Skip to main content

Exploring the Role of Acetylcholine in Primate Cognition Using Me20.4 IgG-Saporin

  • Chapter
Molecular Neurosurgery With Targeted Toxins

Abstract

Two factors led to the emergence of the “cholinergic hypothesis of geriatric memory dysfunction” (1): evidence that cholinergic blockade in human volunteers leads to impaired acquisition of new information (2,3) and the demonstration of loss of cortical cholinergic activity and loss of cholinergic cell bodies in the basal forebrain of patients dying with Alzheimer’s disease (46). It has been proposed that it is the loss of the rising cholinergic pathways from the basal forebrain to the cortex (including the hippocampus) that is responsible for the amnesia seen in dementing illnesses (6). This view has been challenged (e.g., in ref. 7). Cholinergic antagonists also block transmission at cholinergic neurons intrinsic to many subcortical areas and block transmission in the cholinergic projections to noncortical areas; this may affect memory, either directly or via an influence on arousal and attention. Furthermore, studies with rats did not produce a correlation between the magnitude of cholinergic loss in the basal forebrain across various nonimmunotoxic lesion techniques and learning or performance impairments (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartus RT, Dean RL, Beer B. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–417.

    Article  PubMed  CAS  Google Scholar 

  2. Drachman DA, Leavitt J. Human memory and the cholinergic system. Arch Neurol 1974;30:113–121.

    PubMed  CAS  Google Scholar 

  3. Crow TJ, Grove-White IG. An analysis of the learning deficit following hyoscine administration to man. Br J Pharmacol 1973;49:322–327.

    PubMed  CAS  Google Scholar 

  4. Bowen DM, Smith CB, White P, Davison AN. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other biotrophies. Brain 1976;99:459–496.

    Article  PubMed  CAS  Google Scholar 

  5. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. J Neurol Sci 1977;34:247–265.

    Article  PubMed  CAS  Google Scholar 

  6. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR. Alzheimer’s disease and senile dementia: loss of neurones in the basal forebrain. Science 1982;215:1237–1238.

    Article  PubMed  CAS  Google Scholar 

  7. Fibiger HC. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 1991;14:220–223.

    Article  PubMed  CAS  Google Scholar 

  8. Dunnett SB, Everitt BJ, Robbins TW. The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci 1991;14:494–501.

    Article  PubMed  CAS  Google Scholar 

  9. Rossor M, Iversen LL. Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Br Med Bull 1986;42:70–74.

    PubMed  CAS  Google Scholar 

  10. Mann DMA. Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 1996;5:423–427.

    Article  PubMed  CAS  Google Scholar 

  11. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991;82:239–259.

    Article  PubMed  CAS  Google Scholar 

  12. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978;2:1457–1459.

    Article  PubMed  CAS  Google Scholar 

  13. Bierer LM, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 1995;64:749–760.

    Article  PubMed  CAS  Google Scholar 

  14. Bierer LM, Hof PR, Purohit DP, et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 1995;52:81–88.

    PubMed  CAS  Google Scholar 

  15. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572–580.

    Article  PubMed  CAS  Google Scholar 

  16. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990;27:457–464.

    Article  PubMed  CAS  Google Scholar 

  17. Kopelman MD. Multiple memory deficits in Alzheimer-type dementia: implications for pharmacotherapy. Psychol Med 1985;15:527–541.

    PubMed  CAS  Google Scholar 

  18. Medin DL, O’Neil P, Smeltz E, Davis RT. Age differences in retention of concurrent discrimination problems in monkeys. J Gerontol 1973;28:63–67.

    PubMed  CAS  Google Scholar 

  19. Bachevalier J, Landis LS, Walker LC, et al. Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol Aging 1991;12:99–111.

    Article  PubMed  CAS  Google Scholar 

  20. Bartus RT, Fleming D, Johnson H. Aging in the rhesus monkey: debilitating effects on short-term memory. J Gerontol 1978;33:858–971.

    PubMed  CAS  Google Scholar 

  21. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000;163:495–529.

    Article  PubMed  CAS  Google Scholar 

  22. Beach TG, Potter PE, Kuo YM, et al. Cholinergic deafferentation of the rabbit cortex: a new model of A beta deposition. Neurosci Lett 2000;283:9–12.

    Article  PubMed  CAS  Google Scholar 

  23. Beach TG, Kuo YM, Schwab C, Walker DG, Roher AE. Reduction of cortical amyloid beta levels in guinea pig brain after systemic administration of physostigmine. Neurosci Lett 2001;310:21–24.

    Article  PubMed  CAS  Google Scholar 

  24. Ridley RM, Warner KA, Maclean CJ, Gaffan D, Baker HF. Visual agnosia and Klüver-Bucy syndrome in marmosets (Callithrix jacchus) following ablation of the inferotemporal cortex, with additional mnemonic effects of immunotoxic lesions of cholinergic projections to medial temporal areas. Brain Res 2001;898:136–151.

    Article  PubMed  CAS  Google Scholar 

  25. Ridley RM, Timothy CJ, Maclean CJ, Baker HF. Conditional learning and memory impairments following neurotoxic lesion of the CA1 field of the hippocampus. Neuroscience 1995;67:263–275.

    Article  PubMed  CAS  Google Scholar 

  26. Ridley RM, Thornley HD, Baker HF, Fine A. Cholinergic neural transplants into hippocampus restore learning ability in monkeys with fornix transections. Exp Brain Res 1991;83:533–538.

    Article  PubMed  CAS  Google Scholar 

  27. Ridley RM, Baker HF. Mental representation in human and monkey neuropsychology. In: Milner AD, ed. Comparative Neuropsychology. Oxford, UK: Oxford University Press; 1998:245–270.

    Google Scholar 

  28. Ridley RM, Baker HF. A critical evaluation of monkey models of amnesia and dementia. Brain Res Rev 1991;16:15–37.

    Article  PubMed  CAS  Google Scholar 

  29. Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. J Comp Neurol 1983;214:170–197.

    Article  PubMed  CAS  Google Scholar 

  30. Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 1984;3:669–686.

    Article  Google Scholar 

  31. Everitt BJ, Sirkia TE, Roberts AC, Jones GH, Robbins TW. Distribution and some projections of cholinergic neurones in the brain of the common marmoset. J Comp Neurol 1988;271:533–558.

    Article  PubMed  CAS  Google Scholar 

  32. Mesulam MM, Mufson EJ. Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 1984;107:253–274.

    Article  PubMed  Google Scholar 

  33. Mesulam MM. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res 1996;109:285–297.

    PubMed  CAS  Google Scholar 

  34. Jones BE, Cuello AC. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic—catecholamine, serotonin, and acetylcholine—neurons. Neuroscience 1989;31:37–61.

    Article  PubMed  CAS  Google Scholar 

  35. Zaborszky L, Cullinan WE, Luine VN. Catecholaminergic-cholinergic interactions in the basal forebrain. Prog Brain Res 1993;98:31–49.

    PubMed  CAS  Google Scholar 

  36. Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res 1991;562:149–153.

    Article  PubMed  CAS  Google Scholar 

  37. Hefti F, Hartikka J, Salvaterra P, Weinen WJ, Mash D. Localization of nerve growth factor receptors on cholinergic neurons of the human basal forebrain. Neurosci Lett 1986;69:275–281.

    Article  Google Scholar 

  38. Mufson EJ, Bothwell M, Hersh LB, Kordower J. Nerve growth factor receptor profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. J Comp Neurol 1989;285:196–217.

    Article  PubMed  CAS  Google Scholar 

  39. Kordower JH, Bartus RT, Bothwell M, Schatteman G, Gash D. Nerve growth factor receptor immunoreactivity in the non-human primate (Cebus apella): distribution, morphology and colocalization with cholinergic enzyme. J Comp Neurol 1988;277:465–486.

    Article  PubMed  CAS  Google Scholar 

  40. Maclean CJ, Baker HF, Fine A, Ridley RM. The distribution of p75 neurotrophin receptor-immunoreactive cells in the forebrain of the common marmoset (Callithrix jacchus). Brain Res Bull 1997;43:197–208.

    Article  PubMed  CAS  Google Scholar 

  41. Smith C, Farrah T, Goodwin R. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76:959–962.

    Article  PubMed  CAS  Google Scholar 

  42. Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res 1992;32:461–470.

    Article  PubMed  CAS  Google Scholar 

  43. Mrzljak L, Levey AI, Belcher S, Goldman-Rakic PS. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and the cholinergically deafferented rhesus monkey. J Comp Neurol 1998;390:112–132.

    Article  PubMed  CAS  Google Scholar 

  44. Easton A, Ridley RM, Baker HF, Gaffan D. Unilateral lesions of the cholinergic basal forebrain and fornix in one hemisphere and inferotemporal cortex in the opposite hemisphere produce severe learning impairments in rhesus monkeys. Cerebral Cortex 2002;12:729–736.

    Article  PubMed  CAS  Google Scholar 

  45. Bartus RT. Physostigmine and recent memory: effects in young and aged non-human primates. Science 1979;206:1087–1089.

    Article  PubMed  CAS  Google Scholar 

  46. Bartus RT, Dean RL, Fleming DL. Aging in the rhesus monkey: effects on visual discrimination learning and reversal learning. J Gerontol 1979;34:209–219.

    PubMed  CAS  Google Scholar 

  47. Ridley RM, Bowes PM, Baker HF, Crow TJ. An involvement of acetylcholine in object discrimination learning and memory in the marmoset. Neuropsychologia 1984;22:253–263.

    Article  PubMed  CAS  Google Scholar 

  48. Bartus RT, Johnson HR. Short term memory in the rhesus monkey: disruption from the anticholinergic scopolamine. Pharmacol Biochem Behav 1976;5:39–46.

    Article  PubMed  CAS  Google Scholar 

  49. Penetar DM, McDonough J-HJ. Effects of cholinergic drugs on delayed match-to-sample performance of rhesus monkeys. Pharmacol Biochem Behav 1983;19:963–967.

    Article  PubMed  CAS  Google Scholar 

  50. Ridley RM, Baker HF, Drewett B, Johnson JA. Effects of ibotenic acid lesions of the basal forebrain on serial reversal learning in marmosets. Psychopharmacology 1985;86:438–443.

    Article  PubMed  CAS  Google Scholar 

  51. Ridley RM, Murray TK, Johnson JA, Baker HF. Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: modification by cholinergic drugs. Brain Res 1986;376:108–116.

    Article  PubMed  CAS  Google Scholar 

  52. Aigner TG, Mitchell SJ, Aggleton JP, et al. Effects of scopolamine and physostigmine on recognition memory in monkeys with ibotenic-acid lesions of the nucleus basalis of Meynert. Psychopharmacology 1987;92:292–300.

    Article  PubMed  CAS  Google Scholar 

  53. Voytko ML, Olton DS, Richardson RT, Gorman IK, Tobin JT, Price DL. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 1994;14:167–186.

    PubMed  CAS  Google Scholar 

  54. Sunderland T, Tariot PN, Cohen RM, Weingartner H, Mueller EA, Murphy DL. Anticholinergic sensitivity in patients with dementia of the Alzheimertype and age-matched controls. Arch Gen Psychiatry 1987;44:418–426.

    PubMed  CAS  Google Scholar 

  55. Flicker C, Ferris SH, Serby M. Hypersensitivity to scopolamine in the elderly. Psychopharmacology (Berl ) 1992;107:437–441.

    Article  CAS  Google Scholar 

  56. Voytko ML. Impairments in acquisition and reversals of two-choice discriminations by aged rhesus monkeys. Neurobiol Aging 1999;20:617–627.

    Article  PubMed  CAS  Google Scholar 

  57. Harder JA, Baker HF, Ridley RM. The role of the central cholinergic projections in cognition: Implications of the effects of scopolamine on discrimination learning by monkeys. Brain Res Bull 1998;45:319–326.

    Article  PubMed  CAS  Google Scholar 

  58. Irle E, Markowitsch HJ. Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory. Ann Neurol 1987;22:735–743.

    Article  PubMed  CAS  Google Scholar 

  59. Ridley RM, Samson NA, Baker HF, Johnson JA. Visuospatial learning impairment following lesion of the cholinergic projection to the hippocampus. Brain Res 1988;456:71–87.

    Article  PubMed  CAS  Google Scholar 

  60. Ridley RM, Aitken DM, Baker HF. Learning about rules but not about reward is impaired following lesions of the cholinergic projection to the hippocampus. Brain Res 1989;502:306–318.

    Article  PubMed  CAS  Google Scholar 

  61. Ridley RM, Pugh P, Maclean CJ, Baker HF. Severe learning impairment caused by combined immunotoxic lesion of the cholinergic projections to the cortex and hippocampus in monkeys. Brain Res 1999;836:120–138.

    Article  PubMed  CAS  Google Scholar 

  62. Maclean CJ, Gaffan D, Baker HF, Ridley RM. Visual discrimination learning impairments produced by combined transections of the anterior temporal stem, amygdala and fornix in marmoset monkeys. Brain Res 2001;888:34–50.

    Article  PubMed  CAS  Google Scholar 

  63. Ridley RM, Barefoot HC, Maclean CJ, Pugh P, Baker HF. Different effects on learning ability following injection of the cholinergic immunotoxin ME20.4 IgG-saporin into the diagonal band of Broca, basal nucleus of Meynert, or both in monkeys. Behav Neurosci 1999;113:303–315.

    Article  PubMed  CAS  Google Scholar 

  64. Ridley RM, Hardy A, Maclean CJ, Baker HF. Non-spatial acquisition and retention deficits following small excitotoxic lesions within the hippocampus in monkeys. Neuroscience 2001;107:239–248.

    Article  PubMed  CAS  Google Scholar 

  65. Murray TK, Ridley RM. The effect of excitotoxic hippocampal lesions on simple and conditional discrimination learning in the rat. Behav Brain Res 1999;99:103–113.

    Article  PubMed  CAS  Google Scholar 

  66. Fine A, Hoyle C, Maclean CJ, LeVatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 1997;81:331–343.

    Article  PubMed  CAS  Google Scholar 

  67. Cowey A, Gross CG. Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp Brain Res 1970;11:128–144.

    Article  PubMed  CAS  Google Scholar 

  68. Gaffan EA, Harrison S, Gaffan D. Single and concurrent discrimination learning by monkeys after lesions of inferotemporal cortex. Q J Exp Psychol 1986;38B:31-52.

    Google Scholar 

  69. Gaffan D, Harrison S, Gaffan EA. Visual identification following inferotemporal ablation in the monkey. Q J Exp Psychol 1986;38B:5-30.

    Google Scholar 

  70. Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 1994;350:497–533.

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki WA, Amaral DG. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 1994;14:1856–1877.

    PubMed  CAS  Google Scholar 

  72. Suzuki WA, Amaral DG. Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE. Neurosci Lett 1990;115:43–48.

    Article  PubMed  CAS  Google Scholar 

  73. Witter MP, Amaral DG. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 1991;307:437–459.

    Article  PubMed  CAS  Google Scholar 

  74. Barefoot HC, Maclean CJ, Baker HF, Ridley RM. Unilateral hippocampal and inferotemporal cortex lesions in opposite hemispheres impair learning of single-pair visual discriminations as well as visuovisual conditional tasks in monkeys. Behav Brain Res 2003;141:51–62.

    Article  PubMed  Google Scholar 

  75. Gaffan D, Parker A, Easton A. Dense amnesia in the monkey after transection of fornix, amygdala and anterior temporal stem. Neuropsychologia 2001;39:51–70.

    Article  PubMed  CAS  Google Scholar 

  76. Moss M, Mahut H, Zola-Morgan SM. Concurrent discrimination learning in monkeys after hippocampal, entorhinal or fornix lesions. J Neurosci 1981;1:227–240.

    PubMed  CAS  Google Scholar 

  77. Teng E, Stefanacci L, Squire LR, Zola SM. Contrasting effects on discrimination learning after hippocampal lesions and conjoint hippocampal-caudate lesions in monkeys. J Neurosci 2000;20:3853–3863.

    PubMed  CAS  Google Scholar 

  78. Barefoot HC, Baker HF, Ridley RM. Synergistic effects of unilateral immunolesions of the cholinergic projections from the basal forebrain and contralateral ablations of the inferotemporal cortex and hippocampus in monkeys. Neuroscience 2000;98:243–251.

    Article  PubMed  CAS  Google Scholar 

  79. Barefoot HC, Baker HF, Ridley RM. Crossed unilateral lesions of temporal lobe structures and cholinergic cell bodies impair visual conditional and object discrimination learning in monkeys. Eur J Neurosci 2002;15:507–516.

    Article  PubMed  CAS  Google Scholar 

  80. Stephan H, Baron G, Schwerdtfeger WK. The Brain of the Common Marmoset (Callithrix jacchus); a Stereotaxic Atlas. Berlin: Springer; 1980.

    Google Scholar 

  81. Gaffan D, Parker A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and “object-in-place” memory. J Neurosci 1996;16:5864–5869.

    PubMed  CAS  Google Scholar 

  82. Gaffan D, Easton A, Parker A. Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning. J Neurosci 2002;22:7288–7296.

    PubMed  CAS  Google Scholar 

  83. Francis PT, Cross AJ, Bowen DM. Neurotransmitters and neuropeptides. In: Terry RD, Katzman R, Bick KL, eds. Alzheimer Disease. New York: Raven Press Ltd.; 1994:247–261.

    Google Scholar 

  84. Francis PT, Pangaloss MN, Bowen DM. Animal and drug modelling for Alzheimer synaptic pathology. Prog Neurobiol 1992;39:517–545.

    Article  PubMed  CAS  Google Scholar 

  85. Ottersen OP. Excitatory amino acid neurotransmitters: anatomical systems. In: Meldrum B, ed. Excitatory Amino Acid Antagonists. Oxford, UK: Blackwell Scientific; 1991:14–38.

    Google Scholar 

  86. Chessell IP, Pearson RC, Heath PR, Bown DM, Francis PT. Selective loss of cholinergic receptors following unilateral intracortical injection of volkensin. Exp Neurol 1997;147:183–191.

    Article  PubMed  CAS  Google Scholar 

  87. Alonso JR, U HS, Amaral DG. Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. J Comp Neurol 1996;375:527–551.

    Article  PubMed  CAS  Google Scholar 

  88. Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price DL. Fibre pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 1987;406:192–206.

    Article  PubMed  CAS  Google Scholar 

  89. Ogura H, Aigner TG. MK-801 impairs recognition memory in rhesus monkeys: comparison with cholinergic drugs. J Pharmacol Exp Ther 1993;266:60–64.

    PubMed  CAS  Google Scholar 

  90. Matsuoka N, Aigner TG. Cholinergic-glutamatergic interactions in visual recognition memory of rhesus monkeys. Neuroreport 1996;7:565–568.

    Article  PubMed  CAS  Google Scholar 

  91. Harder JA, Aboobaker A, Hodgetts T, Ridley RM. Learning impairments induced by glutamate blockade using dizocilpine (MK801) in monkeys. Br J Pharmacol 1998;125:1013–1018.

    Article  PubMed  CAS  Google Scholar 

  92. Dijk SN, Francis PT, Stratmann GC, Bowen DM. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br J Pharmacol 1995;115:1169–1174.

    PubMed  CAS  Google Scholar 

  93. Harder JA, Ridley RM. The 5HT1A antagonist, WAY100635, alleviates cognitive impairments induced by dizocilpine (MK801) in monkeys. Neuropharmacology 2000;39:547–552.

    Article  PubMed  CAS  Google Scholar 

  94. Harder JA, Maclean CJ, Alder JT, Francis PT, Ridley RM. The 5HT1A antagonist, WAY100635, ameliorates the cognitive impairment induced by fornix transection in the marmoset. Psychopharmacology 1996;127:245–254.

    PubMed  CAS  Google Scholar 

  95. Gaffan D. Scene-specific memory for objects: a model of episodic impairment in monkeys with fornix transection. J Cogn Neurosci 1994;6:305–320.

    Google Scholar 

  96. Hood KL, Postle BR, Corkin S. An evaluation of the concurrent discrimination task as a measure of habit learning: performance of amnesic subjects. Neuropsychologia 1999;37:1375–1386.

    Article  PubMed  CAS  Google Scholar 

  97. Aggleton JP, Nicol RM, Huston AE, Fairbairn AF. The performance of amnesic subjects on tests of experimental amnesia in animals: delayed matching-to-sample and concurrent learning. Neuropsychologia 1988;26:265–272.

    Article  PubMed  CAS  Google Scholar 

  98. Squire LR, Zola-Morgan SM, Chen KS. Human amnesia and animal model of amnesia: performance of amnesic patients on tests designed for the monkey. Behav Neurosci 1988;102:210–221.

    Article  PubMed  CAS  Google Scholar 

  99. Gaffan D, Gaffan EA. Amnesia in man following transection of the fornix. A review. Brain 1991;114:2611–2618.

    Article  PubMed  Google Scholar 

  100. Rempel-Clower NL, Zola SM, Squire LR, Amaral DG. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 1996;16:5233–5255.

    PubMed  CAS  Google Scholar 

  101. Mishkin M, Malamut B, Bachevalier J. Memories and habits: two neural systems. In: Lynch G, McGough JL, Weinberger NM, eds. Neurobiology of Learning and Memory. New York: Guilford Press; 1984:65–77.

    Google Scholar 

  102. Corkin S. Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia 1968;6:225–264.

    Article  Google Scholar 

  103. Hodges JR, Patterson K, Oxbury S, Funnell E. Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain 1992;115:1783–1806.

    Article  PubMed  Google Scholar 

  104. O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford, UK: Oxford University Press; 1978.

    Google Scholar 

  105. Hirsh R. The hippocampus and contextual retrieval of information from memory: a theory. Behav Biol 1974;12:421–444.

    Article  PubMed  CAS  Google Scholar 

  106. Sutherland RJ, Rudy JW. Configural association theory: the role of the hippocampal formation in learning, memory, and amnesia. Psychobiology 1989;17:129–144.

    Google Scholar 

  107. Hirsh R. The hippocampus, conditional operations and cognition. Physiol Psychol 1986;8:175–182.

    Google Scholar 

  108. Buckley MJ, Booth MCA, Rolls ET, Gaffan D. Selective perceptual impairments after perirhinal cortex ablation. J Neurosci 2001;21:9824–9836.

    PubMed  CAS  Google Scholar 

  109. Bussey TJ, Saksida LM, Murray EA. Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur J Neurosci 2002;15:365–374.

    Article  PubMed  Google Scholar 

  110. Ridley RM, Baker HF, Harder JA, Pearson C. Effects of lesions of different parts of the septo-hippocampal system in primates on learning and retention of information acquired before or after surgery. Brain Res Bull 1996;40:21–32.

    Article  PubMed  CAS  Google Scholar 

  111. McCormick DA. Cellular mechanisms of cholinergic control of neocortical and thalamic neuronal excitability. In: Steriade M, Biesold D, eds. Brain Cholinergic Systems. Oxford, UK: Oxford University Press; 1990:236–264.

    Google Scholar 

  112. Metherate R, Tremblay N, Dykes RW. The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J Neurophysiol 1988;59:1231–1252.

    PubMed  CAS  Google Scholar 

  113. Sato H, Hata V, Hagihara K, Tsumoto T. Effects of cholinergic depletion on neuron activities in the cat visual cortex. J Neurophysiol 1987;58:781–794.

    PubMed  CAS  Google Scholar 

  114. Wilson FAW, Rolls ET. Neuronal responses related to reinforcement in the primate basal forebrain. Brain Res 1990;509:213–231.

    Article  PubMed  CAS  Google Scholar 

  115. Wilson FAW, Rolls ET. Neuronal responses related to novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp Brain Res 1990;80:104–120.

    Article  PubMed  CAS  Google Scholar 

  116. Burton MJ, Rolls ET, Mora F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp Neurol 1976;51:668–677.

    Article  PubMed  CAS  Google Scholar 

  117. Mora F, Rolls ET, Burton MJ. Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food. Exp Neurol 1976;53:508–519.

    Article  PubMed  CAS  Google Scholar 

  118. Richardson RT, DeLong MR. A reappraisal of the functions of the nucleus basalis of Meynert. Trends Neurosci 1988;11:264–267.

    Article  PubMed  CAS  Google Scholar 

  119. Tanaka Y, Sakurai M, Hayashi S. Effect of scopolamine and HP029, a cholinesterase inhibitor, on long-term potentiation in hippocampal slices of guinea pig. Neurosci Lett 1989;98:179–183.

    Article  PubMed  CAS  Google Scholar 

  120. Fell J, Klaver P, Lehnertz K, et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neurosci 2001;4:1259–1264.

    Article  PubMed  CAS  Google Scholar 

  121. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990;28:597–613.

    Article  PubMed  CAS  Google Scholar 

  122. Gorry JD. Studies on the comparative anatomy of the ganglion basale of Meynert. Acta Anat 1963;55:51–104.

    Article  PubMed  CAS  Google Scholar 

  123. Mesulam MM, Volicer L, Marquis JK, Mufson EJ, Green RC. Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann Neurol 1986;19:144–151.

    Article  PubMed  CAS  Google Scholar 

  124. Mesulam MM, Geula C. Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: absence at birth, development during the life span, and dissolution in Alzheimer’s disease. Ann Neurol 1988;24:765–773.

    Article  PubMed  CAS  Google Scholar 

  125. Mesulam MM. Cholinergic pathways and the ascending reticular activating system of the human brain. Ann NY Acad Sci 1995;757:169–179.

    Article  PubMed  CAS  Google Scholar 

  126. Easton A, Gaffan D. Comparison of perirhinal cortex ablation and crossed unilateral lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus monkey: effects on learning and retrieval. Behav Neurosci 2000;114:1041–1057.

    Article  PubMed  CAS  Google Scholar 

  127. Easton A, Gaffan D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object-reward association learning in rhesus monkeys. Neuropsychologia 1902;39:71–82.

    Article  Google Scholar 

  128. Easton A, Parker A, Gaffan D. Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex im111111pair object recognition memory in Rhesus monkeys. Behav Brain Res 2001;121:1–10.

    Article  PubMed  CAS  Google Scholar 

  129. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999;22:273–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ridley, R.M., Baker, H.F. (2005). Exploring the Role of Acetylcholine in Primate Cognition Using Me20.4 IgG-Saporin. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics