Skip to main content

Regulation of Cytokine Signaling

  • Chapter
  • 721 Accesses

Abstract

Cytokines are important modulators of the immune response that underlies the inflammatory process in atopic forms of asthma. Interleukin (IL)-4 and IL-13 are important cytokines for the regulation of these asthmatic immune responses. However, the cellular mechanisms that regulate IL-4 and IL-13 signaling remain unknown. Recently, a new family of proteins, termed suppressors of cytokine signaling (SOCS), has been identified. We have previously shown that SOCS-1 is a potent inhibitor of JAK-STAT signaling activated by IL-4. SOCS-1 expression is regulated both at the RNA and protein stability level. To identify proteins that bind and potentially regulate SOCS-1, we used the yeast two-hybrid system. We have identified the serine-threonine kinase Pim-2 as a binding partner for SOCS-1. Our preliminary studies demonstrate that SOCS-1 can interact with all three Pim kinases in mammalian cells. Co-expression of SOCS-1 with Pim kinases leads to the expression of novel SOCS-1 isoforms to require serine-threonine kinase activity. Pim kinases can directly phosphorylate SOCS-1. In addition, co-expression of SOCS-1 with Pim2 increases the levels of SOCS-1 protein. Finally, expression of Pim-2 increases the inhibition of IL-4 signaling by SOCS-1. These data lead to a model by which the expression of Pim kinases alters SOCS-1 function through a phosphorylation event that stabilizes the SOCS-1 protein. This chapter proposes experiments to test this model and determine the role Pim kinases play in regulating IL-4 signaling in vivo. In addition, we propose to study the role of Pim kinases in a murine model of asthma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holt, P. G., et al. (1999) The role of allergy in the development of asthma. Nature 402(6760 Suppl.), B12–B17.

    Article  CAS  PubMed  Google Scholar 

  2. Corry, D. B. and Kheradmand, F. (1999) Induction and regulation of the IgE response. Nature 402(6760 Suppl.), B18–B23.

    Article  CAS  PubMed  Google Scholar 

  3. Nelms, K., et al. (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, H., Harris, M. B., and Rothman, P. (2000) IL-4/IL-13 signaling beyond JAK/STAT. J. Allergy Clin. Immunol. 105(6 Pt. 1), 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  5. Reichel, M., et al. (1997) The IL-4 receptor alpha-chain cytoplasmic domain is sufficient for activation of JAK-1 and STAT6 and the induction of IL-4-specific gene expression. J. Immunol. 158(12), 5860–5867.

    CAS  PubMed  Google Scholar 

  6. Shimoda, K., et al. (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380(6575), 630–633.

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan, M. H., et al. (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4(3), 313–319.

    Article  CAS  PubMed  Google Scholar 

  8. Takeda, K., et al. (1996) Essential role of Stat6 in IL-4 signalling. Nature 380(6575), 627–630.

    Article  CAS  PubMed  Google Scholar 

  9. Pernis, A., et al. (1995) Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells. Science 269(5221), 245–247.

    Article  CAS  PubMed  Google Scholar 

  10. Bach, E. A., et al. (1995) Ligand-induced autoregulation of IFN-gamma receptor beta chain expression in T helper cell subsets. Science 270(5239), 1215–1218.

    Article  CAS  PubMed  Google Scholar 

  11. David, M., et al. (1993) A nuclear tyrosine phosphatase downregulates interferon-induced gene expression. Mol. Cell Biol. 13(12), 7515–7521.

    CAS  PubMed  Google Scholar 

  12. Neel, B. G. (1997) Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol. 9(3), 405–420.

    Article  CAS  PubMed  Google Scholar 

  13. Neel, B. G. and Tonks, N.K. (1997) Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9(2), 193–204.

    Article  CAS  PubMed  Google Scholar 

  14. Haque, S. J., et al. (1998) Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4-and IL-13-dependent signal transduction. J. Biol. Chem. 273(51), 33,893–33,896.

    Article  CAS  PubMed  Google Scholar 

  15. Venema, R. C., et al. (1998) Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J. Biol. Chem. 273(46), 30,795–30,800.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, T. K. and Maniatis, T. (1996) Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science 273(5282), 1717–1719.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, B., et al. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 95(18), 10,626–10,631.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshimura, A., et al. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 14(12), 2816–2826.

    CAS  PubMed  Google Scholar 

  19. Matsumoto, A., et al. (1999) Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol. Cell Biol. 19(9), 6396–6407.

    CAS  PubMed  Google Scholar 

  20. Starr, R., et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387(6636), 917–921.

    Article  CAS  PubMed  Google Scholar 

  21. Naka, T., et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387(6636), 924–929.

    Article  CAS  PubMed  Google Scholar 

  22. Endo, T. A., et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636), 921–924.

    Article  CAS  PubMed  Google Scholar 

  23. Hilton, D. J., et al. (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95(1), 114–119.

    Article  CAS  PubMed  Google Scholar 

  24. Losman, J. A., et al. (1999) Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol. 162(7), 3770–3774.

    CAS  PubMed  Google Scholar 

  25. Naka, T., et al. (1998) Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl. Acad. Sci. USA 95(26), 15,577–15,582.

    Article  CAS  PubMed  Google Scholar 

  26. Gregorieff, A., et al. (2000) Regulation of SOCS-1 expression by translational repression. J. Biol. Chem. 275(28), 21,596–21,604.

    Article  CAS  PubMed  Google Scholar 

  27. Schluter, G., Boinska, D., and Nieman-Seyde, S. C. (2000) Evidence for translational repression of the SOCS-1 major open reading frame by an upstream open reading frame. Biochem. Biophys. Res. Commun. 268(2), 255–261.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, J.-G., et al. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076.

    Article  CAS  PubMed  Google Scholar 

  29. Hanada, T., et al. (2001) A mutant form of JAB/SOCS1 aguments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J. Biol. Chem. 276(44), 40,746–40,754.

    Article  CAS  PubMed  Google Scholar 

  30. Kamura, T., et al. (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881.

    CAS  PubMed  Google Scholar 

  31. Narazaki, M., et al. (1998) Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc. Natl. Acad. Sci. USA 95(22), 13,130–13,134.

    Article  CAS  PubMed  Google Scholar 

  32. Tyers, M. and Rottapel, R. (1999) VHL: A very hip ligase. Proc. Natl. Acad. Sci. 96(22), 12,230–12,232.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholson, S. E., et al. (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18(2), 375–385.

    Article  CAS  PubMed  Google Scholar 

  34. Yasukawa, H., et al. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18(5), 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  35. Cuypers, H. T., et al. (1984) Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37(1), 141–150.

    Article  CAS  PubMed  Google Scholar 

  36. Mucenski, M. L., et al. (1987) Common sites of viral integration in lymphomas arising in AKXD recombinant inbred mouse strains. Oncogene Res. 2(1), 33–48.

    CAS  PubMed  Google Scholar 

  37. Verbeek, S., et al. (1991) Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prena-tally. Mol. Cell Biol. 11(2), 1176–1179.

    CAS  PubMed  Google Scholar 

  38. Dreyfus, F., et al. (1990) Rearrangements of the Pim-1, c-myc, and p53 genes in Friend helper virus-induced mouse erythroleukemias. Leukemia 4(8), 590–594.

    CAS  PubMed  Google Scholar 

  39. van der Lugt, N. M., et al. (1995) Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J. 14(11), 2536–2544.

    PubMed  Google Scholar 

  40. van Lohuizen, M., et al. (1989) Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56(4), 673–682.

    Article  PubMed  Google Scholar 

  41. Allen, J. D., et al. (1997) Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 15(10), 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  42. Dautry, F., et al. (1988) Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. J. Biol. Chem. 263(33), 17,615–17,620.

    CAS  PubMed  Google Scholar 

  43. Yip-Schneider, M. T., Horie, M., and Broxmeyer, H. E. (1995) Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor. Blood 85(12), 3494–3502.

    CAS  PubMed  Google Scholar 

  44. Domen, J., et al. (1993) Impaired interleukin-3 response in Pim-1-deficient bone marrow-derived mast cells. Blood 82(5), 1445–1452.

    CAS  PubMed  Google Scholar 

  45. Lilly, M., et al. (1992) Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. Oncogene 7(4), 727–732.

    CAS  PubMed  Google Scholar 

  46. Laird, P. W., et al. (1993) In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 21(20), 4750–4755.

    Article  CAS  PubMed  Google Scholar 

  47. Saris, C. J., Domen, J., and Berns, A. (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10(3), 655–664.

    CAS  PubMed  Google Scholar 

  48. Chen, X. P., et al. (2002) Pim serine/threonine kinases regulate the stability of SOCS-1 protein. Proc. Natl. Acad. Sci. USA 99(4), 2175–2180.

    Article  CAS  PubMed  Google Scholar 

  49. Wingett, D., et al. (1996) pim-1 proto-oncogene expression in anti-CD3-mediated T cell activation is associated with protein kinase C activation and is independent of Raf-1 J. Immunol. 156(2), 549–557.

    CAS  PubMed  Google Scholar 

  50. Starr, R., et al. (1998) Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling1. Proc. Natl. Acad. Sci. USA 95(24), 14,395–14,399.

    Article  CAS  PubMed  Google Scholar 

  51. Morita, Y., et al. (2000) Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/ suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc. Natl. Acad. Sci. USA 97(10), 5405–5410.

    Article  CAS  PubMed  Google Scholar 

  52. Dickensheets, H. L. and Donnelly, R. P. (1999) Inhibition of IL-4-inducible gene expression in human monocytes by type I and type II interferons. J. Leukoc. Biol. 65(3), 307–312.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Vuong, B.Q. et al. (2005). Regulation of Cytokine Signaling. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics