Skip to main content

Pressure-Induced Inflammatory Signaling in Lung Endothelial Cells

  • Chapter
Cell Signaling in Vascular Inflammation

Abstract

Elevation of lung capillary pressure is a frequent clinical consequence of left-sided heart disease and characteristically results in the formation not only of pulmonary edema, but also of inflammatory reactions in the lung. These processes are largely attributable to mechano-induced second-messenger responses in lung capillary endothelial cells. Pressure- and stretch-induced mobilization of intra- and extracellular calcium mediates an increase in capillary permeability, thus contributing to pulmonary edema formation. In addition, endothelial calcium signaling promotes the exocytosis of endothelial Weibel-Palade bodies and, in consequence, vascular expression of P-selectin, thus initiating the sequestration of circulating leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wagner, P. D., Gale, G. E., Moon, R. E., Torre-Bueno, J. R., Stolp, B. W., Saltzman, H. A. (1986) Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J. Appl. Physiol. 61, 260–270

    CAS  PubMed  Google Scholar 

  2. Maggiorini, M., Melot, C., Pierre, S., et al. (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103, 2078–2083

    CAS  PubMed  Google Scholar 

  3. Pabst, R. and Tschernig, T. (2002) Perivascular capillaries in the lung: an important but neglected vascular bed in immune reactions? J. Allergy Clin. Immunol. 110, 209–214.

    Article  PubMed  Google Scholar 

  4. B/:artsch, P. (1997) High altitude pulmonary edema. Respiration 64, 435–443

    Article  CAS  Google Scholar 

  5. Audi, S. H., Dawson, C. A., Rickaby, D. A., and Linehan, J. H. (1991) Localization of the sites of pulmonary vasomotion by use of arterial and venous occlusion. J. Appl. Physiol. 70, 2126–2136.

    CAS  PubMed  Google Scholar 

  6. West, J. B. (2000) Pulmonary capillary stress failure. J. Appl. Physiol. 89, 2483–2489

    CAS  PubMed  Google Scholar 

  7. Parker, J. C. and Ivey, C. L. (1997) Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lung. J. Appl. Physiol. 83, 1962–1967

    CAS  PubMed  Google Scholar 

  8. Minnear, F. L., Barie, P. S., and Malik, A. B. (1983) Effects of transient pulmonary hypertension on pulmonary vascular permeability. J. Appl. Physiol. 55, 983–989

    CAS  PubMed  Google Scholar 

  9. Bhattacharya, J., Nakahara, K., and Staub, N. C. (1980) Effect of pulmonary blood flow in the isolated perfused dog lung lobe. J. Appl. Physiol. 48, 444–449.

    CAS  PubMed  Google Scholar 

  10. Gotoh, N., Kambara, K., Jiang, X. W., et al. (2000) Apoptosis in microvascular endothelial cells of perfused rabbit lungs with acute hydrostatic edema. J. Appl. Physiol. 88, 518–526.

    CAS  PubMed  Google Scholar 

  11. Saldias, F. J., Azzam, Z. S., Ridge, K. M., et al. (2001) Alveolar fluid reabsorption is impaired by increased atrial pressures in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L591–L597.

    CAS  PubMed  Google Scholar 

  12. Kuebler, W. M., Parthasarathi, K., Wang, P. M., and Bhattacharya, J. (2000) A novel signaling mechanism between gas and blood compartments of the lung. J. Clin. Invest. 105, 905–913.

    CAS  PubMed  Google Scholar 

  13. Ying, X., Minamiya, Y., Fu, C., and Bhattacharya, J. (1996) Ca2+ waves in lung capillary endothelium. Circ. Res. 79, 898–908.

    CAS  Google Scholar 

  14. Naruse, K. and Sokabe, M. (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J. Physiol. 264, C1037–C1044.

    CAS  PubMed  Google Scholar 

  15. Kohler, R., Distler, A., and Hoyer, J. (1998) Pressure-activated cation channel in intact rat endocardial endothelium. Cardiovasc. Res. 38, 433–440.

    CAS  Google Scholar 

  16. Kuebler, W. M., Ying, X., and Bhattacharya, J. (2002) Pressure-induced endothelial Ca2+ oscillations in lung capillaries. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L917–L923.

    CAS  PubMed  Google Scholar 

  17. Rosales, O. R., Isales, C. M., Barrett, P. Q., Brophy, C., and Sumpio, B. E. (1997) Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem. J. 326, 385–392.

    CAS  PubMed  Google Scholar 

  18. Monck, J. R. and Fernandez, J. M. (1996) The fusion pore and mechanisms of biological membrane fusion. Curr. Opin. Cell Biol. 8, 524–533.

    Article  CAS  PubMed  Google Scholar 

  19. Betz, W. J. and Bewick, G. S. (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203.

    Article  CAS  PubMed  Google Scholar 

  20. Smith, C. B. and Betz, W. J. (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380, 531–534.

    Article  CAS  PubMed  Google Scholar 

  21. Kuebler, W. M., Ying, X., Singh, B., Issekutz, A. C., and Bhattacharya, J. (1999) Pressure is pro-inflammatory in lung venular capillaries. J. Clin. Invest. 104, 495–502.

    Article  CAS  PubMed  Google Scholar 

  22. Bless, N. M., Tojo, S. J., Kawarai, H., et al. (1998) Differing patterns of P-selectin expression in lung injury. Am. J. Pathol. 153, 1113–1122.

    CAS  PubMed  Google Scholar 

  23. Kuebler, W. M., Kuhnle, G. E. H., Groh, J., and Goetz, A. E. (1997) Contribution of selectins to sequestration of leukocytes in pulmonary microvessels by intravital microscopy in rabbits. J. Physiol. 501, 375–386.

    Article  CAS  PubMed  Google Scholar 

  24. Mulligan, M. S., Polley, M. J., Bayer, R. J., Nunn, M. F., Paulson, J. C., and Ward, P. A. (1992) Neutrophil dependent lung injury. Requirement for P-selectin (GMP-140). J. Clin. Invest. 90, 1600–1607.

    CAS  PubMed  Google Scholar 

  25. Moore, T. M., Khimenko, P., Adkins, W. K., Miyasaka, M., and Taylor, A. E. (1995) Adhesion molecules contribute to ischemia and reperfusion-induced injury in the isolated rat lung. J. Appl. Physiol. 78, 2245–2252.

    CAS  PubMed  Google Scholar 

  26. Kuebler, W. M., Borges, J., Sckell, A., et al. (2000) Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am. J. Respir. Crit. Care Med. 161, 36–43.

    CAS  PubMed  Google Scholar 

  27. Kuebler, W. M. and Goetz, A. E. (2002) The marginated pool. Eur. Surg. Res. 34, 92–100.

    Article  PubMed  Google Scholar 

  28. Sakamaki, F., Kyotani, S., Nagaya, N., et al. (2000) Increased plasma P-selectin and decreased thrombomodulin in pulmonary arterial hypertension were improved by continuous prostacyclin therapy. Circulation 102, 2720–2725.

    CAS  PubMed  Google Scholar 

  29. Geppert, A., Zorn, G., Heinz, G., Huber, K., and Siostrzonek, P. (2001) Soluble selectins in the pulmonary and systemic circulation in acute cardiogenic and non-cardiogenic pulmonary failure. Intensive Care Med. 27, 521–527.

    Article  CAS  PubMed  Google Scholar 

  30. Nakos, G., Pneumatikos, J., Tsangaris, I., Tellis, C., and Lekka, M. (1997) Proteins and phospholipids in BAL from patients with hydrostatic pulmonary edema. Am. J. Respir. Crit. Care Med. 155, 945–951.

    CAS  PubMed  Google Scholar 

  31. Kubo, K., Hanaoka, M., Hayano, T., et al. (1998) Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema. Respir. Physiol. 111, 301–310.

    Article  CAS  PubMed  Google Scholar 

  32. De Pasquale, C. G., Arnolda, L. F., Doyle, I. R., Grant, R. L., Aylward, P. E., and Bersten, A. D. (2003) Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit. Care Med. 31, 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, P. M., Fujita, E., and Bhattacharya, J. (2002) Vascular regulation of type II cell exocytosis. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L912–L916.

    CAS  PubMed  Google Scholar 

  34. Kuebler, W. M., Uhlig, U., Goldmann, T., et al. (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am. J. Respir. Crit. Care Med. 168, 1391–1398.

    Article  PubMed  Google Scholar 

  35. Ichimura, H., Parthasarathi, K., Quadri, S., Issekutz, A. C., and Bhattacharya, J. (2003) Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. J. Clin. Invest. 111, 691–699.

    Article  CAS  PubMed  Google Scholar 

  36. Dschietzig, T., Richter, C., Bartsch, C., et al. (2001) Flow-induced pressure differentially regulates endothelin-1, urotensin II, adrenomedullin, and relaxin in pulmonary vascular endothelium. Biochem. Biophys. Res. Commun. 289, 245–251.

    Article  CAS  PubMed  Google Scholar 

  37. Fisslthaler, B., Popp, R., Michaelis, U. R., Kiss, L., Fleming, I., and Busse, R. (2001) Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. Hypertension 38, 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  38. Okada, M., Matsumori, A., Ono, K., et al. (1998) Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 894–901.

    CAS  PubMed  Google Scholar 

  39. Acevedo, A. D., Bowser, S. S., Gerritsen, M. E., and Bizios, R. (1993) Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J. Cell Physiol. 157, 603–614.

    Article  CAS  PubMed  Google Scholar 

  40. Iba, T., Shin, T., Sonoda, T., Rosales, O., and Sumpio, B. E. (1991) Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J. Surg. Res. 50, 457–460.

    Article  CAS  PubMed  Google Scholar 

  41. Sumpio, B. E., Widmann, M. D., Ricotta, J., Awolesi, M. A., and Watase, M. (1994) Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J. Cell Physiol. 158, 133–139.

    Article  CAS  PubMed  Google Scholar 

  42. Shin, H. Y., Gerritsen, M. E., and Bizios, R. (2002) Regulation of endothelial cell proliferation and apoptosis by cyclic pressure. Ann. Biomed. Eng. 30, 297–304.

    Article  PubMed  Google Scholar 

  43. Du, W., Mills, I., and Sumpio, B. E. (1995) Cyclic strain causes heterogeneous induction of transcription factors, AP1, CRE binding protein and NF-.B, in endothelial cells: species and vascular bed diversity. J. Biomech. 28, 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  44. Naruse, K., Sai, X., Yokoyama, N., and Sokabe, M. (1998) Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Lett. 441, 111–115.

    Article  CAS  PubMed  Google Scholar 

  45. Hishikawa, K. and Luscher, T. F. (1997) Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation 96, 3610–3616.

    CAS  PubMed  Google Scholar 

  46. Letsou, G. V., Rosales, O., Maitz, S., Vogt, A., and Sumpio, B. E. (1990) Stimulation of adenylate cyclase activity in cultured endothelial cells subjected to cyclic stretch. J. Cardiovasc. Surg. 31, 634–639.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kuebler, W.M. (2005). Pressure-Induced Inflammatory Signaling in Lung Endothelial Cells. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics