Skip to main content

Hydrogen Peroxide As Intracellular Messenger

Production, Target, and Elimination

  • Chapter
Cell Signaling in Vascular Inflammation

Abstract

Engagement of peptide growth-factor receptors induces a transient production of low levels of H2O2 in various cells. The H2O2 response to platelet-derived growth factor requires the intrinsic tyrosine kinase activity of the receptor as well as the activation of phosphatidylinositol 3-kinase (PI 3-kinase). It appears that PtdIns(3,4,5)P3, a product of PI 3-kinase, is necessary to activate an isoform of NADPH oxidase through the small GTP-binding protein Rac. H2O2 thus produced propagates its signal by specifically acting on protein tyrosine phosphatases. And enhancement of protein tyrosine phosphorylation in growth factor-stimulated cells depends on the H2O2 production. This is probably because the activation of a receptor tyrosine kinase is not sufficient to increase the steady-state level of protein tyrosine phosphorylation in cells, and that concurrent inhibition of protein tyrosine phosphatase by H2O2 might be needed as well. Elimination of H2O2 appears to be an extensively regulated process. Peroxiredoxin I (Prx I) and Prx II, two cytosolic thioredoxin-dependent peroxidases, are inactivated at the G2-M transition through Cdc2 kinase-dependent phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhee, S. G. (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53–59.

    CAS  PubMed  Google Scholar 

  2. Rhee, S. G., Bae, Y. S., Lee, S. R., and Kwon, J. (2000) Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Science’s stke pe1.

    Google Scholar 

  3. Finkel, T. (1998) Oxygen radicals and signaling. Curr. Opin. Cell. Biol. 10, 248–253.

    Article  CAS  PubMed  Google Scholar 

  4. Adler, V., Yin, Z., Tew, K. D., and Ronai, Z. (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 6104–6111.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, Y. J. and Ford, G. D. (1999) Redox regulation of signal transduction in cardiac and smooth muscle. J. Mol. Cell. Cardiol. 31, 345–353.

    Article  CAS  PubMed  Google Scholar 

  6. Griendling, K. K. and Ushio-Fukai, M. (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept. 91, 21–27.

    Article  CAS  PubMed  Google Scholar 

  7. Patel, R. P., Moellering, D., Murphy-Ullrich, J., Jo, H., Beckman, J. S., and Darley-Usmar, V. M. (2000) Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic. Biol. Med. 28, 1780–1794.

    Article  CAS  PubMed  Google Scholar 

  8. Forman, H. J. and Torres, M. (2001) Signaling by the respiratory burst in macrophages. IUBMB Life 51, 365–371.

    CAS  PubMed  Google Scholar 

  9. Thannickal, V. J. and Fanburg, B. L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005–L1028.

    CAS  PubMed  Google Scholar 

  10. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299.

    Article  CAS  PubMed  Google Scholar 

  11. Bae, Y. S., Kang, S. W., Seo, M. S., et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221.

    Article  CAS  PubMed  Google Scholar 

  12. Lo, Y. Y. and Cruz, T. F. (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270, 11,727–11,730.

    Article  CAS  PubMed  Google Scholar 

  13. May, J. M. and de Haen, C. (1979) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J. Biol. Chem. 254, 2214–2220.

    CAS  PubMed  Google Scholar 

  14. Abid, M. R., Tsai, J. C., Spokes, K. C., Deshpande, S. S., Irani, K., and Aird, W. C. (2001) Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J. 15, 2548–2550.

    CAS  PubMed  Google Scholar 

  15. Sattler, M., Winkler, T., Verma, S., et al. (1993) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93, 2928–2935.

    Google Scholar 

  16. Ohba, M., Shibanuma, M., Kuroki, T., and Nose, K. (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell. Biol. 126, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  17. Thannickal, V. J. and Fanburg, B. L. (1995) Activation of an H2O2-generating NADH oxidase in human lung fibro-blasts by transforming growth factor beta 1. J. Biol. Chem. 270, 30,334–30,338.

    Article  CAS  PubMed  Google Scholar 

  18. Thannickal, V. J., Aldweib, K. D., and Fanburg, B. L. (1998) Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor betal. J. Biol. Chem. 273, 23,611–23,615.

    Article  CAS  PubMed  Google Scholar 

  19. Meier, B., Radeke, H. H., Selle, S., et al. (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem. J. 263, 539–545.

    CAS  PubMed  Google Scholar 

  20. Krieger-Brauer, H. I. and Kather, H. (1995) The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem. J. 307, 543–548.

    CAS  PubMed  Google Scholar 

  21. Lee, Y. W., Kuhn, H., Hennig, B., Neish, A. S., and Toborek, M. (2001) IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell Cardiol. 33, 83–94.

    Article  CAS  PubMed  Google Scholar 

  22. Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000) Racl inhibits TNF-alpha-induced endothe-lial cell apoptosis: dual regulation by reactive oxygen species. FASEB J. 14, 1705–1714.

    Article  CAS  PubMed  Google Scholar 

  23. Tatla, S., Woodhead, V., Foreman, J. C., and Chain, B. M. (1999) The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic. Biol. Med. 26, 14–24.

    Article  CAS  PubMed  Google Scholar 

  24. Kitai, S. T., Shepard, P. D., Callaway, J. C., and Scroggs, R. (1999) Afferent modulation of dopamine neuron firing patterns. Curr. Opin. Neurobiol. 9, 690–697.

    Article  CAS  PubMed  Google Scholar 

  25. Zafari, A. M., Ushio-Fukai, M., Akers, M., et al. (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32, 488–495.

    CAS  PubMed  Google Scholar 

  26. Du, J., Peng, T., Scheidegger, K. J., and Delafontaine, P. (1999) Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. Arterioscler. Thromb. Vasc. Biol. 19, 2119–2126.

    CAS  Google Scholar 

  27. Ushio-Fukai, M., Alexander, R. W., Akers, M., et al. (1999) Reactive oxygen species mediate the activation of Akt/ protein kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22,699–22,704.

    Article  CAS  PubMed  Google Scholar 

  28. Kimura, T., Okajima, F., Sho, K., Kobayashi, I., and Kondo, Y. (1995) Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3′,5′-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative. Endocrinology 136, 116-123.

    Google Scholar 

  29. Chen, Q., Olashaw, N., and Wu, J. (1995) Participation of reactive oxygen species in the lysophosphatidic acid-stimu-lated mitogen-activated protein kinase activation pathway. J. Biol. Chem. 270, 28,499–28,502.

    Article  CAS  PubMed  Google Scholar 

  30. Sekharam, M., Cunnick, J. M., and Wu, J. (2000) Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochem. J. 346 Pt 3, 751–758.

    Article  Google Scholar 

  31. Okajima, F., Tomura, H., Sho, K., et al. (1997) Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triph-osphate-binding proteins in the lipid signaling. Endocrinology 138, 220–229.

    Article  CAS  PubMed  Google Scholar 

  32. Mukhin, Y. V., Garnovskaya, M. N., Collinsworth, G., et al. (2000) 5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem. J. 347 Pt 1, 61–67.

    Article  CAS  PubMed  Google Scholar 

  33. Greene, E. L., Houghton, O., Collinsworth, G., et al. (2000) 5-HT(2A) receptors stimulate mitogen-activated protein kinase via H(2)O(2) generation in rat renal mesangial cells. Am. J. Physiol. Renal Physiol. 278, F650–F658.

    CAS  PubMed  Google Scholar 

  34. Galle, J., Lehmann-Bodem, C., Hubner, U., Heinloth, A., and Wanner, C. (2000) CyA and OxLDL cause endothelial dysfunction in isolated arteries through endothelin-mediated stimulation of O(2)(-) formation. Nephrol. Dial. Trans-plant. 15, 339–346.

    Article  CAS  Google Scholar 

  35. Naarala, J., Tervo, P., Loikkanen, J., and Savolainen, K. (1997) Cholinergic-induced production of reactive oxygen species in human neuroblastoma cells. Life Sci. 60, 1905–1914.

    Article  CAS  PubMed  Google Scholar 

  36. Gardner, C. R., Laskin, J. D., and Laskin, D. L. (1993) Platelet-activating factor-induced calcium mobilization and oxidative metabolism in hepatic macrophages and endothelial cells. J. Leukoc. Biol. 53, 190–196.

    CAS  PubMed  Google Scholar 

  37. Goldman, R., Moshonov, S., and Zor, U. (1999) Calcium-dependent PAF-stimulated generation of reactive oxygen species in a human keratinocyte cell line. Biochim. Biophys. Acta 1438, 349–358.

    CAS  Google Scholar 

  38. Hu, Q., Yu, Z., Ferrans, V., Takeda, K., Irani, K., and Ziegelstein, R. C. (2002) Critical role of NADPH oxidase-derived reactive oxygen species in generating calcium oscillation in human aortic endothelial cells stimulated by histamine. J. Biol. Chem. 277, 32,546–32,551.

    Article  CAS  PubMed  Google Scholar 

  39. Greene, E. L., Velarde, V., and Jaffa, A. A. (2000) Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension 35, 942–947.

    CAS  PubMed  Google Scholar 

  40. Yamagishi, S. I., Edelstein, D., Du, X. L., Kaneda, Y., Guzman, M., and Brownlee, M. (2001) Leptin induces mito-chondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by in-creasing fatty acid oxidation via protein kinase A. J. Biol. Chem. 276, 25,096–25,100.

    Article  CAS  Google Scholar 

  41. Yeh, L. H., Park, Y. J., Hansalia, R. J., et al. (1999) Shear-induced tyrosine phosphorylation in endothelial cells re-quires Rac1-dependent production of ROS. Am. J. Physiol. 276, C838–C847.

    CAS  PubMed  Google Scholar 

  42. Janssen-Heininger, Y. M., Poynter, M. E., and Baeuerle, P. A. (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic. Biol. Med. 28, 1317–1327.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu, T. C., Young, M. R., Cmarik, J., and Colburn, N. H. (2000) Activator protein 1 (AP-1)-and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 28, 1338–1348.

    Article  CAS  PubMed  Google Scholar 

  44. Arrigo, A. P. (1999) Gene expression and the thiol redox state. Free Radic. Biol. Med. 27, 936–944.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, S. R., Kwon, K. S., Kim, S. R., and Rhee, S. G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15,366–15,372.

    Article  CAS  PubMed  Google Scholar 

  46. Barrett, W. C., DeGnore, J. P., Keng, Y. F., Zhang, Z. Y., Yim, M. B., and Chock, P. B. (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem. 274, 34543–34546.

    Article  CAS  PubMed  Google Scholar 

  47. Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001) Insulin-stimulated hydrogen peroxide reversibly inhib-its protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21,938–21,942.

    Article  CAS  PubMed  Google Scholar 

  48. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein tyrosine phos-phatases in vivo. Mol. Cell 9, 387–399.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X. T., McCullough, K. D., Wang, X. J., Carpenter, G., Holbrook, N. J. (2001) Oxidative stress-induced phos-pholipase C-gamma 1 activation enhances cell survival. J. Biol. Chem. 276, 28,364–28,371.

    Article  CAS  PubMed  Google Scholar 

  50. Min, D. S., Kim, E. G., and Exton, J. H. (1998) Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J. Biol. Chem. 273, 29,986–29,994.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, S. R., Yang, K. S., Kwon, J., Lee, C., Jeong, W., and Rhee, S. G. (2002) Regulation of PTEN by superoxide and H2O2 through the reversible formation of a disulfide between Cys124 and Cys71. J. Biol. Chem. 277, 20,336–20,342.

    Article  CAS  PubMed  Google Scholar 

  52. Kourie, J. I. (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1–C24.

    CAS  PubMed  Google Scholar 

  53. Nishida, M., Schey, K. L., Takagahara, S., et al. (2002) Activation mechanism of Gi and Go by reactive oxygen species. J. Biol. Chem. 277, 9036–9042.

    Article  CAS  PubMed  Google Scholar 

  54. Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C., and Rhee, S. G. (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J. Biol. Chem. 273, 6297–6302.

    Article  CAS  PubMed  Google Scholar 

  55. Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  56. Saugstad, O. D. (1996) Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics 98, 103–107.

    CAS  PubMed  Google Scholar 

  57. Bernhardt, R. (1996) Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol. 127, 137–221.

    Article  CAS  PubMed  Google Scholar 

  58. Lambeth, J. D. (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr. Opin. Hematol. 9, 11–17.

    Article  PubMed  Google Scholar 

  59. Wachowicz, B., Olas, B., Zbikowska, H. M., and Buczynski, A. (2002) Generation of reactive oxygen species in blood platelets. Platelets 13, 175–182.

    Article  CAS  PubMed  Google Scholar 

  60. Woo, C. H., Eom, Y. W., Yoo, M. H., et al. (2000) Tumor necrosis factor-alpha generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J. Biol. Chem. 275, 32,357–32,362.

    Article  CAS  PubMed  Google Scholar 

  61. Li, A. E., Ito, H., Rovira, I. I., et al. (1999) A role for reactive oxygen species in endothelial cell anoikis. Circ. Res. 85, 304–310.

    CAS  PubMed  Google Scholar 

  62. Babior, B. M. (1999) NADPH oxidase: an update. Blood 93, 1464–1476.

    CAS  PubMed  Google Scholar 

  63. Nisimoto, Y., Motalebi, S., Han, C. H., and Lambeth, J. D. (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J. Biol. Chem. 274, 22,999–23,005.

    Article  CAS  PubMed  Google Scholar 

  64. Sundaresan, M., Yu, Z. X., Ferrans, V. J., et al. (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem. J. 318, 379–382.

    CAS  PubMed  Google Scholar 

  65. Joneson, T. and Bar-Sagi, D. (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273, 17,991–17,994.

    Article  CAS  PubMed  Google Scholar 

  66. Suh, Y. A., Arnold, R. S., Lassegue, B., et al. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82.

    Article  CAS  Google Scholar 

  67. Arnold, R. S., Shi, J., Murad, E., et al. (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. USA 98, 5550–5555.

    Article  CAS  PubMed  Google Scholar 

  68. De Deken, X., Wang, D., Many, M. C., et al. (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23,227–23,233.

    Article  PubMed  Google Scholar 

  69. Geiszt, M., Kopp, J. B., Varnai, P., and Leto, T. L. (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010–8014.

    Article  CAS  PubMed  Google Scholar 

  70. Yang, S., Madyastha, P., Bingel, S., Ries, W., and Key, L. (2001) A new superoxide-generating oxidase in murine osteoclasts. J. Biol. Chem. 276, 5452–5458.

    Article  CAS  PubMed  Google Scholar 

  71. Lassegue, B., Sorescu, D., Szocs, K., et al. (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888–894.

    Article  CAS  PubMed  Google Scholar 

  72. Arbiser, J. L., Petros, J., Klafter, R., et al. (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA 99, 715–720.

    Article  CAS  PubMed  Google Scholar 

  73. Valius, M. and Kazlauskas, A. (1993) Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73, 321–334.

    Article  CAS  PubMed  Google Scholar 

  74. Rameh, L. E. and Cantley, L. C. (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350.

    Article  CAS  PubMed  Google Scholar 

  75. Leevers, S. J., Vanhaesebroeck, B., and Waterfield, M. D. (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell. Biol. 11, 219–225.

    Article  CAS  PubMed  Google Scholar 

  76. Han, J., Luby-Phelps, K., Das, B., et al. (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560.

    Article  CAS  PubMed  Google Scholar 

  77. Besse, D., Siedler, F., Diercks, T., Kessler, H., and Moroder, L. (1997) The redox potential of Selenocysteine in uncon-strained cyclic peptides. Angew. Chem. Int. Ed. Engl. 36, 883–885.

    Article  CAS  Google Scholar 

  78. Lohse, D. L., Denu, J. M., Santoro, N., and Dixon, J. E. (1997) Roles of aspartic acid-181 and serine-222 in intermedi-ate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1. Biochemistry 36, 4568–4575.

    Article  CAS  PubMed  Google Scholar 

  79. Barford, D., Flint, A. J., and Tonks, N. K. (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  80. Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., and Shoelson, S. E. (1998) Crystal structure of the tyrosine phos-phatase SHP-2. Cell 92, 441–450.

    Article  CAS  PubMed  Google Scholar 

  81. Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., and Rhee, S. G. (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017–7021.

    Article  CAS  PubMed  Google Scholar 

  82. Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W., and Kim, K. (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35–41.

    CAS  PubMed  Google Scholar 

  83. Seo, M. S., Kang, S. W., Kim, K., Baines, I. C., Lee, T. H., and Rhee, S. G. (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275, 20,346–20,354.

    Article  CAS  PubMed  Google Scholar 

  84. Kang, S. W., Baines, I. C., and Rhee, S. G. (1998) Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 273, 6303–6311.

    Article  CAS  PubMed  Google Scholar 

  85. Matsumoto, A., Okado, A., Fujii, T., et al. (1999) Cloning of the peroxiredoxin gene family in rats and characterization of the fourth member. FEBS Lett. 443, 246–250.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, P., Liu, B., Kang, S. W., Seo, M. S., Rhee, S. G., and Obeid, L. M. (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 30,615–30,618.

    Article  CAS  PubMed  Google Scholar 

  87. Chang, T. S., Jeong, W., Choi, S. Y., Yu, S., and Rhee, S. G. (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem. 277, 25,370–25,376.

    Article  CAS  PubMed  Google Scholar 

  88. Norbury, C. and Nurse, P. (1992) Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441–470.

    Article  CAS  PubMed  Google Scholar 

  89. Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131–134.

    Article  CAS  PubMed  Google Scholar 

  90. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E., and Draetta, G. (1993) Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53–63.

    CAS  PubMed  Google Scholar 

  91. Fauman, E. B., Cogswell, J. P., Lovejoy, B., et al. (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93, 617–625.

    Article  CAS  PubMed  Google Scholar 

  92. Dunphy, W. G. and Kumagai, A. (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67, 189–196.

    Article  CAS  PubMed  Google Scholar 

  93. Savitsky, P. A. and Finkel, T. (2002) Redox regulation of Cdc25C. J. Biol. Chem. 277, 20,535–20,540.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rhee, S.G., Chang, TS., Bae, Y.S., Lee, SR., Kang, S.W. (2005). Hydrogen Peroxide As Intracellular Messenger. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics