends Cardiovasc. Med. 10, 327–332.

    Article  CAS  PubMed  Google Scholar 

  101. Rosado, J. A. and Sage, S. O. (2000) Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J. Biol. chem. 275, 19,529–19,535.

    Article  CAS  PubMed  Google Scholar 

  102. Minshall, R. D., Tiruppathi, C., Vogel, S. M., et al. (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G i-coupled Src kinase signaling pathway. J. Cell Biol. 150, 1057–1070.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mehta, D., Minshall, R.D., Malik, A.B. (2005). Regulation of Endothelial Barrier Function. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics