Skip to main content

Pro-Inflammatory Signaling by Endothelial Focal Complexes in Lung

  • Chapter
Cell Signaling in Vascular Inflammation
  • 695 Accesses

Abstract

Ligation of integrins or subjecting them to mechanical stress induces signaling in intracellular protein complexes known as focal complexes (FC). Such integrin-mediated responses were likely participants in our previously reported finding that the αvβ3 integrin increased lung capillary permeability. We identified underlying signaling in bovine pulmonary artery endothelial cell (BPAEC) monolayers exposed to soluble αvβ3 ligands. αvβ3 ligation induced tyrosine phosphorylation (TyrP) of FC-associated cytoskeletal proteins paxillin, cortactin, and ezrin, as well as the SH2 domain-containing proteins Shc and p125FAK. During ligation, αvβ3 aggregation occurred at the apical surface of endothelial cells (EC). In parallel, αvβ3 ligation increased endothelial cytosolic Ca2+ concentration ([Ca2+]i), as determined by fura 2 ratio imaging. The [Ca2+]i increase was attributable to release of Ca2+ from endosomal stores and Ca2+ influx across the plasma membrane. Underlying mechanisms were αvβ3-mediated tyrosine phosphorylation of phospholipase C-/gg1 (PLC-/gg1) and production of inositol (1,4,5) trisphosphate (InsP3). Further studies revealed that αvβ3 ligation triggered arachidonate release, which was attributable to the simultaneous increase in [Ca2+]i, cPLA2 (cytosolic phospholipase A2) membrane translocation, and MAPK (mitogen-activated tyrosine kinase) TyrP. Taken together, these findings established the αvβ3 integrin in lung EC displayed inflammatory potential in vitro. To understand the relevance of these mechanisms to inflammatory signaling in lung EC in situ, we used a new approach. Using high tidal volume ventilation (HV) in isolated, blood-perfused rat lungs, we subjected EC to mechanical stress. After 2 h, we perfused lungs with collagenase to obtain mixed cells, which we immune sorted (4/dgC) to isolate fresh lung EC (FLEC). Subjection of FLEC lysates to electrophoresis and immunoblotting indicated that HV as compared to low tidal volume ventilation (LV) markedly enhanced TyrP. The tyrosine kinase blocker genistein inhibited this response. Immunofluorescent labeling of FLEC indicated HV induced FC in which aggregates of αvβ3 co-localized with FAK. Immunoprecipitation revealed HV-mediated TyrP of the FC protein paxillin, along with paxillin-associated P-selectin expression. Both responses were genistein inhibitable. However, 2-h HV did not increase lung water. These results indicate that in lung EC, the αvβ3 integrin forms FC in vitro and in vivo in association with EC TyrP. These responses are associated with [Ca2+]i increase, arachidonate release, and P-selectin expression, effects capable of promoting lung leukocyte sequestration, which further enhances inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turner, C. E. (2000) Paxillin and focal adhesion signaling. Nat. Cell Biol. 2, E231–E236.

    Article  CAS  PubMed  Google Scholar 

  2. Sastry, S. K. and Burridge, K. (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36.

    Article  CAS  PubMed  Google Scholar 

  3. Matthews, B. D., Overby, D. R., Alenghat, F. J., et al. (2004) Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313, 758–764.

    Article  CAS  PubMed  Google Scholar 

  4. Jin, Z. G., Ueba, H., Tanimoto, T., et al. (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354–363.

    Article  CAS  PubMed  Google Scholar 

  5. Boudreau, N. J. and Varner, J. A. (2004) The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis. J. Biol. Chem. 279, 4862–4868.

    Article  CAS  PubMed  Google Scholar 

  6. Cheresh, D. A. (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84, 6471–6475.

    Article  CAS  PubMed  Google Scholar 

  7. Singh, B., Fu, C., and Bhattacharya, J. (2000) Vascular expression of the αvβ3 integrin in lung and other organs. Am. J. Physiol. 278, L217–L226.

    CAS  Google Scholar 

  8. Bhattacharya, S., Fu, C., Bhattacharya, J., et al. (1995) Soluble ligands of the αvβ3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J. Biol. Chem. 270, 16,781–16,787.

    Article  CAS  PubMed  Google Scholar 

  9. Wells, M. J. and Blajchman, M. A. (1998) In vivo clearance of ternary complexes of vitronectin-thrombin-antithrombin is mediated by hepatic heparan sulfate proteoglycans. J. Biol. Chem. 273, 23,440–23,447.

    Article  CAS  PubMed  Google Scholar 

  10. Gavrilovskaya, I. N., Shepley, M., Shaw, R., et al. (1998) β3 integrins mediate the cellular entry of hanta viruses that cause respiratory failure. Proc. Natl. Acad. Sci. USA 9, 7074–7079.

    Article  Google Scholar 

  11. Tsukada, H., Ying, X., Fu, C., et al. (1995) Ligation of endothelial αvβ3 integrin increases capillary hydraulic conduc-tivity of rat lung. Circ. Res. 77, 651–659.

    CAS  PubMed  Google Scholar 

  12. Schwartz, M. A. (1993) Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intrac-ellular free calcium. J. Cell. Biol. 120, 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  13. Preissner, K. T. (1991) Structure and biological role of vitronectin. Annu. Rev. Cell. Biol. 7, 275–310.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya, S., Ying, X., Fu, C., et al. (2000) αvβ3 integrin induces tyrosine phosphorylation-dependent Ca2+ influx in pulmonary endothelial cells. Circ. Res. 86, 456–462.

    CAS  PubMed  Google Scholar 

  15. Bhattacharya, S., Patel, R., Sen, N., et al. (2001) Dual signaling by the αvβ3 integrin activates cPLA2 in bovine pulmo-nary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L1049–L1056.

    CAS  PubMed  Google Scholar 

  16. Lum, H., Aschner, J. L., Phillips, P. G., et al. (1992) Time course of thrombin-induced increase in endothelial perme-ability: relationship to Ca2+ and inositol polyphosphates. Am. J. Physiol. 263, L219–L225.

    CAS  PubMed  Google Scholar 

  17. Akiyama, T. J., Ishida, S., Nakagawa, H., et al. (1987) Genistein, a specific inhibitor of tyrosine-specific protein ki-nases. J. Biol. Chem. 262, 5592–5595.

    CAS  PubMed  Google Scholar 

  18. Leslie, C. C. (1997) Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16,709–16,712.

    Article  CAS  PubMed  Google Scholar 

  19. Shuttleworth, T. J. and Mignen, O. (2003) Calcium entry and the control of calcium oscillations. Biochem. Soc. Trans. Oct 31 (Pt 5), 916–919.

    Google Scholar 

  20. Dulin, N. O., Alexander, L. D., Harwalkar, S., et al. (1998) Phospholipase A2-mediated activation of mitogen-activated protein kinase by angiotensin II. Proc. Natl. Acad. Sci. USA 95, 8098–8102.

    Article  CAS  PubMed  Google Scholar 

  21. Clark, E. A. and Hynes, R. O. (1996) Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J. Biol. Chem. 271, 14,814–14,818.

    Article  CAS  PubMed  Google Scholar 

  22. Cybulsky, A. V., Carbonetto, S., Cyr, M. D., et al. (1993) Extracellular matrix-stimulated phospholipase activation is mediated by beta 1-integrin. Am. J. Physiol. 64, C323–C332.

    Google Scholar 

  23. Eisner, M. D., Thompson, T., Hudson, L. D., et al. (2001) Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 164, 231–236.

    CAS  PubMed  Google Scholar 

  24. Parker, J. C., Ivey, C. L., and Tucker, J. A. (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J. Appl. Physiol. 84, 1113–1118.

    Article  CAS  PubMed  Google Scholar 

  25. Ricard, J. D., Dreyfuss, D., and Saumon, G. (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am. J. Respir. Crit. Care Med. 163, 1176–1180.

    CAS  PubMed  Google Scholar 

  26. Imanaka, H., Shimaoka, M., Matsuura, N., et al. (2001) Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-beta 1 mRNA upregulation in rat lungs. Anesth. Analg. 92, 428–436.

    Article  CAS  PubMed  Google Scholar 

  27. Gardiner, E. E., De Luca, M., McNally, T., et al. (2001) Regulation of P-selectin binding to the neutrophil P-selectin counter-receptor P-selectin glycoprotein ligand-1 by neutrophil elastase and cathepsin G. Blood 98, 1440–1447.

    Article  CAS  PubMed  Google Scholar 

  28. McNiff, J. M. and Gil, J. (1983) Secretion of Weibel-Palade bodies observed in extra-alveolar vessels of rabbit lung. J. Appl. Physiol. 54, 1284–1286.

    Article  CAS  PubMed  Google Scholar 

  29. Kuebler, W. M., Kuhnle, G. E., Groh, J., et al. (1997) Contribution of selectins to leucocyte sequestration in pulmonary microvessels by intravital microscopy in rabbits. J. Physiol. 501, 375–86.

    Article  CAS  PubMed  Google Scholar 

  30. Kuebler, W. M., Ying, X., Singh, B., et al. (1999) Pressure is proinflammatory in lung venular capillaries. J. Clin. Invest. 104, 495–502.

    CAS  PubMed  Google Scholar 

  31. Crovello, C. S., Furie, B. C., and Furie, B. (1993) Rapid phosphorylation and selective dephosphorylation of P-selectin accompanies platelet activation. J. Biol. Chem. 268, 14,590–14,593.

    CAS  PubMed  Google Scholar 

  32. Modderman, P. W., Beuling, E. A., Govers, L. A., et al. (1998) Determinants in the cytoplasmic domain of P-selectin required for sorting to secretory granules. Biochem. J. 336, 153–161.

    CAS  PubMed  Google Scholar 

  33. Bhattacharya, S., Sen, N., Yiming, M. T., et al. (2003) High tidal volume ventilation induces proinflammatory signal-ing in rat lung endothelium. Am. J. Resp. Cell Mol. Bio. 28, 218–224.

    Article  CAS  Google Scholar 

  34. McEver, R. P., Beckstead, J. H., Moore, K. L., et al. (1989) GMP 140, a platelet alpha-granule membrane protein, is also also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest. 84, 92–99.

    Article  CAS  PubMed  Google Scholar 

  35. Datta, Y. H., Romano, M., Jacobson, B. C., et al. (1995) Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells. Circulation 92, 3304–3311.

    CAS  PubMed  Google Scholar 

  36. Hartwell, D. W., Mayadas, T. N., Berger, G., et al. (1998) Role of P-selectin cytoplasmic domain in granular targeting in vivo and in early inflammatory responses. J. Cell Biol. 143, 1129–1141.

    Article  CAS  PubMed  Google Scholar 

  37. Frank, J. A., Gutierrez, J. A., Jones, K. D., et al. (2002) Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am. J. Respir. Crit. Care Med. 165(2), 242–249.

    PubMed  Google Scholar 

  38. Ilan, N., Cheung, L., Pinter, E., et al. (2000) Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding mol-ecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phos-phorylation. J. Biol. Chem. 275, 21,435–21,443.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner, D. D., Olmsted, J. B., and Marder, V. J. (1982) Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J. Cell Biol. 95, 355–360.

    Article  CAS  PubMed  Google Scholar 

  40. Jin, E., Ghazizadeh, M., Fujiwara, M., et al. (2001) Angiogenesis and phenotypic alteration of alveolar capillary endot-helium in areas of neoplastic cell spread in primary lung adenocarcinoma. Pathol. Int. 51, 691–700.

    Article  CAS  PubMed  Google Scholar 

  41. Stone, K. C., Mercer, R. R., Gehr, P., et al. (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell. Mol. Biol. 6, 235–243.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bhattacharya, S. (2005). Pro-Inflammatory Signaling by Endothelial Focal Complexes in Lung. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics