Skip to main content

Pulmonary Vascular Barrier Regulation by Thrombin and Edg Receptors

  • Chapter
Cell Signaling in Vascular Inflammation

Abstract

Lung vascular permeability is directly determined by the integrity of the endothelial cell (EC) monolayer, which involves dynamic regulation by the actomyosin cytoskeleton with subsequent effects on cell—cell and cell—matrix interactions. Although the list of biochemical and biophysical agonists that alter EC barrier regulation is extensive, in this chapter we consider two in particular—the barrier-disruptive serine protease thrombin and barrier-enhancing sphingosine-1-phosphate, an activator of the Edg receptor. Both agonists, via elaborate receptor-specific and tightly orchestrated signaling pathways, offer important insights into lung vascular barrier regulation with respect to the role of individual cellular components and signaling events that target the endothelial cytoskeleton. Additionally, we detail the combined effect of thrombin and cyclic stretch, mechanistically distinct agonists, to provide further insight into lung vascular regulation. Our understanding of EC barrier regulation and lung vascular permeability has advanced remarkably in only a short time and, with the use of newly available technologies, will undoubtedly continue to rapidly evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pries, A. R., Secomb, T. W., and Gaehtgens, P. (2000) The endothelial surface layer. Pflugers Arch. 440, 653–666.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, F., Schaphorst, K. L., Verin, A. D., et al. (2002) Hepatocyte growth factor enhances endothelial cell barrier func-tion and cortical cytoskeletal rearrangement: potential role of glycogen synthase kinase-3beta. FASEB J. 16, 950–962.

    Article  CAS  PubMed  Google Scholar 

  3. Birukov, K. G., Birukova, A. A., Dudek, S. M., et al. (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am. J. Respir. Cell Mol. Biol. 26, 453–464.

    CAS  PubMed  Google Scholar 

  4. Iizasa, H., Bae, S. H., Asashima, T., et al. (2002) Augmented expression of the tight junction protein occludin in brain Endothelial cell line TR-bBB by rat angiopoietin-1 expressed in baculovirus-infected sf plus insect cells. Pharm. Res. 19, 1757–1760.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia, J. G., Liu, F., Verin, A. D., et al. (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest. 108, 689–701.

    Article  CAS  PubMed  Google Scholar 

  6. Verin, A. D., Birukova, A., Wang, P., et al. (2001) Microtubule disassembly increases endothelial cell barrier dysfunc-tion: role of MLC phosphorylation. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L565–L574.

    CAS  PubMed  Google Scholar 

  7. Dudek, S. M. and Garcia, J. G. (2001) Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487–1500.

    CAS  PubMed  Google Scholar 

  8. Saldeen, T. (1976) Trends in microvascular research. The microembolism syndrome. Microvasc. Res. 11, 227–259.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, A., Tahamont, M. V., Kaplan, J. E., et al. (1982) Lung fluid balance after pulmonary embolization: effects of thrombin vs. fibrin aggregates. J. Appl. Physiol. 52, 1565–1570.

    CAS  PubMed  Google Scholar 

  10. Malik, A. B. and Horgan, M. J. (1987) Mechanisms of thrombin-induced lung vascular injury and edema. Am. Rev. Respir. Dis. 136, 467–470.

    CAS  PubMed  Google Scholar 

  11. Garcia, J. G., Perlman, M. B., Ferro, T. J., et al. (1988) Inflammatory events after fibrin microembolization. Alterations in alveolar macrophage and neutrophil function. Am. Rev. Respir. Dis. 137, 630–635.

    CAS  PubMed  Google Scholar 

  12. Horgan, M. J., Fenton, J. W., 2nd, and Malik, A. B. (1987) Alpha-thrombin-induced pulmonary vasoconstriction. J. Appl. Physiol. 63, 1993–2000.

    CAS  PubMed  Google Scholar 

  13. Lo, S. K., Garcia-Szabo, R. R., and Malik, A. B. (1990) Leukocyte repletion reverses protective effect of neutropenia in thrombin-induced increase in lung vascular permeability. Am. J. Physiol. 259, H149–H155.

    CAS  PubMed  Google Scholar 

  14. Lo, S. K., Perlman, M. B., Niehaus, G. D., et al. (1985) Thrombin-induced alterations in lung fluid balance in awake sheep. J. Appl. Physiol. 58, 1421–1427.

    CAS  PubMed  Google Scholar 

  15. Garcia, J. G., Siflinger-Birnboim, A., Bizios, R., et al. (1986) Thrombin-induced increase in albumin permeability across the endothelium. J. Cell Physiol. 128, 96–104.

    Article  CAS  PubMed  Google Scholar 

  16. Vogel, S. M., Gao, X., Mehta, D., et al. (2000) Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol. Genomics 4, 137–145.

    CAS  PubMed  Google Scholar 

  17. Vu, T. K., Hung, D. T., Wheaton, V. I., et al. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia, J. G., Patterson, C., Bahler, C., et al. (1993) Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth factor mRNA expression in cultured endothe-lium. J, Cell Physiol. 156, 541–549.

    Article  CAS  Google Scholar 

  19. Garcia, J. G. (1992) Molecular mechanisms of thrombin-induced human and bovine endothelial cell activation. J. Lab. Clin. Med. 120, 513–519.

    CAS  PubMed  Google Scholar 

  20. Garcia, J. G., Fenton, J. W., 2nd, and Natarajan, V. (1992) Thrombin stimulation of human endothelial cell phospholi-pase D activity. Regulation by phospholipase C, protein kinase C, and cyclic adenosine 3′5′-monophosphate. Blood 79, 2056–2067.

    CAS  PubMed  Google Scholar 

  21. Tiruppathi, H., Andersen, T. T., et al. (1992) Thrombin receptor 14-amino acid peptide binds to endothelial cells and stimulates calcium transients. Am. J. Physiol. 263, L595–L601.

    CAS  PubMed  Google Scholar 

  22. Pollock, W. K., Wreggett, K. A., and Irvine, R. F. (1988) Inositol phosphate production and Ca2+ mobilization in human umbilical-vein endothelial cells stimulated by thrombin and histamine. Biochem. J. 256, 371–376.

    CAS  PubMed  Google Scholar 

  23. Hong, S. L. and Deykin, D. (1982) Activation of phospholipases A2 and C in pig aortic endothelial cells synthesizing prostacyclin. J. Biol. Chem. 257, 7151–7154.

    CAS  PubMed  Google Scholar 

  24. Bartha, K., Muller-Peddinghaus, R., and Van Rooijen, L. A. (1989) Bradykinin and thrombin effects on polyphosphoinositide hydrolysis and prostacyclin production in endothelial cells. Biochem. J. 263, 149–155.

    CAS  PubMed  Google Scholar 

  25. Schini, V. B., Hendrickson, H., Heublein, D. M., et al. (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur. J. Pharmacol. 165, 333–334.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia, J. G., Painter, R. G., Fenton, J. W., 2nd, et al. (1990) Thrombin-induced prostacyclin biosynthesis in human endothelium: role of guanine nucleotide regulatory proteins in stimulus/coupling responses. J. Cell Physiol. 142, 186–193.

    Article  CAS  PubMed  Google Scholar 

  27. Amano, M., Chihara, K., Kimura, K., et al. (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308–1311.

    Article  CAS  PubMed  Google Scholar 

  28. Essler, M., Amano, M., Kruse, H. J., et al. (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273, 21,867–21,874.

    Article  CAS  PubMed  Google Scholar 

  29. Goeckeler, Z. M. and Wysolmerski, R. B. (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J. Cell. Biol. 130, 613–627.

    Article  CAS  PubMed  Google Scholar 

  30. van Nieuw Amerongen, G. P., Draijer, R., Vermeer, M. A., et al. (1998) Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ. Res. 83, 1115–1123.

    Google Scholar 

  31. Vouret-Craviari, V., Boquet, P., Pouyssegur, J., et al. (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol. Biol. Cell 9, 2639–2653.

    CAS  PubMed  Google Scholar 

  32. Chrzanowska-Wodnicka, M., and Burridge, K. (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell. Biol. 133, 1403–1415.

    Article  CAS  PubMed  Google Scholar 

  33. Laposata, M., Dovnarsky, D. K., and Shin, H. S. (1983) Thrombin-induced gap formation in confluent endothelial cell monolayers in vitro. Blood 62, 549–556.

    CAS  PubMed  Google Scholar 

  34. Rabiet, M. J., Plantier, J. L., Rival, Y., et al. (1996) Thrombin-induced increase in endothelial permeability is associ-ated with changes in cell-to-cell junction organization. Arterioscler. Thromb. Vasc. Biol. 16, 488–496.

    CAS  PubMed  Google Scholar 

  35. Schaphorst, K. L., Pavalko, F. M., Patterson, C. E., et al. (1997) Thrombin-mediated focal adhesion plaque reorganiza-tion in endothelium: role of protein phosphorylation. Am. J. Respir. Cell. Mol. Biol. 17, 443–455.

    CAS  PubMed  Google Scholar 

  36. Phillips, P. G., Lum, H., Malik, A. B., et al. (1989) Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin. Am. J. Physiol. 257, C562–567.

    CAS  PubMed  Google Scholar 

  37. Garcia, J. G., Davis, H. W., and Patterson, C. E. (1995) Regulation of endothelial cell gap formation and barrier dys-function: role of myosin light chain phosphorylation. J. Cell. Physiol. 163, 510–522.

    Article  CAS  PubMed  Google Scholar 

  38. Birukov, K. G., Csortos, C., Marzilli, L., et al. (2001) Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src). J. Biol. Chem. 276, 8567–8573.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia, J. G., Lazar, V., Gilbert-McClain, L. I., et al. (1997) Myosin light chain kinase in endothelium: molecular cloning and regulation. Am. J. Respir. Cell. Mol. Biol. 16, 489–494.

    CAS  PubMed  Google Scholar 

  40. Shi, S., Verin, A. D., Schaphorst, K. L., et al. (1998) Role of tyrosine phosphorylation in thrombin-induced endothelial cell contraction and barrier function. Endothelium 6, 153–171.

    Article  CAS  PubMed  Google Scholar 

  41. Carbajal, J. M. and Schaeffer, R. C., Jr. (1998) H2O2 and genistein differentially modulate protein tyrosine phosphory-lation, endothelial morphology, and monolayer barrier function. Biochem. Biophys. Res. Commun. 249, 461–466.

    Article  CAS  PubMed  Google Scholar 

  42. Parker, J. C. (2000) Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J. Appl. Physiol. 89, 2241–2248.

    CAS  PubMed  Google Scholar 

  43. Birukov, K. G., Jacobson, J. R., Flores, A. F., et al. (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am. J. Physiol. Lung Cell Mol. Physiol. 285(4), L785–L797.

    CAS  PubMed  Google Scholar 

  44. Birukov, K. G., Shikata, Y., Ye, S. Q., et al. (2003) Differential effects of cyclic stretch and shear stress on pulmonary endothelial cell cytoskeleton, cell adhesions, and barrier function. Am. J. Respir. Crit. Care Med. 167, A568 (Abstract).

    Google Scholar 

  45. English, D., Kovala, A. T., Welch, Z., et al. (1999) Induction of endothelial cell chemotaxis by sphingosine 1-phos-phate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of he-matopoietic angiogenesis. J. Hematother. Stem Cell Res. 8, 627–634.

    Article  CAS  PubMed  Google Scholar 

  46. English, D., Welch, Z., Kovala, A. T., et al. (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemosta-sis and angiogenesis. FASEB J. 14, 2255–2265.

    Article  CAS  PubMed  Google Scholar 

  47. Kovala, A. T., Harvey, K. A., McGlynn, P., et al. (2000) High-efficiency transient transfection of endothelial cells for functional analysis. FASEB J. 14, 2486–2494.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, M. J., Thangada, S., Claffey, K. P., et al. (1999) Vascular endothelial cell adherens junction assembly and morpho-genesis induced by sphingosine-1-phosphate. Cell 99, 301–312.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, F., Van Brocklyn, J. R., Hobson, J. P., et al. (1999) Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem. 274, 35,343–35,350.

    Article  CAS  PubMed  Google Scholar 

  50. Pyne, S. and Pyne, N. J. (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385–402.

    Article  CAS  PubMed  Google Scholar 

  51. Liu, F., Verin, A. D., Wang, P., et al. (2001) Differential regulation of sphingosine-1-phosphate-and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am. J. Respir. Cell Mol. Biol. 24, 711–719.

    CAS  PubMed  Google Scholar 

  52. English, D., Garcia, J. G., and Brindley, D. N. (2001) Platelet-released phospholipids link haemostasis and angiogen-esis. Cardiovasc. Res. 49, 588–599.

    Article  CAS  PubMed  Google Scholar 

  53. Lee, M. J., Van Brocklyn, J. R., Thangada, S., et al. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  54. Zondag, G. C., Postma, F. R., Etten, I. V., et al. (1998) Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem. J. 330(Pt 2), 605–609.

    CAS  PubMed  Google Scholar 

  55. Peng, X., Hassoun, P. M., Sammani, S., et al. (2004) Protective effects of sphingosine 1-phosphate in murine endot-oxin-Induced inflammatory lung injury. Am. J. Respir. Crit. Care Med. 169(11), 1245–1251.

    Article  PubMed  Google Scholar 

  56. Schaphorst, K. L., Chiang, E. T., Jacobs, K. N., et al. (2003) Role of sphingosine 1-phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am. J. Phys. 285(1), L258–L267.

    CAS  Google Scholar 

  57. Edwards, D. C., Sanders, L. C., Bokoch, G. M., et al. (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell. Biol. 1, 253–259.

    Article  CAS  PubMed  Google Scholar 

  58. Yang, N., Higuchi, O., Ohashi, K., et al. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.

    Article  CAS  PubMed  Google Scholar 

  59. Shikata, Y., Birukov, K. G., and Garcia, J. G. (2002) S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK and paxillin. J. Appl. Physiol. 94(3), 1193–1203.

    PubMed  Google Scholar 

  60. Shikata, Y., Birukov, K. G., Birukova, A. A., et al. (2003) Involvement of site-specific FAK phosphorylation in sphin-gosine 1-phosphate-and throbin-induced focal adhesion remodeling: role of Src and GIT. FASEB J. 17(15), 2240–2249.

    Article  CAS  PubMed  Google Scholar 

  61. Dudek, S. M., Jacobson, J. R., Chaing, E. T., et al. (2004) Pulmonary endothelial barrier enhancement by sphingosine 1-phosphate: role of cortactin and myosin light chain kinase J. Biol. Chem. 279(23), 24,692–24,700.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jacobson, J.R., Garcia, J.G.N. (2005). Pulmonary Vascular Barrier Regulation by Thrombin and Edg Receptors. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics