Skip to main content

Chemical Dissection of Brain Glucoregulatory Circuitry

  • Chapter
Molecular Neurosurgery With Targeted Toxins

Abstract

Glucose is the essential substrate for brain energy metabolism (1). Although glycogen, the major storage form of glucose, contributes dynamically to brain energy metabolism, it is present in very limited quantities (2). Thus, the brain requires continuous delivery of glucose by the blood. Clearly, then, the control of blood glucose is of fundamental importance for brain metabolism. Work in our laboratory has focused on the neural organization of controls that maintain blood glucose concentrations. The immunotoxin, antidopamine β-hydroxylase (anti-DβH) conjugated to saporin (anti-DβH-sap) (37), has been an invaluable tool for establishing the importance of hindbrain catecholamine neurons for coordinated arousal of critical behavioral, autonomic, and neuroendocrine responses to glucose deficit. The goal of this review is to describe our use of anti-DβH-sap in demonstrating the essential roles of hindbrain catecholamine neurons in glucoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokoloff L. The metabolism of the central nervous system in vivo. In: Field J, Magoun HW, Hall VE, eds. Handbook of Physiology-Neurophysiology. Vol. 3. Washington, DC: American Physiological Society; 1960:1843–1864.

    Google Scholar 

  2. Fillenz M, Lowry JP, Boutelle MG, Fray AE. The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand 1999;167:275–284.

    Article  PubMed  CAS  Google Scholar 

  3. Picklo MJ, Wiley RG, Lappi DA, Robertson D. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin. Brain Res 1994;666:195–200.

    Article  PubMed  CAS  Google Scholar 

  4. Picklo MJ, Wiley RG, Lonce S, Lappi DA, Robertson D. Anti-dopamine β-hydroxylase immunotoxin-induced sympathectomy in adult rats. J Pharmacol Exp Ther 1995;275:1003–1010.

    PubMed  CAS  Google Scholar 

  5. Picklo MJ. Methods of sympathetic degeneration and alteration. J Auton Nerv Syst 1997;62:111–125.

    Article  PubMed  CAS  Google Scholar 

  6. Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 1996;740:175–184.

    Article  PubMed  CAS  Google Scholar 

  7. Barthelemy I, Martineau D, Ong M, et al. The expression of saporin, a ribosome-inactivating protein from the plant Saponaria officinalis, in Escherichia coli. J Biol Chem 1993;268:6541–6548.

    PubMed  CAS  Google Scholar 

  8. Ritter RC, Slusser P. 5-Thio-D-glucose causes increased feeding and hyperglycemia in the rat. Am J Physiol 1980;238:E141–E144.

    PubMed  CAS  Google Scholar 

  9. Ritter S. Glucoprivation and the glucoprivic control of food intake. In: Ritter RC, Ritter S, Barnes CD, eds. Feeding Behavior: Neural and Humoral Controls. Orlando, FL: Academic Press Inc.; 1986:271–313.

    Google Scholar 

  10. Epstein AN, Nicolaidis S, Miselis RR. The glucoprivic control of food intake and the glucostatic theory of feeding behaviour. In: Mogenson GJ, Calaresu FR, eds. Neural Integration of Physiological Mechanisms and Behaviour. Toronto, Ontario, Canada: University of Toronto Press; 1975:148–168.

    Google Scholar 

  11. Slusser PG, Ritter RC. Increased feeding and hyperglycemia elicited by intracerebroventricular 5-thioglucose. Brain Res 1980;202:474–478.

    Article  PubMed  CAS  Google Scholar 

  12. Smith GP, Epstein AN. Increased feeding in response to decreased glucose utilization in the rat and monkey. Am J Physiol 1969;217:1083–1087.

    PubMed  CAS  Google Scholar 

  13. Brown J. Effects of 2-deoxy-d-glucose on carbohydrate metabolism: review of the literature and studies in the rat. Metabolism 1962;11:1098–1112.

    PubMed  CAS  Google Scholar 

  14. Chen M, Whistler RL. Action of 5-thio-D-glucose and its 1-phosphate with hexokinase and phosphoglucomutase. Arch Biochem Biophys 1975;169:392–396.

    Article  PubMed  CAS  Google Scholar 

  15. Miselis RR, Epstein AN. Feeding induced by intracerebroventricular 2-deoxy-D-glucose in the rat. Am J Physiol 1975;229:1438–1447.

    PubMed  CAS  Google Scholar 

  16. Berthoud HR, Mogenson GJ. Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-D-glucose. Am J Physiol 1977;233:R127–R133.

    PubMed  CAS  Google Scholar 

  17. Flynn FW, Grill HJ. Insulin elicits ingestion in decerebrate rats. Science 1983;221:188–190.

    Article  PubMed  CAS  Google Scholar 

  18. DiRocco RJ, Grill HJ. The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation. Science 1979;204:1112–1114.

    Article  PubMed  CAS  Google Scholar 

  19. Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 1981;213:451–452.

    Article  PubMed  CAS  Google Scholar 

  20. Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 2000;856:37–47.

    Article  PubMed  CAS  Google Scholar 

  21. He B, White BD, Edwards GL, Martin RJ. Neuropeptide Y antibody attenuates 2-deoxy-D-glucose induced feeding in rats. Brain Res 1998;781:348–350.

    Article  PubMed  CAS  Google Scholar 

  22. Booth DA. Modulation of the feeding response to peripheral insulin, 2-deoxyglucose or 3-O-methyl glucose injection. Physiol Behav 1972;8:1069–1076.

    Article  PubMed  CAS  Google Scholar 

  23. Muller EE, Cocchi D, Mantegazza P. Brain adrenergic system in the feeding response induced by 2-deoxy-d-glucose. Am J Physiol 1972;223:945–950.

    PubMed  CAS  Google Scholar 

  24. Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport 2000;11:117–121.

    Article  PubMed  CAS  Google Scholar 

  25. Fraley GS, Dinh TT, Ritter S. Immunotoxic catecholamine lesions attenuate 2DG-induced increase in AGRP mRNA. Peptides 2002;6397:1–8.

    Google Scholar 

  26. Fraley GS, Ritter S. Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2DG-induced NPY and AGRP mRNA expression in the arcuate nucleus. Endocrinology 2003;144:75–83.

    Article  PubMed  CAS  Google Scholar 

  27. Brito NA, Brito MN, Kettelhut IC, Migliorini RH. Intra-ventromedial hypothalamic injection of cholinergic agents induces rapid hyperglycemia, hyperlactatemia and gluconeogenesis activation in fed, conscious rats. Brain Res 1993;626:339–342.

    Article  PubMed  CAS  Google Scholar 

  28. Coimbra CC, Migliorini RH. Evidence for a longitudinal pathway in rat hypothalamus that controls FFA mobilization. Am J Physiol 1983;245:E332–E337.

    PubMed  CAS  Google Scholar 

  29. Steffens AB, Damsma G, van der Gugten J, Luiten PG. Circulating free fatty acids, insulin, and glucose during chemical stimulation of hypothalamus in rats. Am J Physiol 1984;247:E765–E771.

    PubMed  CAS  Google Scholar 

  30. Bellin SI, Ritter S. Insulin-induced elevation of hypothalamic norepinephrine turnover persists after glucorestoration unless feeding occurs. Brain Res 1981;217:327–337.

    Article  PubMed  CAS  Google Scholar 

  31. Rowland NE. Effects of glucose and fat antimetabolites on norepinephrine turnover in rat hypothalamus and brainstem. Brain Res 1992;595:291–294.

    Article  PubMed  CAS  Google Scholar 

  32. Stricker EM, Friedman MI, Zigmond MJ. Glucoregulatory feeding by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science 1975;189:895–897.

    Article  PubMed  CAS  Google Scholar 

  33. Epstein AN, Teitelbaum P. Specific loss of the hypoglycemic control of feeding in recovered lateral rats. Am J Physiol 1967;213:1159–1167.

    PubMed  CAS  Google Scholar 

  34. Alheid GF, McDermott L, Kelly J, Halaris A, Grossman SP. Deficits in food and water intake after knife cuts that deplete striatal DA or hypothalamic NE in rats. Pharmacol Biochem Behav 1977;6:273–287.

    Article  PubMed  CAS  Google Scholar 

  35. Marshall JF, Richardson JS. Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J Comp Physiol Psychol 1974;87:808–830.

    Article  PubMed  CAS  Google Scholar 

  36. Plotsky PM, Cunningham ET Jr, Widmaier EP. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 1989;10:437–458.

    Article  PubMed  CAS  Google Scholar 

  37. Plotsky PM, Otto S, Sutton S. Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci 1987;41:1311–1317.

    Article  PubMed  CAS  Google Scholar 

  38. Whitnall MH, Kiss A, Aguilera G. Contrasting effects of central alpha-1-adrenoreceptor activation on stress-responsive and stress-nonresponsive subpopulations of corticotropin-releasing hormone neurosecretory cells in the rat. Neuroendocrinology 1993;58:42–48.

    PubMed  CAS  Google Scholar 

  39. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993;40:573–629.

    Article  PubMed  CAS  Google Scholar 

  40. Leibowitz SF. Brain neuropeptide Y: an integrator of endocrine, metabolic and behavioral processes. Brain Res Bull 1991;27:333–337.

    Article  PubMed  CAS  Google Scholar 

  41. Smythe GA, Grunstein HS, Bradshaw JE, Nicholson MV, Compton PJ. Relationships between brain noradrenergic activity and blood glucose. Nature 1984;308:65–67.

    Article  PubMed  CAS  Google Scholar 

  42. Smythe GA, Edwards SR. A role for central postsynaptic α 2-adrenoceptors in glucoregulation. Brain Res 1991;562:225–229.

    Article  PubMed  CAS  Google Scholar 

  43. Smythe GA, Edwards SR. Suppression of central noradrenergic neuronal activity inhibits hyperglycemia. Am J Physiol 1992;263:E823–E827.

    PubMed  CAS  Google Scholar 

  44. Leibowitz SF. Hypothalamic paraventricular nucleus: interaction between α 2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci Biobehav Rev 1988;12:101–109.

    Article  PubMed  CAS  Google Scholar 

  45. Leibowitz SF, Sladek C, Spencer L, Tempel D. Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Res Bull 1988;21:905–912.

    Article  PubMed  CAS  Google Scholar 

  46. Curran T, Morgan, JI. Fos: an immediate-early transcription factor in neurons. J Neurobiol 1995;26:403–412.

    Article  PubMed  CAS  Google Scholar 

  47. Wesselingh SL, Li YW, Blessing WW. PNMT-containing neurons in the rostral medulla oblongata (C1, C3 groups) are transneuronally labelled after injection of herpes simplex virus type 1 into the adrenal gland. Neurosci Lett 1989;106:99–104.

    Article  PubMed  CAS  Google Scholar 

  48. Strack AM, Sawyer WB, Platt KB, Loewy AD. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 1989;491:274–296.

    Article  PubMed  CAS  Google Scholar 

  49. Tucker DC, Saper CB, Ruggiero DA, Reis DJ. Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 1987;259:591–603.

    Article  PubMed  CAS  Google Scholar 

  50. Sawchenko PE, Swanson LW. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 1982;257:275–325.

    PubMed  CAS  Google Scholar 

  51. Jonsson G. Chemical lesioning techniques: monoamine neurotoxins. In: Bjorklund A, Hokfelt T, eds. Handbook of Chemical Neuroanatomy: Methods in Chemical Neuroanatomy. Vol. 1: New York: Elsevier Science Publishers; 1983:463–507.

    Google Scholar 

  52. Oltmans GA, Lorden JF, Margules DL. Food intake and body weight: effects of specific and non-specific lesions in the midbrain path of the ascending noradrenergic neurons of the rat. Brain Res 1977;128:293–308.

    Article  PubMed  CAS  Google Scholar 

  53. Ahlskog JE, Randall PK, Hoebel BG. Hypothalamic hyperphagia: dissociation from hyperphagia following destruction of noradrenergic neurons. Science 1975;190:399–401.

    Article  PubMed  CAS  Google Scholar 

  54. Marshall JF, Richardson JS, Teitelbaum P. Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J Comp Physiol Psychol 1974;87:808–830.

    Article  PubMed  CAS  Google Scholar 

  55. Jonsson G, Fuxe K, Hokfelt T, Goldstein M. Resistance of central phenylethanolamine-n-methyl transferase containing neurons to 6-hydroxydopamine. Med Biol 1976;54:421–426.

    PubMed  CAS  Google Scholar 

  56. Blessing WW, Lappi DA, Wiley RG. Destruction of locus coeruleus neuronal perikarya after injection of anti-dopamine-β-hydroxylase immunotoxin into the olfactory bulb of the rat. Neurosci Lett 1998;243:85–88.

    Article  PubMed  CAS  Google Scholar 

  57. Westlund KN, Bowker RM, Ziegler MG, Coulter JD. Noradrenergic projections to the spinal cord of the rat. Brain Res 1983;263:15–31.

    Article  PubMed  CAS  Google Scholar 

  58. Cunningham ET Jr, Bohn MC, Sawchenko PE. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 1990;292:651–667.

    Article  PubMed  Google Scholar 

  59. Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001;432:197–216.

    Article  PubMed  CAS  Google Scholar 

  60. Schreihofer AM, Guyenet PG. Sympathetic reflexes after depletion of bulbospinal catecholaminergic neurons with anti-DβH-saporin. Am J Physiol Regul Integr Comp Physiol 2000;279:R729–R742.

    PubMed  CAS  Google Scholar 

  61. Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 2003;144:1357–1367.

    Article  PubMed  CAS  Google Scholar 

  62. Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol 1990;258:R1395–R1401.

    PubMed  CAS  Google Scholar 

  63. Scharrer E, Langhans W. Control of food intake by fatty acid oxidation. Am J Physiol 1986;250:R1003–R1006.

    PubMed  CAS  Google Scholar 

  64. Hudson B, Ritter S. Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation. Physiol Behav 2004;82:241–250.

    Article  PubMed  CAS  Google Scholar 

  65. Shor-Posner G, Azar AP, Insinga S, Leibowitz SF. Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol Behav 1985;35:883–890.

    Article  PubMed  CAS  Google Scholar 

  66. Calingasan NY, Ritter S. Hypothalamic paraventricular nucleus lesions do not abolish glucoprivic or lipoprivic feeding. Brain Res 1992;595:25–31.

    Article  PubMed  CAS  Google Scholar 

  67. Stanley BG, Leibowitz SF. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci U S A 1985;82:3940–3943.

    Article  PubMed  CAS  Google Scholar 

  68. Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986;7:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  69. Hagan MM, Benoit SC, Rushing PA, Pritchard LM, Woods SC, Seeley RJ. Immediate and prolonged patterns of agouti-related peptide-(83-132)-induced c-Fos activation in hypothalamic and extrahypothalamic sites. Endocrinology 2001;142:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  70. Hagan MM, Rushing PA, Pritchard LM, et al. Long-term orexigenic effects of AgRP-(83-132) involve mechanisms other than melanocortin receptor blockade. Am J Physiol Regul Integr Comp Physiol 2000;279:R47–R52.

    PubMed  CAS  Google Scholar 

  71. Rossi M, Kim MS, Morgan DG, et al. A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of α-melanocyte stimulating hormone in vivo. Endocrinology 1998;139:4428–4431.

    Article  PubMed  CAS  Google Scholar 

  72. Akabayashi A, Zaia CT, Silva I, Chae HJ, Leibowitz SF. Neuropeptide Y in the arcuate nucleus is modulated by alterations in glucose utilization. Brain Res 1993;621:343–348.

    Article  PubMed  CAS  Google Scholar 

  73. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20:68–100.

    Article  PubMed  CAS  Google Scholar 

  74. Oomura Y, Ooyama H, Sugimori M, Nakamura T, Yamada Y. Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature 1974;247:284–286.

    Article  PubMed  CAS  Google Scholar 

  75. Oomura Y. Glucose as a regulator of neuronal activity. Adv Metab Disord 1983;10:31–65.

    PubMed  CAS  Google Scholar 

  76. Levin BE. Glucosensing neurons do more than just sense glucose. Int J Obes Relat Metab Disord 2001;25(suppl 5):S68–S72.

    Article  PubMed  CAS  Google Scholar 

  77. Levin BE, Dunn-Meynell AA, Routh VH. Brain glucosensing and the K(ATP) channel. Nat Neurosci 2001;4:459–460.

    PubMed  CAS  Google Scholar 

  78. Lynch RM, Tompkins LS, Brooks HL, Dunn-Meynell AA, Levin BE. Localization of glucokinase gene expression in the rat brain. Diabetes 2000;49:693–700.

    Article  PubMed  CAS  Google Scholar 

  79. Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 1982;205:260–272.

    Article  PubMed  CAS  Google Scholar 

  80. Guy J, Pelletier G. Neuronal interactions between neuropeptide Y (NPY) and catecholaminergic systems in the rat arcuate nucleus as shown by dual immunocytochemistry. Peptides 1988;9:567–570.

    Article  PubMed  CAS  Google Scholar 

  81. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998;95:15,043–15,048.

    Article  PubMed  CAS  Google Scholar 

  82. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997;20:78–84.

    Article  PubMed  CAS  Google Scholar 

  83. Van de Kar LD, Blair ML. Forebrain pathways mediating stress-induced hormone secretion. Front Neuroendocrinol 1999;20:1–48.

    Article  PubMed  Google Scholar 

  84. Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ 1990;300:230–235.

    PubMed  CAS  Google Scholar 

  85. Levin BE, Sullivan AC. Glucose, insulin and sympathoadrenal activation. J Auton Nerv Syst 1987;20:233–242.

    Article  PubMed  CAS  Google Scholar 

  86. Rappaport EB, Young JB, Landsberg L. Effects of 2-deoxy-D-glucose on the cardiac sympathetic nerves and the adrenal medulla in the rat: further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses. Endocrinology 1982;110:650–656.

    Article  PubMed  CAS  Google Scholar 

  87. Schneider JE, Goldman MD, Leo NA, Rosen ME. Central vs peripheral metabolic control of estrous cycles in Syrian hamsters. II. Glucoprivation. Am J Physiol 1997;272:R406–R412.

    PubMed  CAS  Google Scholar 

  88. Abizaid A, Jafferali S, Pelletier JG, Woodside B. Effect of metabolic fuel availability on fertility varies with reproductive state. Physiol Behav 2001;74:77–83.

    Article  PubMed  CAS  Google Scholar 

  89. I’Anson H, Starer CA, Bonnema KR. Glucoprivic regulation of estrous cycles in the rat. Horm Behav 2003;43:388–393.

    Article  PubMed  CAS  Google Scholar 

  90. Nagatani S, Bucholtz DC, Murahashi K, et al. Reduction of glucose availability suppresses pulsatile luteinizing hormone release in female and male rats. Endocrinology 1996;137:1166–1170.

    Article  PubMed  CAS  Google Scholar 

  91. Bucholtz DC, Vidwans NM, Herbosa CG, Schillo KK, Foster DL. Metabolic interfaces between growth and reproduction. V. Pulsatile luteinizing hormone secretion is dependent on glucose availability. Endocrinology 1996;137:601–607.

    Article  PubMed  CAS  Google Scholar 

  92. Murahashi K, Bucholtz DC, Nagatani S, et al. Suppression of luteinizing hormone pulses by restriction of glucose availability is mediated by sensors in the brain stem. Endocrinology 1996;137:1171–1176.

    Article  PubMed  CAS  Google Scholar 

  93. I’Anson H, Sundling LA, Roland SM, Ritter S. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats. Endocrinology 2003 144:4325–4331.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ritter, S., Dinh, T.T., Bugarith, K., Salter, D.M. (2005). Chemical Dissection of Brain Glucoregulatory Circuitry. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics