Skip to main content

Predicting Progression of Alzheimer’s Disease With Magnetic Resonance

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 709 Accesses

Abstract

Advances in the field of molecular biology concerning Alzheimer’s disease (AD) generate the possibility of useful therapeutic interventions in the near future. The major beneficiaries of disease-modifying treatments that are currently under development will be those patients who have early pathological involvement. Improved methods for early diagnosis and noninvasive surrogates of disease severity in AD are crucial for early therapeutic interventions and for measuring their effectiveness. Various quantitative magnetic resonance (MR) techniques that measure the anatomic, biochemical, microstructural, functional, and bloodflow changes are being evaluated as possible surrogate measures of disease progression. Cross-sectional and longitudinal studies indicate that MR-based volume measurements are potential surrogates of disease progression in AD, starting from the preclinical stages. The recent development of amyloid imaging tracers for positron emission tomography has been a major breakthrough in the field of imaging markers for AD. Efforts to image plaques also are underway in MRI. As with indirect MR measures, the approaches that directly image the pathological substrate will need to undergo a validation process by longitudinal studies to prove their usefulness as predictors of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braak H, Braak E. Neuropathological staging of Alzheimer’s disease. Acta Neuropathol (Berl) 1991;82:239–259.

    Article  CAS  Google Scholar 

  2. Seab JB, Jagust WJ, Wong STS, et al. Quantitive NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 1988;8:200–208.

    Article  PubMed  CAS  Google Scholar 

  3. Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 1991;41:51–54.

    PubMed  CAS  Google Scholar 

  4. Jack CR Jr., Petersen RC, O’Brien PC, Tangalos EG. MR based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42:183–188.

    PubMed  Google Scholar 

  5. Convit A, de Leon MJ, Golomb J, et al. Hippocampal atrophy in early Alzheimer’s disease: anatomic specificity and validation. Psychiatr Q 1993;64:371–387.

    Article  PubMed  CAS  Google Scholar 

  6. Frisoni GB, Bianchetti A, Geroldi C, Trabucchi M. Measures of medial temporal lobe atrophy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994;57:1438–1439.

    Article  PubMed  CAS  Google Scholar 

  7. Lehericy S, Baulac M, Chiras J, et al. Amygdalohippocampal MR volume volume measurements in the early stages of Alzheimer’s disease. AJNR Am J Neuroradiol 1994;15:927–937.

    Google Scholar 

  8. de Leon MJ, George AE, Golomb J, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 1997;18:1–11.

    Article  PubMed  Google Scholar 

  9. Jack CR, Petersen RC, Xu Y, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997;49:786–794.

    PubMed  Google Scholar 

  10. Juottonen K, Laasko MP, Insausti R, et al. Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 1998;19:15–22.

    Article  PubMed  CAS  Google Scholar 

  11. Golebiowski M, Barcikowska M, Pfeffer A. Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type. Dementia Geriatric Cognitive Disord 1999;10:284–288.

    Article  CAS  Google Scholar 

  12. Bobinski M, deLeon MJ, Convit A, et al. MRI of entorhinal cortex in Alzheimer’s Disease. Lancet 1999;353:38–40.

    Article  PubMed  CAS  Google Scholar 

  13. Juottonen K, Laakso MP, Partanen K, Soininen H. Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR, Am J Neuroradiol 1999;20:139–144.

    CAS  Google Scholar 

  14. Xu Y, Jack CR Jr., O’Brien PC et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760–1767.

    PubMed  CAS  Google Scholar 

  15. Klunk WE, Panchalingam K, Moosy J, McClure RJ, Pettegrew JW. N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 1992;42:1578–1585.

    PubMed  CAS  Google Scholar 

  16. Shonk TK, Moats RA, Gifford PG, et al. Probable Alzheimer’s disease: diagnosis with proton MR spectroscopy. Radiology 1995;195:65–72.

    PubMed  CAS  Google Scholar 

  17. Meyerhoff DJ, MacKay S, Norman D, Van Dyke C, Fein G, Weiner MW. Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1994;36:40–47.

    Article  PubMed  CAS  Google Scholar 

  18. Kwo-On-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ. Brain N-acetyl-l-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 1994;667:167–174.

    Article  PubMed  CAS  Google Scholar 

  19. Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 1995;46: 531–540.

    Article  PubMed  CAS  Google Scholar 

  20. Jessen F, Block W, Träber F, et al. Proton MR spectroscopy detects a relative decrease of N-acetyl aspartate in the medial temporal lobe of patients with AD. Neurology 2000;55:684–688.

    PubMed  CAS  Google Scholar 

  21. Kantarci K, Jack CR, Xu YC, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease, a 1H MRS study. Neurology 2000;55:210–217.

    PubMed  CAS  Google Scholar 

  22. Schuff N, Capizzano AA, Du AT, et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 2002;58:928–935.

    PubMed  CAS  Google Scholar 

  23. Miller BL, Moats RA, Shonk T, Earnst T, Wooley S, Ross BD. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 1993;187:433–437.

    PubMed  CAS  Google Scholar 

  24. Huang W, Alexander GE, Chang L, et al. Brain metabolite concentration and dementia severity in Alzheimer’s disease. A 1H MRS study. Neurology 2001;57:626–632.

    PubMed  CAS  Google Scholar 

  25. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Devel Neurosci 1993;15:289–298.

    CAS  Google Scholar 

  26. Urenjak J, Williams SR, Gadian DG, et al. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981–989.

    PubMed  CAS  Google Scholar 

  27. Bitsch A, Bruhn H, Vougioukas V, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. Am J Neuroradiol 1999;20:1619–1627.

    PubMed  CAS  Google Scholar 

  28. Ernst T, Chang L, Melchor R, Mehringer M. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 1997;203:829–836.

    PubMed  CAS  Google Scholar 

  29. MacKay S, Ezekiel F, Di Sclafani V, et al. Alzheimer’s disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology 1996;198:537–545.

    PubMed  CAS  Google Scholar 

  30. Wurtman RJ, Blusztajn JK, Marie JC. “Autocannibalism” of choline-containing membrane phospholipids in the pathogenesis of Alzheimer’s disease. Neurochem Int 1985;7:369–372.

    Article  CAS  Google Scholar 

  31. Hanyu H, Sakurai H, Takasaki M, Shindo H, Abe K. Diffusion — weighted MR imaging of the hippocampus and temporal white matter in Alzheimer’s disease. J Neurol Sci 1998;156:195–200.

    Article  PubMed  CAS  Google Scholar 

  32. Sandson TA, Felician O, Edelman RR, Warach S. Diffusion-weighted magnetic resonance imaging in Alzheimer’s Disease. Dement Geriatr Cogn Disord 1999;10:166–171.

    Article  PubMed  CAS  Google Scholar 

  33. Kantarci K, Jack CR, Xu YC, et al. Regional diffusivity of water in mild cognitive impairment and Alzheimer’s disease. Radiology 2001;219:101–107.

    PubMed  CAS  Google Scholar 

  34. Bozzali M, Falini A, Franceschi M, et al. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2002; 72:742–746.

    Article  PubMed  CAS  Google Scholar 

  35. Hanyu H, Asano T, Iwamoto T, Takasaki M, Shindo H, Abe K. Magnetization transfer measurements of the hippocampus in patients with Alzheimer’s disease, vascular dementia, and other types of dementia. AJNR Am J Neuroradiol 2000;21:1235–1242.

    PubMed  CAS  Google Scholar 

  36. Bozzali M, Franceschi M, Falini A et al. Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 2001;57:1135–1137.

    PubMed  CAS  Google Scholar 

  37. van der Flier WM, van den Heuvel DMJ, Weverling-Rijnsburger AWE, et al. Cognitive decline in AD and mild cognitive impairment is associated with global brain damage. Neurology 2002;59:874–879.

    Article  Google Scholar 

  38. Maas LC, Harris GJ, Satlin A, English CD, Lewis RF, Renshaw PF. Regional cerebral blood volume measured by dynamic susceptibility contrast MR imaging in Alzheimer’s disease: a principal components analysis. J Magn Reson Imaging. 1997;7:215–219.

    Article  PubMed  CAS  Google Scholar 

  39. Harris GJ, Lewis RF, Satlin A, et al. Dynamic susceptibility contrast MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR, Am J Neuroradiol 1998;19: 1727–1732.

    CAS  Google Scholar 

  40. Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: Correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol 2001;22: 1030–1036.

    PubMed  CAS  Google Scholar 

  41. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000;47:93–100.

    Article  PubMed  CAS  Google Scholar 

  42. Thulborn K, Martin C, Voyvodic J. Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer’s disease and in cognitively able elderly volunteers. AmJ Neuroradiol 2000;21:524–531.

    CAS  Google Scholar 

  43. Buckner R, Snyder A, Sanders A, Raichle M, Morris J. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000;12:24–34.

    Article  PubMed  Google Scholar 

  44. Johnson S, Saykin A, Baxter L, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. NeuroImage 2000;11:179–187.

    Article  PubMed  CAS  Google Scholar 

  45. Saykin A, Flashman L, Frutiger S, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc 1999;5: 377–392.

    Article  PubMed  CAS  Google Scholar 

  46. Prvulovic D, Hubl D, Sack A, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. NeuroImage 2002;17:1403–1414.

    Article  PubMed  CAS  Google Scholar 

  47. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding. Neurology 2001;57:812–816.

    PubMed  CAS  Google Scholar 

  48. Rombouts S, Barkhof F, Veltman D, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. Am J Neuroradiol 2000;21:1869–1875.

    PubMed  CAS  Google Scholar 

  49. Small S, Perera G, Delapaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 1999;45:466–472.

    Article  PubMed  CAS  Google Scholar 

  50. Sperling R, Bates J, Chua E, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74:44–50.

    Article  PubMed  CAS  Google Scholar 

  51. Price JL, Morris JC. Tangles and plaques in nondemented aging and preclinical Alzheimer’s disease. Ann Neurol 1999;45:358–368.

    Article  PubMed  CAS  Google Scholar 

  52. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR. “Preclinical” AD revisited. Neuropathology of cognitively normal older adults. Neurology 2000;55:370–376.

    PubMed  CAS  Google Scholar 

  53. Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001;49:202–213.

    Article  PubMed  CAS  Google Scholar 

  54. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment clinical characterization and outcome Arch Neurol 1999;56: 303–308.

    Article  PubMed  CAS  Google Scholar 

  55. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985–1992.

    Article  PubMed  CAS  Google Scholar 

  56. Petersen RC, Stevens JC, Ganguli M. Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: Mild cognitive impairment (an evidence based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1133–1142.

    PubMed  CAS  Google Scholar 

  57. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001;58:397–405.

    Article  PubMed  CAS  Google Scholar 

  58. Du AT, Schuff N, Amend D, et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2001;71:431–432.

    Article  Google Scholar 

  59. Krasuski JS, Alexander GE, Horwitz B, et al. Volumes of medial temporal lobe structures in patients with Alzheimer’s disease and mild cognitive impairment. Biol Psychiatry 1998;43:60–68.

    Article  PubMed  CAS  Google Scholar 

  60. Dickerson BC, Goncharova I, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging. 2001;22:747–754.

    Article  PubMed  CAS  Google Scholar 

  61. De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001;22:529–539.

    Article  PubMed  Google Scholar 

  62. Catani M, Cherubini A, Howard R. 1H MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport 2001;12:2315–2317.

    Article  PubMed  CAS  Google Scholar 

  63. Kantarci K, Jack CR, Xu YC, et al. Regional diffusivity of water in mild cognitive impairment and Alzheimer’s disease. Radiology 2001;219:101–107.

    PubMed  CAS  Google Scholar 

  64. Kabani NJ, Sled JG, Shuper A, Chertkow H. Regional magnetization transfer ratio changes in mild cognitive impairment. Magn Reson Med 2002;47:143–148.

    Article  PubMed  Google Scholar 

  65. van der Flier WM, van den Heuvel DMJ, Weverling-Rijnsburger AWE, et al. Cognitive decline in AD and mild cognitive impairment is associated with global brain damage. Neurology 2002;59:874–879.

    Article  Google Scholar 

  66. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among Normal, MCI, and Alzheimer’s patients. Neurology 2003;61:500–506.

    PubMed  CAS  Google Scholar 

  67. Yasuda M, Mori E, Kitagaki H, et al. Apolipoprotein E epsilon 4 allele and whole brain atrophy in late-onset Alzheimer’s disease. Am J Psychiatry 1998;155:779–784.

    PubMed  CAS  Google Scholar 

  68. Geroldi C, Pihlajamaki M, Laasko MP, et al. APOE-ε4 is associated with less frontal and more medial temporal lobe atrophy in AD. Neurology 1999;53:1825–1832.

    PubMed  CAS  Google Scholar 

  69. Hashimoto M, Yasuda M, Tanimukai S, et al. Apolipoprotein E _4 and the pattern of regional brain atrophy in Alzheimer’s disease. Neurology 2001;57:1461–1466.

    PubMed  CAS  Google Scholar 

  70. Jack CR, Petersen RC, Xu Y, et al. Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Ann Neurol 1998;43:303–310.

    Article  PubMed  Google Scholar 

  71. Reiman EM, Uecker A, Caselli RJ, et al. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Ann Neurol 1998;44:288–291.

    Article  PubMed  CAS  Google Scholar 

  72. Barber R, Gholkar A, Scheltens P, et al. Apolipoprotein E epsilon4 allele, temporal lobe atrophy, and white matter lesions in late-life dementias. Arch Neurol 1999;56:961–965.

    Article  PubMed  CAS  Google Scholar 

  73. Klunk WE, Panchalingam K, McClure RJ, Stanley A, Pettegrew JW. Metabolic alterations in postmortem Alzheimer’s disease brain are exaggerated by Apo-E4. Neurobiol Aging 1998;19:511–515.

    Article  PubMed  CAS  Google Scholar 

  74. Kantarci K, Smith GE, Ivnik RJ, et al. 1H MRS, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer’s disease. J Int Neuropsychol Soc 2002;8:934–942.

    Article  PubMed  CAS  Google Scholar 

  75. Jack CR, Jr., Dickson DW, Parisi JE, et al. Antemortem MRI findings correlate with hippocampal neuropathology in normal aging and dementia. Neurology. 2002;58:750–757.

    PubMed  Google Scholar 

  76. Silbert LC, Quinn JF, Moore MM, et al. Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 2003;61:487–492.

    PubMed  CAS  Google Scholar 

  77. Bobinski M, de Leon MJ, Wegiel J, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 2000;95(3):721–725.

    Article  PubMed  CAS  Google Scholar 

  78. Goesche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hippocampal volume as an index of Alzheimer neuropathology. Findings from the Nun Study. Neurology 2002;58:1476–1482.

    Google Scholar 

  79. Jack CR, Petersen RC, Xu Y, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397–1403.

    PubMed  Google Scholar 

  80. Visser PJ, Scheltens P, Verhey FR, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999;246:477–485.

    Article  PubMed  CAS  Google Scholar 

  81. Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural Magnetic Resonance Imaging to predict who will get Alzheimer’s disease. Ann Neurol 2000;47: 430–439.

    Article  PubMed  CAS  Google Scholar 

  82. Kaye JA, Swihart T, Howieson D, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997;48:1297–1304.

    PubMed  CAS  Google Scholar 

  83. Jack CR, Petersen RC, Xu Y, et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 1998;51:993–999.

    PubMed  Google Scholar 

  84. Laakso MP, Lehtovirta M, Partanen K, Riekkinen PJ, Soininen H. Hippocampus in Alzheimer’s disease: a 3-yr follow-up MRI study. Biol Psychiatry 2000;47:557–561.

    Article  PubMed  CAS  Google Scholar 

  85. Jack CR, Petersen RC, Xu Y, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 2000;55: 484–489.

    PubMed  Google Scholar 

  86. Teipel SJ, Bayer W, Alexander GE, et al. Progression of corpus callosum atrophy in Alzheimer’s disease. Arch Neurol 2002;59:243–248.

    Article  PubMed  Google Scholar 

  87. Fox NC, Freeborough PA. Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging 1997;7:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  88. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 2000;57:339–344.

    Article  PubMed  CAS  Google Scholar 

  89. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 1999;52:1687–1689.

    PubMed  CAS  Google Scholar 

  90. Wang D, Chalk JB, Rose SE, et al. MR image-based measurement rates of change in volumes of brain structures. Part II: Application to a study of Alzheimer’s disease and normal aging. Magn Reson Imaging. 2002;20: 41–48.

    Article  PubMed  Google Scholar 

  91. Freebrough PA, Fox NC. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Computer Assisted Tomogr 1998;22:838–843.

    Article  Google Scholar 

  92. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 2002;99: 4703–4707.

    Article  PubMed  CAS  Google Scholar 

  93. Adalsteinsson E, Sullivan EV, Kleinhans N, Spielman DM, Pfefferbaum A. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 2000;355:1696–1697.

    Article  PubMed  CAS  Google Scholar 

  94. Jessen F, Block W, Träber F, et al. Decrease of N-acetylaspartate correlates with cognitive decline of AD patients. Neurology 2001;57:930–932.

    PubMed  CAS  Google Scholar 

  95. Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD. Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer’s disease. Brain 2002;125:2332–2341.

    Article  PubMed  Google Scholar 

  96. Bradley KM, Bydder GM, Budge MM, et al. Serial brain MRI at 3–6 month intervals as surrogate marker for Alzheimer’s disease. Br J Radiol 2002;75:506–513.

    PubMed  CAS  Google Scholar 

  97. Jack CR, Jr., Slomkowski M, Gracon S, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 2003;60:253–260.

    Article  PubMed  Google Scholar 

  98. Satlin A, Bodick N, Offen WW, Renshaw PF. Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with Xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 1997;154:1459–1461.

    PubMed  CAS  Google Scholar 

  99. Shoghi-Jadid K, Small GW, Agdeppa ED, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer’s disease. Am J Geriatric Psychiatry. 2002;10:24–34.

    Article  Google Scholar 

  100. Bacskai BJ, Hickey GA, Skoch J, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci USA 2003;100:12462–12467.

    Article  PubMed  CAS  Google Scholar 

  101. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson A. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 1999;96:14079–14084.

    Article  PubMed  CAS  Google Scholar 

  102. Poduslo JF, Wengenack TM, Curran GL, et al. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 2002;11:315–329.

    Article  PubMed  CAS  Google Scholar 

  103. Wadghiri YZ, Sigurdsson EM, Sadowski M, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003;50: 293–302.

    Article  PubMed  CAS  Google Scholar 

  104. Guillozet AL, Weintraub S, Mash DC, Mesulam MM. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 2003;60:729–736.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kantarci, K., Jack, C.R. (2005). Predicting Progression of Alzheimer’s Disease With Magnetic Resonance. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_9

Download citation

Publish with us

Policies and ethics