Skip to main content

Isolectin IB4-Mediated Cytotoxic Targeting of Sensory Neurons

  • Chapter
Molecular Neurosurgery With Targeted Toxins

Abstract

Lectins are carbohydrate-binding proteins that recognize distinct oligosaccharide moieties of glycoproteins and glycolipids. In vertebrates, endogenous lectins serve a variety of functions, including cell adhesion, cell recognition, signal transduction, and endocytosis, in both neuronal and nonneuronal cells (15). A role for cell surface carbohydrate recognition has been described in processes, such as fertilization, development, leukocyte homing, and the innate immune response (1,2). Among the known classes of vertebrate carbohydrate-binding proteins are some cytokines (e.g., interleukin 1β [IL-1β]) and growth factors, which possess a receptor-binding domain and a carbohydrate recognition domain (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolopoulos V, McKenzie IF. Role of the mannose receptor in the immune response. Curr Mol Med 2001;1:469–474.

    Article  PubMed  CAS  Google Scholar 

  2. Jessell TM, Hynes MA, Dodd J. Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu Rev Neurosci 1990;13:227–255.

    Article  PubMed  CAS  Google Scholar 

  3. Kimura M, et al. Engagement of endogenous ganglioside GM1a induces tyrosine phosphorylation involved in neuron-like differentiation of PC12 cells. Glycobiology 2001;11:335–343.

    Article  PubMed  CAS  Google Scholar 

  4. Rusnati M, et al. Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA 2002;99:4367–4372.

    Article  PubMed  CAS  Google Scholar 

  5. Zanetta JP. Structure and functions of lectins in the central and peripheral nervous system. Acta Anat (Basel) 1998;161(1–4):180–195.

    Article  CAS  Google Scholar 

  6. Palmetshofer A, Robson SC, Bach FH. Tyrosine phosphorylation following lectin mediated endothelial cell stimulation. Xenotransplantation 1998;5:61–66.

    Article  PubMed  CAS  Google Scholar 

  7. Tabor DR, et al. Macrophage membrane glycoprotein binding of Griffonia simplicifolia I-B4 induces TNF-alpha production and a tumoricidal response. J Cell Physiol 1992;152:500–506.

    Article  PubMed  CAS  Google Scholar 

  8. Dailey ME, Waite M. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 1999;18:177, 222–230.

    Article  Google Scholar 

  9. Silverman JD, Kruger L. Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 1990;19:789–801.

    Article  PubMed  CAS  Google Scholar 

  10. Chou DK, et al. Identification of alpha-galactose (alpha-fucose)-asialo-GM1 glycolipid expressed by subsets of rat dorsal root ganglion neurons. J Biol Chem 1989;264:3409–3415.

    PubMed  CAS  Google Scholar 

  11. Fullmer JM, Riedl MS, Elde R. Evidence the isolectin IB4 binds to glycoproteins in the nervous system. Soc Neurosci Abstr 2002;46:18.

    Google Scholar 

  12. Vulchanova L, et al. Cytotoxic targeting of isolectin IB4-binding sensory neurons. Neuroscience 2001;108:143–155.

    Article  PubMed  CAS  Google Scholar 

  13. Tarpley JW, Martin WJ, Baldwin BS, Forrest MJ, MacIntyre DE. Contribution of IB4-positive sensory neurons to NGF-induced hyperalgesia in the rat. Soc Neurosci Abstr 2000;633:18.

    Google Scholar 

  14. Tarpley JW, MacIntyre E, Martin WJ. Loss of IB4-positive neurons mitigates the consequences of nerve injury in the rat. Abstracts, IASP Tenth World Congress on Pain, San Diego, CA. IASP Press, 2002.

    Google Scholar 

  15. Nagy JI, Hunt SP. Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 1982;7:89–97.

    Article  PubMed  CAS  Google Scholar 

  16. Wang H, et al. Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons. Neuroscience 1994;62:539–551.

    Article  PubMed  CAS  Google Scholar 

  17. Guo A, et al. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 1999;11:946–958.

    Article  PubMed  CAS  Google Scholar 

  18. Bradbury EJ, Burnstock G, McMahon SB. The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 1998;12:256–268.

    Article  PubMed  CAS  Google Scholar 

  19. Vulchanova L, et al. P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 1998;10:3470–3478.

    Article  PubMed  CAS  Google Scholar 

  20. Chopra B, et al. Cyclooxygenase-1 is a marker for a subpopulation of putative nociceptive neurons in rat dorsal root ganglia. Eur J Neurosci 2000;12:911–920.

    Article  PubMed  CAS  Google Scholar 

  21. Fjell J, et al. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Brain Res Mol Brain Res 1999;67:267–282.

    Article  PubMed  CAS  Google Scholar 

  22. Stucky CL, et al. Overexpression of nerve growth factor in skin selectively affects the survival and functional properties of nociceptors. J Neurosci 1999;19:8509–8516.

    PubMed  CAS  Google Scholar 

  23. Zwick M, et al. Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. J Neurosci 2002;22:4057–4065.

    PubMed  CAS  Google Scholar 

  24. Dirajlal S, Pauers LE, Stucky CL. Differential response properties of IB(4)-positive and-negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 2003;89:513–524.

    Article  PubMed  CAS  Google Scholar 

  25. Drew LJ, Wood JN, Cesare P. Distinct mechanosensitive properties of capsaicin-sensitive and-insensitive sensory neurons. J Neurosci 2002;22:RC228.

    PubMed  Google Scholar 

  26. Stucky CL, Lewin GR. Isolectin B(4)-positive and-negative nociceptors are functionally distinct. J Neurosci 1999;19:6497–6505.

    PubMed  CAS  Google Scholar 

  27. Kashiba H, Uchida Y, Senba E. Difference in binding by isolectin B4 to trkA and c-ret mRNA-expressing neurons in rat sensory ganglia. Brain Res Mol Brain Res 2001;95:18–26.

    Article  PubMed  CAS  Google Scholar 

  28. LaMotte CC, Kapadia SE, Shapiro CM. Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J Comp Neurol 1991;311:546–562.

    Article  PubMed  CAS  Google Scholar 

  29. Kitchener PD, et al. Transganglionic labelling of primary sensory afferents in the rat lumbar spinal cord: comparison between wheatgerm agglutinin and the I-B4 isolectin from Bandeiraea simplicifolia. J Neurocytol 1994;23:745–757.

    Article  PubMed  CAS  Google Scholar 

  30. Kitchener PD, Wilson P, Snow PJ. Selective labelling of primary sensory afferent terminals in lamina II of the dorsal horn by injection of Bandeiraea simplicifolia isolectin B4 into peripheral nerves. Neuroscience 1993;54:545–551.

    Article  PubMed  CAS  Google Scholar 

  31. Tong YG, et al. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J Comp Neurol 1999;404:143–158.

    Article  PubMed  CAS  Google Scholar 

  32. Perry MJ, Lawson SN. Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 1998;85:293–310.

    Article  PubMed  CAS  Google Scholar 

  33. Guillery RW, Herrup K. Quantification without pontification: choosing a method for counting objects in sectioned tissues. J Comp Neurol 1997;386:2–7.

    Article  PubMed  CAS  Google Scholar 

  34. Coggeshall RE, Lekan HA. Methods for determining numbers of cells and synapses: a case for more uniform standards of review [published erratum appears in J Comp Neurol 1996;369:162]. J Comp Neurol 1996;364:6–15.

    Article  PubMed  CAS  Google Scholar 

  35. Coggeshall RE. A consideration of neural counting methods. Trends Neurosci 1992;15:9–13.

    Article  PubMed  CAS  Google Scholar 

  36. West MJ. New stereological methods for counting neurons. Neurobiol Aging 1993;14:275–285.

    Article  PubMed  CAS  Google Scholar 

  37. Stone LS, Vulchanova L, Riedl MS, et al. Effects of peripheral nerve injury on alpha-2A and alpha-2C adrenergic receptor immunoreactivity in the rat spinal cord. Neuroscience 1999;93:1399–1407.

    Article  PubMed  CAS  Google Scholar 

  38. Streit WJ, et al. Histochemical localization of galactose-containing glycoconjugate at peripheral nodes of Ranvier in the rat. J Histochem Cytochem 1985;33:33–39.

    PubMed  CAS  Google Scholar 

  39. Gillen C, Jander S, Stoll G. Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in the rat peripheral nervous system: comparison between immune-mediated demyelination and Wallerian degeneration. J Neurosci Res 1998;51:489–496.

    Article  PubMed  CAS  Google Scholar 

  40. Hsieh ST, et al. Epidermal denervation and its effects on keratinocytes and Langerhans cells. J Neurocytol 1996;25:513–524.

    Article  PubMed  CAS  Google Scholar 

  41. Hargreaves K, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988;32:77–88.

    Article  PubMed  CAS  Google Scholar 

  42. Yeomans DC, Pirec V, Proudfit HK. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence. Pain 1996;68:133–140.

    Article  PubMed  CAS  Google Scholar 

  43. Yeomans DC, Proudfit HK. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: electrophysiological evidence. Pain 1996;68:141–150.

    Article  PubMed  CAS  Google Scholar 

  44. Caterina MJ, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000;288:306–313.

    Article  PubMed  CAS  Google Scholar 

  45. Cao YQ, et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 1998;392:390–394.

    Article  PubMed  CAS  Google Scholar 

  46. Chaplan SR, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53:55–63.

    Article  PubMed  CAS  Google Scholar 

  47. Gilchrist HD, Allard BL, Simone DA. Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 1996;67:179–188.

    Article  PubMed  CAS  Google Scholar 

  48. Simone DA, et al. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 1998;18:8947–8959.

    PubMed  CAS  Google Scholar 

  49. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87–107.

    Article  PubMed  CAS  Google Scholar 

  50. Wang R, Ossipov MH, Vanderah TW, Lai J, Porreca F. Nerve injury-induced down-regulation of IB4 and colocalized markers. Soc Neurosci Abstr 2001;281:1.

    Google Scholar 

  51. Gold MS, et al. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 2003;23:158–166.

    PubMed  CAS  Google Scholar 

  52. Hudson LJ, et al. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 2001;13:2105–2114.

    Article  PubMed  CAS  Google Scholar 

  53. Nam TS, et al. Adrenergic sensitivity of uninjured C-fiber nociceptors in neuropathic rats. Yonsei Med J 2000;41:252–257.

    PubMed  CAS  Google Scholar 

  54. Obata K, et al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 2003;101:65–77.

    Article  PubMed  CAS  Google Scholar 

  55. Wu G, et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 2001;21:RC140.

    PubMed  CAS  Google Scholar 

  56. Campbell JN. Nerve lesions and the generation of pain. Muscle Nerve 2001;24:1261–1273.

    Article  PubMed  CAS  Google Scholar 

  57. Koltzenburg M, Scadding J. Neuropathic pain. Curr Opin Neurol 2001;14:641–647.

    Article  PubMed  CAS  Google Scholar 

  58. Sheth RN, et al. Mechanical hyperalgesia after an L5 ventral rhizotomy or an L5 ganglionectomy in the rat. Pain 2002;96:63–72.

    Article  PubMed  Google Scholar 

  59. Millan MJ. The induction of pain: an integrative review. Progr Neurobiol 1999;57:1–164.

    Article  CAS  Google Scholar 

  60. Bennett DL, et al. Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. Eur J Neurosci 1998;10:1282–1291.

    Article  PubMed  CAS  Google Scholar 

  61. Shu XQ, Llinas A, Mendell LM. Effects of trkB and trkC neurotrophin receptor agonists on thermal nociception: a behavioral and electrophysiological study. Pain 1999;80:463–470.

    Article  PubMed  CAS  Google Scholar 

  62. Arvidsson U, et al. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 1995;15(5 pt 1):3328–3341.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Vulchanova, L., Honda, C.N. (2005). Isolectin IB4-Mediated Cytotoxic Targeting of Sensory Neurons. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics