Skip to main content

Positron Emission Tomography and Embryonic Dopamine Cell Transplantation in Parkinson’s Disease

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Parkinson’s disease (PD) is a common movement disorder marked by progressive degeneration of dopamine (DA) neurons in the substantia nigra and striatum. The hallmark of motor symptoms in PD includes the resting tremor, rigidity, bradykinesia, and posture instability. Medical therapy to replace lost DA works well initially but becomes ineffective and less tolerated over time. The chronic use of dopaminergic medications leads to motor fluctuations and dyskinesias in patients at more advanced stages. The transplantation of viable DA tissue into the brain is a promising new treatment to reinnervate neurons along the nigrostriatal pathway. In patients with PD, cell survival and clinical benefit have been observed after fetal nigral grafting. Position emission tomography allows in vivo imaging of neuropathophysiology resulting from dopaminergic dysfunction that is inherent in PD by measuring cerebral blood flow, metabolism, and neuroreceptor binding. It offers a unique window for assessing the functional recovery of the brain and its clinical correlation after medical or surgical interventions. In this chapter, we describe the use of positron emission tomography in providing sensitive biomarkers in PD and its application in evaluating the surgical outcome of embryonic DA cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patlak C, Blasberg R. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985;5:584–590.

    PubMed  CAS  Google Scholar 

  2. Logan, J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–670 (Record as supplied by publisher).

    Article  PubMed  CAS  Google Scholar 

  3. Friston KJ, et al. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 1995;2:189–210.

    Article  Google Scholar 

  4. Worsley KJ, et al. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 1996;4:58–73.

    Article  CAS  PubMed  Google Scholar 

  5. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med, 1988;318: 876–880.

    Article  PubMed  CAS  Google Scholar 

  6. Fearnley J, Lees A. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114:2283–2301.

    Article  PubMed  Google Scholar 

  7. Tedroff J, et al. Regulation of dopaminergic activity in early Parkinson’s disease. Ann Neurol 1999;46:359–365.

    Article  PubMed  CAS  Google Scholar 

  8. Rinne JO, et al. [18F]FDOPA and [18F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson’s disease. Synapse 2001;40:193–200.

    Article  PubMed  CAS  Google Scholar 

  9. Ishikawa T, et al. Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. J Nucl Med 1996;37:1760–1765.

    PubMed  CAS  Google Scholar 

  10. Dhawan V, et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method vs. graphical approach. J Nucl Med 2002;43:1324–1330.

    PubMed  Google Scholar 

  11. Ishikawa T, et al. Clinical significance of striatal DOPA decarboxylase activity in Parkinson’s disease. J Nucl Med, 1996;37:216–222.

    PubMed  CAS  Google Scholar 

  12. Vingerhoets FJ, et al. Reproducibility and discriminating ability of fluorine-18-6-fluoro-L-Dopa PET in Parkinson’s disease. J Nucl Med 1996;37:421–426.

    PubMed  CAS  Google Scholar 

  13. Morrish PK, Sawle GV, Brooks DJ. Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 1996;119:2097–2103.

    Article  PubMed  Google Scholar 

  14. Vingerhoets FJ, et al. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 1997;41:58–64.

    Article  PubMed  CAS  Google Scholar 

  15. Rinne JO, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: (18F)fluorodopa positron emission tomographic study. Arch Neurol 2000;57:470–475.

    Article  PubMed  CAS  Google Scholar 

  16. Ribeiro MJ, et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch Neurol 2002;59:580–586.

    Article  PubMed  Google Scholar 

  17. Vingerhoets, F., et al. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism. Ann Neurol 1994;36:759–764.

    Article  PubMed  CAS  Google Scholar 

  18. Morrish PK, et al. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998;64:314–319.

    PubMed  CAS  Google Scholar 

  19. Ito K, et al. Statistical parametric mapping with 18FDOPA PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;66: 754–758.

    PubMed  CAS  Google Scholar 

  20. Rakshi JS, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [18F]dopa-PET study. Brain 1999;122:1637–1650.

    Article  PubMed  Google Scholar 

  21. Ishikawa, T, et al. Fluorodopa positron emission tomography with an inhibitor of catechol-O-methyltransferase: effect of the plasma 3-O-methyldopa fraction on data analysis. J Cereb Blood Flow Metab 1996;16:854–863.

    Article  PubMed  CAS  Google Scholar 

  22. Kish SJ, et al. Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies? Ann Neurol 1995;38:260–264.

    Article  PubMed  CAS  Google Scholar 

  23. Lee CS, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47:493–503.

    Article  PubMed  CAS  Google Scholar 

  24. Wilson JM, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 1996;47:718–726.

    PubMed  CAS  Google Scholar 

  25. Chaly T, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2-beta-carbomethoxy-3-beta-(4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol 1996;23:999–1004.

    Article  PubMed  CAS  Google Scholar 

  26. Marek K, et al. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287:1653–1661.

    Article  CAS  Google Scholar 

  27. Rinne JO, et al. Usefulness of a dopamine transporter PET ligand (18F)beta-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:737–741.

    PubMed  CAS  Google Scholar 

  28. Ilgin N, et al.,PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 1999; 52:1221–1226.

    PubMed  CAS  Google Scholar 

  29. Ouchi Y, et al. Alterations in binding site density of dopamine transporter in the striatum, orbitofrontal cortex, and amygdala in early Parkinson’s disease: compartment analysis for beta-CFT binding with positron emission tomography. Ann Neurol 1999;45:601–610.

    Article  PubMed  CAS  Google Scholar 

  30. Volkow ND, et al. Dopamine transporters decrease with age. J Nucl Med 1996;37:554–559.

    PubMed  CAS  Google Scholar 

  31. Kazumata K, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med 1998;39: 1521–1530.

    PubMed  CAS  Google Scholar 

  32. Ma, Y, et al. Parametric mapping of (18F)FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse 2002;45:125–133.

    Article  PubMed  CAS  Google Scholar 

  33. Ouchi Y, et al. Presynaptic and postsynaptic dopaminergic binding densities in the nigrostriatal and mesocortical systems in early Parkinson’s disease: a double-tracer positron emission tomography study. Ann Neurol 1999; 46:723–731.

    Article  PubMed  CAS  Google Scholar 

  34. Turjanski N, Lees AJ, Brooks DJ. In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology 1997;49:717–723.

    PubMed  CAS  Google Scholar 

  35. Rinne JO, et al. PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 1993;8:134–138.

    Article  PubMed  CAS  Google Scholar 

  36. Antonini A, et al. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: Influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 1994;44:1325–1329.

    PubMed  CAS  Google Scholar 

  37. Antonini A, et al., Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 1997; 12:33–38.

    Article  PubMed  CAS  Google Scholar 

  38. Tedroff J, et al. Levodopa-induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by (11C)raclopride displacement and PET. Neurology 1996;46:1430–1436.

    PubMed  CAS  Google Scholar 

  39. Piccini P, Pavese N, Brooks DJ. Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 2003;53:647–653.

    Article  PubMed  CAS  Google Scholar 

  40. Goerendt IK, et al. Dopamine release during sequential finger movements in health and Parkinson’s disease: a PET study. Brain 2003; 126:312–325.

    Article  PubMed  Google Scholar 

  41. de la Fuente-Fernandez R, et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 2001;49: 298–303.

    Article  PubMed  Google Scholar 

  42. Otsuka M, et al. Striatal blood flow, glucose metabolism and 18FDOPA uptake: difference in Parkinson’s disease and atypical parkinsonism. J Neurol Neurosurg Psychiatry 1991;54:898–904.

    PubMed  CAS  Google Scholar 

  43. Eidelberg D, et al. Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson’s disease. Ann Neurol 1996;39:450–459.

    Article  PubMed  CAS  Google Scholar 

  44. Hu MT, et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain 2000;123:340–352.

    Article  PubMed  Google Scholar 

  45. Playford ED, et al., Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 1992;32:151–161.

    Article  PubMed  CAS  Google Scholar 

  46. Jahanshahi M, et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995;118:913–933.

    Article  PubMed  Google Scholar 

  47. Samuel M, et al. Motor imagery in normal subjects and Parkinson’s disease patients: an H2 15O PET study. Neuroreport 2001;12:821–828.

    Article  PubMed  CAS  Google Scholar 

  48. Catalan MJ, et al. A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 1999;122:483–495.

    Article  PubMed  Google Scholar 

  49. Alexander G, Moeller J. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a prinicipal component approach to modeling brain function in disease. Human Brain Mapping 1994; 2: 1–16.

    Article  Google Scholar 

  50. Zuendorf G, et al. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum Brain Mapp 2003;18:13–21.

    Article  PubMed  Google Scholar 

  51. Eidelberg D, et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J Nucl Med 1995;36:378–383.

    PubMed  CAS  Google Scholar 

  52. Eidelberg D, et al., Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 1995;45:1995–2004.

    PubMed  CAS  Google Scholar 

  53. Moeller JR, et al. Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 1999;40:1264–1269.

    PubMed  CAS  Google Scholar 

  54. Nakamura T, et al. Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum Brain Mapp 2001;12:42–60.

    Article  PubMed  CAS  Google Scholar 

  55. Carbon M, et al. Learning networks in health and Parkinson’s disease: reproducibility and treatment effects. Hum Brain Mapp 2003;19:197–211.

    Article  PubMed  Google Scholar 

  56. Fahn S. The spectrum of levodopa-induced dyskinesias. Ann Neurol, 2000;47(4 Suppl 1):S2–S9; discussion S9–S11.

    PubMed  CAS  Google Scholar 

  57. Obeso JA, et al. Surgical treatment of Parkinson’s disease. Baillieres Clin Neurol 1997;6: 125–145.

    PubMed  CAS  Google Scholar 

  58. Starr PA, Vitek JL, Bakay RA. Ablative surgery and deep brain stimulation for Parkinson’s disease. Neurosurgery 1998;43:989–1013; discussion 1013–1015.

    Article  PubMed  CAS  Google Scholar 

  59. Haslinger B, et al. Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage 2003;18:517–524.

    Article  PubMed  CAS  Google Scholar 

  60. Feigin A, et al. Effects of levodopa infusion on motor activation responses in Parkinson’s disease. Neurology 2002;59:220–226.

    PubMed  CAS  Google Scholar 

  61. Fukuda M, et al. Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 2001;49:155–164.

    Article  PubMed  CAS  Google Scholar 

  62. Fukuda M, et al. Pallidal stimulation for parkinsonism: improved brain activation during sequence learning. Ann Neurol 2002;52:144–152.

    Article  PubMed  Google Scholar 

  63. Limousin P, et al. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann Neurol 1997;42:283–291.

    Article  PubMed  CAS  Google Scholar 

  64. Siebner HR, et al. Changes in handwriting resulting from bilateral high-frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 1999;14:964–971.

    Article  PubMed  CAS  Google Scholar 

  65. Ceballos-Baumann AO, et al. A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 1999;56:997–1003.

    Article  PubMed  CAS  Google Scholar 

  66. Su PC, et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease. Ann Neurol 2001;50:514–520.

    Article  PubMed  CAS  Google Scholar 

  67. Trost M, et al. Evolving metabolic changes during the first postoperative year after subthalamotomy. J Neurosurg 2003;99:872–878.

    PubMed  Google Scholar 

  68. Fukuda M, et al. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 2001;124:1601–1609.

    Article  PubMed  CAS  Google Scholar 

  69. Feigin A, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 2001;57:2083–2088.

    PubMed  CAS  Google Scholar 

  70. Gill SS, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9:589–595.

    Article  PubMed  CAS  Google Scholar 

  71. Tabbal S, Fahn S, Frucht S. Fetal tissue transplantation [correction of transplanation] in Parkinson’s disease. Curr Opin Neurol 1998;11:341–349.

    Article  PubMed  CAS  Google Scholar 

  72. Lindvall O. Rationales and strategies of fetal neural transplantation in PD. In: Krauss JK, Jankovic J, Grossman RG, editors. Surgery for Parkinson’s Disease and Movement Disorders. Philadelphia: Lippincott Williams & Wilkins; 2001:194–209.

    Google Scholar 

  73. Date I, et al. Efficacy of pretransection of peripheral nerve for promoting the survival of cografted chromaffin cells and recovery of host dopaminergic fibers in animal models of Parkinson’s disease. Neurosci Res 1994; 20:213–221.

    Article  PubMed  CAS  Google Scholar 

  74. Subramanian T, et al. Polymer-encapsulated PC-12 cells demonstrate high-affinity uptake of dopamine in vitro and 18F-Dopa uptake and metabolism after intracerebral implantation in nonhuman primates. Cell Transplant 1997; 6: 469–477.

    Article  PubMed  CAS  Google Scholar 

  75. Dall AM, et al. Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 2002;11:733–746.

    PubMed  Google Scholar 

  76. Widner H, et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 1992;327:1556–1563.

    Article  PubMed  CAS  Google Scholar 

  77. Lindvall O, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247:574–577.

    Article  PubMed  CAS  Google Scholar 

  78. Remy P, et al. Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients. Ann Neurol 1995;38:580–588.

    Article  PubMed  CAS  Google Scholar 

  79. Wenning GK, et al. Short-and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997;42:95–107.

    Article  PubMed  CAS  Google Scholar 

  80. Levivier M, et al. Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson’s disease. Methodology and 6-month to 1-year follow-up in 3 patients. Stereotact Funct Neurosurg 1997;69:99–111.

    Article  PubMed  CAS  Google Scholar 

  81. Freed CR, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 1992;327:1549–1555.

    Article  PubMed  CAS  Google Scholar 

  82. Hagell P, et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 1999;122:1121–1132.

    Article  PubMed  Google Scholar 

  83. Mendez I, et al. Neural transplantation cannula and microinjector system: experimental and clinical experience. Technical note. J Neurosurg 2000;92:493–499.

    PubMed  CAS  Google Scholar 

  84. Freeman TB, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995;38: 379–388.

    Article  PubMed  CAS  Google Scholar 

  85. Hauser RA, et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol 1999;56:179–187.

    Article  PubMed  CAS  Google Scholar 

  86. Kordower JH, et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord 1998;13:383–393.

    Article  PubMed  CAS  Google Scholar 

  87. Brundin P, et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 2000;123( Pt 7):1380–90.

    Article  PubMed  Google Scholar 

  88. Freed CR, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344:710–719.

    Article  PubMed  CAS  Google Scholar 

  89. Trott CT, et al. Cognition following bilateral implants of embryonic dopamine neurons in PD: A double blind study. Neurology 2003;60:1938–1943.

    PubMed  CAS  Google Scholar 

  90. Nakamura T, et al. Blinded positron emission tomography study of dopamine cell implantation for Parkinson’s disease. Ann Neurol 2001;50:181–187.

    Article  PubMed  CAS  Google Scholar 

  91. Brownell AL, et al. In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann Neurol 1998;43:387–390.

    Article  PubMed  CAS  Google Scholar 

  92. Lee CS, et al. Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 2000;123:1365–1379.

    Article  PubMed  Google Scholar 

  93. Cochen V, et al. Transplantation in Parkinson’s disease: PET changes correlate with the amount of grafted tissue. Mov Disord 2003; 18:928–932.

    Article  PubMed  Google Scholar 

  94. Fricker RA, et al.,The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 1997; 79:711–721.

    Article  PubMed  CAS  Google Scholar 

  95. Piccini P, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999;2:1137–1140.

    Article  PubMed  CAS  Google Scholar 

  96. Piccini P, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 2000;48:689–695.

    Article  PubMed  CAS  Google Scholar 

  97. Bluml S, et al. Activation of neurotransplants in humans. Exp Neurol 1999;158:121–125.

    Article  PubMed  CAS  Google Scholar 

  98. Bjorklund LM, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99:2344–2349.

    Article  PubMed  CAS  Google Scholar 

  99. Meltzer CC, et al. Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 2001;49:586–591; discussion 591–592.

    Article  PubMed  CAS  Google Scholar 

  100. Defer GL, et al. Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain 1996;119:41–50.

    Article  PubMed  Google Scholar 

  101. Hagell P, et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 2002;5:627–628.

    PubMed  CAS  Google Scholar 

  102. Ma Y, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002;52:628–634.

    Article  PubMed  Google Scholar 

  103. Brooks DJ, et al. Neuroimaging of dyskinesia. Ann Neurol 2000;47(4 Suppl 1):S154–S158; discussion S158–S159.

    PubMed  CAS  Google Scholar 

  104. Bjorklund A, et al. Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol 2003;2:437–445.

    Article  PubMed  Google Scholar 

  105. Deacon T, et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat Med 1997;3:350–353.

    Article  PubMed  CAS  Google Scholar 

  106. Schumacher JM et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 2000;54:1042–1050.

    PubMed  CAS  Google Scholar 

  107. Prasad KN, et al. Efficacy of grafted immortalized dopamine neurons in an animal model of parkinsonism: a review. Mol Genet Metab 1998;65:1–9.

    Article  PubMed  CAS  Google Scholar 

  108. During MJ, et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001;12:1589–1591.

    PubMed  CAS  Google Scholar 

  109. Kang UJ, Lee WY, Chang JW. Gene therapy for Parkinson’s disease: determining the genes necessary for optimal dopamine replacement in rat models. Hum Cell 2001;14:39–48.

    PubMed  CAS  Google Scholar 

  110. Sullivan AM, Pohl J, Blunt SB. Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson’s disease. Eur J Neurosci 1998;10:3681–3688.

    Article  PubMed  CAS  Google Scholar 

  111. Mendez I, et al. Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line—derived neurotrophic factor in patients with Parkinson’s disease. Report of two cases and technical considerations. J Neurosurg 2000;92:863–869.

    Article  PubMed  CAS  Google Scholar 

  112. Mendez I, et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J Neurosurg 2002;96:589–596.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ma, Y., Dhawan, V., Freed, C., Fahn, S., Eidelberg, D. (2005). Positron Emission Tomography and Embryonic Dopamine Cell Transplantation in Parkinson’s Disease. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_5

Download citation

Publish with us

Policies and ethics