Skip to main content

Advanced Magnetic Resonance Imaging in Leukodystrophies

  • Chapter
Book cover Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 703 Accesses

Abstract

Advanced magnetic resonance (MR) techniques, namely MR spectroscopy and perfusion MR imaging, have provided the researcher with new tools for evaluating leukodystrophies. They have allowed for better characterization of diseases, improved sensitivity of detection, and a means of tracking brain metabolites and perfusion in vivo to monitor therapy or disease progression. In some cases, these techniques also allow for the specific diagnosis of certain abnormalities. Evaluation of leukodystrophies with MR spectroscopy has advanced from the simple observation of metabolic derangements and correlation to pathophysiology to the prognostication of patient clinical outcome and the in vivo tracking of metabolic abnormalities after therapeutic intervention. We aim to describe how these technologies can aid the clinician in the preventative, diagnostic, and treatment schemes in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523–532.

    PubMed  Google Scholar 

  2. Moore DF, Altarescu G, Ling GSF, et al. Elevated cerebral blood flow velocities in Fabry disease with reversal after enzyme replacement. Stroke 2002;33:525–531.

    PubMed  Google Scholar 

  3. Fukutani Y, Noriki Y, Sasaki K, et al. Adult-type metachromatic leukodystrophy with a compound heterozygote mutation showing character change and dementia. Psychiatry Clin Neurosci 1999;53:425–428.

    PubMed  CAS  Google Scholar 

  4. Tamagaki C, Murata A, Saito A, Kinoshita T. [Two siblings with adult-type metachromatic leukodystrophy: correlation between clinical symptoms and neuroimaging.] [Japanese]. Seishin Shinkeigaku Zasshi 2000;102: 399–409.

    PubMed  CAS  Google Scholar 

  5. Salmon E, Can der Linden M, Maerfens Noordhout A, Brucher JM. Early thalamic and cortical hypometabolism in adult-onset dementia due to metachromatic leukodystrophy. Acta Neurologica Belg 1999;1999:3.

    Google Scholar 

  6. Sawaishi Y, Hatazawa J, Ochi N, et al. Positron emission tomography in juvenile Alexander disease. J Neurol Sci 1999;165:116–120.

    PubMed  CAS  Google Scholar 

  7. Al-Essa MA, Bakheet SM, Patay ZJ, Powe JE, Ozand PT. Clinical and cerebral fdg pet scan in a patient with krabbe’s disease. Pediatr Neurol 2000;22:44–47.

    PubMed  CAS  Google Scholar 

  8. Van Zijl PC, Barker PB. Magnetic resonance spectroscopy and spectroscopic imaging for the study of brain metabolism. Ann NY Acad Sci 1997;820:75–96.

    PubMed  Google Scholar 

  9. Murphy-Boesch J, Stoyanova R, Srinivasan R, et al. Protondecoupled 31P chemical shift imaging of the human brain in normal volunteeers. NMR Biomed 1993;6:173.

    PubMed  CAS  Google Scholar 

  10. Gruetter R, Novotny EJ, Boulware SD. Localized 13C NMR spectroscopy in the human brain of amino acid labeling from 13C glucose. J Neurochem 1994;63:1377–1385

    PubMed  CAS  Google Scholar 

  11. Birken DL, Oldendorf WH. N-Acetylaspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989;13:23–31.

    PubMed  CAS  Google Scholar 

  12. Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD. N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol 2002; 51: 51–58.

    PubMed  CAS  Google Scholar 

  13. Bitsch A, Bruhn H, Vougioukas V, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 1999;20:1619–1627.

    PubMed  CAS  Google Scholar 

  14. Gonen O, Catalaa I, Babb JS. Total brain N-acetylasparatate: A new measure of disease load in MS. Neurology 2000;54:15–19.

    PubMed  CAS  Google Scholar 

  15. Urenjak J WS, Gadian D, et al. Specific expression of N-acetylaspartate in neurons, oligodendrocute-type-2 astrocyte progenitors and immature oligodendrocytes in vitro. J Neurochem 1992;59:55–61.

    PubMed  CAS  Google Scholar 

  16. Burri R SC, Herschkowitz N. N-Acetyl-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. J Neurosci 1991;13:403–411.

    CAS  Google Scholar 

  17. Castillo M KL, Scatliff J, Mukherji SK. Proton MR Spectroscopy in Neoplastic and Non-neoplastic Brain Disorders. MRI Clin North Am 1998;6:1–20.

    CAS  Google Scholar 

  18. Kreis R HL, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002;48: 949–958.

    PubMed  CAS  Google Scholar 

  19. Griffin JL, Mann CJ, Scott J, Shoulders CC, Nicholson JK. Choline containing metabolites during cell transfection: an insight into magnetic resonance spectroscopy detectable changes. FEBS Lett 2001;509: 263–266.

    PubMed  CAS  Google Scholar 

  20. Brand A R-LC, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993;15:189–198.

    Google Scholar 

  21. Lee JD, Arcinue E, Ross B. Organic osmolytes in the brain of an infant with hypernatremia. N Engl J Med 1994;331:439–442.

    PubMed  CAS  Google Scholar 

  22. Kang PB, Hunter JV, Kaye EM. Lactic acid elevation in extramitochondrial childhood neurodegenerative diseases. J Child Neurol 2001;16:657–660.

    PubMed  CAS  Google Scholar 

  23. Shen J, Novotny EJ, Rothman DL. In vivo lactate and betahydroxybutyrate editing using a pure-phase refocusing pulse train. Magn Reson Med 1998;40:783–788.

    PubMed  CAS  Google Scholar 

  24. Seeger U, Mader I, Nagele T, Grodd W, Lutz O, Klose U. Reliable detection of macromolecules in single-volume 1H NMR spectra of the human brain. Magn Reson Med 2001;45:948–954.

    PubMed  CAS  Google Scholar 

  25. Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 1994;32:294–302.

    PubMed  CAS  Google Scholar 

  26. Salibi N, Brown MA. Clinical MR Spectroscopy. New York: Wiley-Liss; 1998:220.

    Google Scholar 

  27. Gonen O, Hu J, Stoyanova R, Leigh JS, Goelman G, Brown TR. Hybrid three dimensional (1D-Hadamard, 2D-chemical shift imaging) phosphorus localized spectroscopy of phantom and human brain. Magn Res Med 1995;33: 300–308.

    CAS  Google Scholar 

  28. Gonen O, Arias-Mendoza F, Goelman G. 3D localized in vivo 1H spectroscopy of human brain by using a hybrid of 1D-Hadamard with 2D-chemical shift imaging. Magn Res Med 1997;37:644–650.

    CAS  Google Scholar 

  29. Gonen O, Murdoch JB, Stoyanova R, Goelman G. 3D multi-voxel proton spectroscopy of human brain using a hybrid of 8th order Hadamard encoding with 2D-chemical shift imaging. Magn Res Med 1998;39:34–40.

    CAS  Google Scholar 

  30. Spielman DM, Adalsteinsson E, Lim KO. Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain. Magn Reson Med 1998;40:376–382.

    PubMed  CAS  Google Scholar 

  31. van Der Veen JW, Weinberger DR, Tedeschi G, Frank JA, Duyn JH. Proton MR spectroscopic imaging without water suppression. Radiology 2000;217:296–300.

    Google Scholar 

  32. Sijens PE, van den Bent MJ, Nowak PJ, van Dijk P, Oudkerk M. 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 1997;37:222–225.

    PubMed  CAS  Google Scholar 

  33. Lin AP, Ross BD. Short-echo time proton MR spectroscopy in the presence of gadolinium. J Comput Assist Tomogr 2001;25:705–12.

    PubMed  CAS  Google Scholar 

  34. Smith JK, Kwock L, Castillo M. Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol 2000;21:1084–1089.

    PubMed  CAS  Google Scholar 

  35. Murphy PS, Dzik-Jurasz AS, Leach MO, Rowland IJ. The effect of Gd-DTPA on T(1)-weighted choline signal in human brain tumours. Magn Reson Imaging 2002;20:127–130.

    PubMed  CAS  Google Scholar 

  36. Hunter JV, Wang ZJ. MR spectroscopy in pediatric neuroradiology. Magn Reson Imaging Clin North Am 2001; 9:165–89, ix.

    CAS  Google Scholar 

  37. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Record 2001;265:54–84.

    CAS  Google Scholar 

  38. Hetherington H, Mason G, Pan J, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T. Magn Reson Med 1994;32:565–571.

    PubMed  CAS  Google Scholar 

  39. Pouwels PJ, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46:474–485.

    PubMed  CAS  Google Scholar 

  40. Huppi PS. MR imaging and spectroscopy of brain development. Magn Reson Imaging Clin North Am 2001;9: 1–17, vii.

    CAS  Google Scholar 

  41. Inder TE, Huppi PS. In vivo studies of brain development by magnetic resonance techniques. Mental Retard Dev Disabil Res Rev 2000;6:59–67.

    CAS  Google Scholar 

  42. Grodd W, Krageloh-Mann I, Petersen D, Trefz FK, Harzer K. In vivo assessment of N-acetylaspartate in brain in spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 1990;336:437–438.

    PubMed  CAS  Google Scholar 

  43. Grodd W, Krageloh-Mann I, Klose U, Sauter R. Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 1991;181:173–181.

    PubMed  CAS  Google Scholar 

  44. Tzika AA, Ball WS, Jr., Vigneron DB, Dunn RS, Kirks DR. Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR Am J Neuroradiol 1993;14:1267–1281; discussion 1282–1284.

    PubMed  CAS  Google Scholar 

  45. Bruhn H, Kruse B, Korenke GC, et al. Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 1992;16:335–344.

    PubMed  CAS  Google Scholar 

  46. Wang ZJ ZR. Proton MR Spectroscopy of pediatric brain metabolic disorders. Neuroimaging Clin North Am 1998;8:781–807.

    CAS  Google Scholar 

  47. Zimmerman RA, Wang, Zhiyue J. The value of proton MR spectroscopy in pediatric metabolic brain disease. Am J Neuroradiol 1997;18:1872–1879.

    PubMed  CAS  Google Scholar 

  48. Kolodny EH. Genetic and metabolic aspects of leukodystrophies. In: Dangond F (ed.) Disorders of Myelin in the Central and Peripheral Nervous Systems. Woburn, MA: Butterworths, 2002.

    Google Scholar 

  49. Li BS, Wang H, Gonen O. Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging 2003;21:923–928.

    PubMed  CAS  Google Scholar 

  50. Suzuki K, Armao D, Stone JA, Mukherji SK. Demyelinating diseases, leukodystrophies, and other myelin disorders. Neuroimaging Clin North Am 2001;11:vii, 15–35.

    Google Scholar 

  51. Nezu A, Kimura S, Takeshita S, Osaka H, Kimura K, Inoue K. An MRI and MRS study of Pelizaeus-Merzbacher disease. Pediatr Neurol 1998;18:334–337.

    PubMed  CAS  Google Scholar 

  52. Takanashi J, Sugita K, Osaka H, Ishii M, Niimi H. Proton MR spectroscopy in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol. 1997;18:533–535.

    PubMed  CAS  Google Scholar 

  53. Plecko B, Stockler-Ipsiroglu S, Gruber S, et al. Degree of hypomyelination and magnetic resonance spectroscopy findings in patients with Pelizaeus Merzbacher phenotype. Neuropediatrics 2003;34:127–136.

    PubMed  CAS  Google Scholar 

  54. Novotny EJ, Jr., Avison MJ, Herschkowitz N, et al. In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr Res 1995;37:244–249.

    PubMed  Google Scholar 

  55. Kreis R, Pietz J, Penzien J, Herschkowitz N, Boesch C. Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic-resonance spectroscopy. J Magn Reson Series B. 1995;107:242–251.

    CAS  Google Scholar 

  56. Koch R, Burton B, Hoganson G, et al. Phenylketonuria in adulthood: a collaborative study. J Inherited Metabolic Dis 2002;25: 333–346.

    CAS  Google Scholar 

  57. Weglage J, Moller HE, Wiedermann D, Cipcic-Schmidt S, Zschocke J, Ullrich K. In vivo NMR spectroscopy in patients with phenylketonuria: clinical significance of interindividual differences in brain phenylalanine concentrations. J Inherited Metabolic Dis 1998;21:81–82.

    CAS  Google Scholar 

  58. Moller HE, Ullrich K, Weglage J. In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 2000;159:S121–S125.

    PubMed  CAS  Google Scholar 

  59. Leuzzi V, Bianchi MC, Tosetti M, Carducci CL, Carducci CA, Antonozzi I. Clinical significance of brain phenylalanine concentration assessed by in vivo proton magnetic resonance spectroscopy in phenylketonuria. J Inherited Metabolic Dis 2000;23:563–570.

    CAS  Google Scholar 

  60. Pietz J, Kreis R, Schmidt H, Meyding-Lamade UK, Rupp A, Boesch C. Phenylketonuria: findings at MR imaging and localized in vivo H-1 MR spectroscopy of the brain in patients with early treatment. Radiology. 1996;201: 413–420.

    PubMed  CAS  Google Scholar 

  61. Thompson GN, Francis DE, Halliday D. Acute illness in maple syrup urine disease: dynamics of protein metabolism and implications for management. J Pediatr 1991;119:35–41.

    PubMed  CAS  Google Scholar 

  62. Felber SR, Sperl W, Chemelli A, Murr C, Wendel U. Maple syrup urine disease: metabolic decompensation monitored by proton magnetic resonance imaging and spectroscopy. Ann Neurol 1993;33:396–401.

    PubMed  CAS  Google Scholar 

  63. Heindel W, Kugel H, Wendel U, Roth B, Benz-Bohm G. Proton magnetic resonance spectroscopy reflects metabolic decompensation in maple syrup urine disease. Pediatr Radiol 1995;25:296–299.

    PubMed  CAS  Google Scholar 

  64. Wajner M, Coelho JC. Neurological dysfunction in methymalonic acidemia is probably related to the inhibitory effect of methylmalonate on brain energy metabolism. J Inherited Metabolic Dis 1997;20:761–768.

    CAS  Google Scholar 

  65. Takeuchi M, Harada M, Matsuzaki K, Hisaoka S, Nishitani H, Mori K. Magnetic resonance imaging and spectroscopy in a patient with treated methylmalonic acidemia. J Comput Assist Tomogr 2003;27:547–551.

    PubMed  Google Scholar 

  66. Trinh BC, Melhem ER, Barker PB. Multi-slice proton MR spectroscopy and diffusion-weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. AJNR Am J Neuroradiol 2001;22: 831–833.

    PubMed  CAS  Google Scholar 

  67. Choi CG, Lee HK, Yoon JH. Localized proton MR spectroscopic detection of nonketotic hyperglycinemia in an infant. Korean J Radiol 2001;2:239–242.

    PubMed  CAS  Google Scholar 

  68. Viola A, Chabrol B, Nicoli F, Confort-Gouny S, Viout P, Cozzone PJ. Magnetic resonance spectroscopy study of glycine pathways in nonketotic hyperglycinemia. Pediatr Res 2002;52:292–300.

    PubMed  CAS  Google Scholar 

  69. Heindel W, Kugel H, Roth B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. AJNR Am J Neuroradiol 1993;14:629–635.

    PubMed  CAS  Google Scholar 

  70. van der Knaap MS, Bakker HD, Valk J. MR imaging and proton spectroscopy in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. AJNR Am J Neuroradiol 1998;19:378–382.

    PubMed  Google Scholar 

  71. Yalcinkaya C, Dincer A, Gunduz E, Ficicioglu C, Kocer N, Aydin A. MRI and MRS in HMG-CoA Lyase Deficiency. Pediatr Neurol 1999;20:375–380.

    PubMed  CAS  Google Scholar 

  72. Iles R, Jago JR, Williams SR, Chalmers RA. 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency studied using 2-dimensional proton nuclear magnetic resonance spectroscopy. FEBS Lett 1986;203:49–53.

    PubMed  CAS  Google Scholar 

  73. Hanefeld F, Kruse B, Bruhn H, Frahm J. In vivo proton magnetic resonance spectroscopy of the brain in a patient with L-2-hydroxyglutaric acidemia. Pediatr Res 1994;35:614–616.

    PubMed  CAS  Google Scholar 

  74. Salvan AM, Chabrol B, Lamoureux S, Confort-Gouny S, Cozzone PJ, Vion-Dury J. In vivo brain proton MR spectroscopy in a case of molybdenum cofactor deficiency. Pediatr Radiol 1999;29:846–848.

    PubMed  CAS  Google Scholar 

  75. Engelbrecht V, Rassek M, Huismann J, Wendel U. MR and proton MR spectroscopy of the brain in hyperhomocysteinemia caused by methylenetetrahydrofolate reductase deficiency. AJNR Am J Neuroradiol 1997; 18: 536–539.

    PubMed  CAS  Google Scholar 

  76. Horstman M, Neumaier-Probst E, Lukacs Z, Steinfeld R, Ullrich K, Kohlschutter A. Infantile cobalamin deficinecy with cerrebral lactate accumulation and sustained choline depletion. Neuropediatrics 2003;34: 261–264.

    Google Scholar 

  77. Frerman FE, Goodman SI. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci USA 1985; 82:4517–4520.

    PubMed  CAS  Google Scholar 

  78. Takanashi J, Fujii K, Sugita K, Kohno Y. Neuroradiologic findings in glutaric aciduria type II. Pediatr Neurol 1999;20:142–145.

    PubMed  CAS  Google Scholar 

  79. Shevell MI, Didomenicantonio G, Sylvain M, Arnold DL, O’Gorman AM, Scriver CR. Glutaric acidemia type II: neuroimaging and spectroscopy evidence for developmental encephalomyopathy. Pediatr Neurol 1995;12: 350–353.

    PubMed  CAS  Google Scholar 

  80. Lehnert W, Sperl W, Suormala TM, Baumgartner ER. Proprionic acidaemia: clinical, biochemical and therapeutic aspects. Experience in 30 patients. Eur J Pediatr. 1994;153:68–80.

    Google Scholar 

  81. Surtees RA, Matthews EE, Leonard JV. Neurologic outcome of proprionic acidemia. Pediatr Neurol 1992; 8:333–337.

    PubMed  CAS  Google Scholar 

  82. Bergman AJ, Van der Knaap MS, Smeitink JA, et al. Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res 1996;40:404–409.

    PubMed  CAS  Google Scholar 

  83. Chemelli AP, Schocke M, Sperl W, Trieb T, Aichner F, Felber S. Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging 2000;11:596–600.

    PubMed  CAS  Google Scholar 

  84. Duncan DB, Herholz K, Kugel H, et al. Positron emission tomography and magnetic resonance spectroscopy of cerebral glycolysis in children with congenital lactic acidosis. Ann Neurol 1995;37:351–358.

    PubMed  CAS  Google Scholar 

  85. Kim HS, Kim DI, Lee BI, et al. Diffusion-weighted image and MR spectroscopic analysis of a case of MELAS with repeated attacks. Yonsei Med J 2001;42:128–133.

    PubMed  CAS  Google Scholar 

  86. Cross JH, Gadian DG, Connelly A, Leonard JV. Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. J Inherited Metabolic Dis 1993;16:800–811.

    CAS  Google Scholar 

  87. Krageloh-Mann I, Grodd W, Niemann G, Haas G, Ruitenbeek W. Assessment and therapy monitoring of Leigh disease by MRI and proton spectroscopy. Pediatr Neurol 1992;8:60–64.

    PubMed  CAS  Google Scholar 

  88. Matthews PM, Andermann F, SIlver K, Karpati G, Arnold DL. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology. 1993; 43:2484–2490.

    Google Scholar 

  89. Barkovich AJ, Good WV, Koch TK, Berg BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. Am J Neuroradiol 1993;14:1119–1137.

    PubMed  CAS  Google Scholar 

  90. Krageloh-Mann I, Grodd W, Schoning M, Marquard K, Nagele T, Ruitenbeek W. Proton spectroscopy in five patients with Leigh’s disease and mitochondrial enzyme deficiency.[comment]. Dev Med Child Neurol 1993; 35:769–776.

    PubMed  CAS  Google Scholar 

  91. Moller HE, Wiedermann D, Kurlemann G, Hilbich T, Schuierer G. Application of NMR spectroscopy to monitoring MELAS treatment: a case report. Muscle Nerve. 2002;25:593–600.

    PubMed  Google Scholar 

  92. Kugel H, Heindel W, Roth B, Ernst S, Lackner K. Proton MR spectroscopy in infants with cerebral energy deficiency due to hypoxia and metabolic disorders. Acta Radiol 1998;39:701–710.

    PubMed  CAS  Google Scholar 

  93. Takahashi S, Oki J, Miyamoto A, Okuno A. Proton magnetic resonance spectroscopy to study the metabolic changes in the brain of a patient with Leigh syndrome. Brain Dev 1999;21:200–204.

    PubMed  CAS  Google Scholar 

  94. Lin DDM, Crawford TO, Barker PB. Proton MR Spectroscopy in the Diagnostic evaluation of suspected mitochondrial disease. Am J Neuroradiol 2003;24:33–41.

    PubMed  Google Scholar 

  95. Bianchi MC, Bianchi MC, Tosetti M, Battini R, Manca ML, Mancuso M, et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. Am J Neuroradiol 2003;24:1958–1966.

    PubMed  Google Scholar 

  96. Brockmann K, Bjornstad A, Dechent P, et al. Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol. 2002;52: 38–46.

    PubMed  CAS  Google Scholar 

  97. Rubio-Gozalbo ME, Heerschap A, Trijbels JM, De Meirleir L, Thijssen HO, Smeitink JA. Proton MR spectroscopy in a child with pyruvate dehydrogenase complex deficiency. Magn Reson Imaging. 1999;17: 939–44.

    PubMed  CAS  Google Scholar 

  98. Robinson JN, Norwitz ER, Mulkern R, Brown SA, Rybicki F, Tempany CM. Prenatal diagnosis of pyruvate dehydrogenase deficiency using magnetic resonance imaging. Prenatal Diagnosis 2001;21:1053–1056.

    PubMed  CAS  Google Scholar 

  99. Bates TE, Strangward M, Keelan J, Davey GP, Munro PMG, Clark JB. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 1996;7:1397–1400.

    PubMed  CAS  Google Scholar 

  100. Loes DJ PC, Krivit W. Globoid Cell Leukodystrophy: Distinguishing Early-Onset from Late-Onset Disease Using a Brain MR Imaging Scoring Method. Am J Neuroradiol 1999;20:316–323.

    PubMed  CAS  Google Scholar 

  101. Zarifi MK, Tzika AA, Astrakas LG, Poussaint TY, Anthony DC, Darras BT. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe’s disease. J Child Neurol 2001;16:522–526.

    PubMed  CAS  Google Scholar 

  102. Farina L, Bizzi A, Finocchiaro G, et al. MR imaging and proton MR spectroscopy in adult Krabbe disease. Ajnr: Am J Neuroradiol. 2000;21:1478–1482.

    CAS  Google Scholar 

  103. Faerber EN MJ, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol 1999; 29:669–672.

    PubMed  CAS  Google Scholar 

  104. Kruse B, Hanefeld F, Christen HJ, et al. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol 1993;241: 68–74.

    PubMed  CAS  Google Scholar 

  105. Confort-Gouny S, Vion-Dury J, Chabrol B, Nicoli F, Cozzone PJ. Localised proton magnetic spectroscopy in X-linked adrenoleukodystropy. Neuroradiology 1995;37:568–575.

    PubMed  CAS  Google Scholar 

  106. Izquierdo M, Adamsbaum C, Benosman A, Aubourg P, Bittoun J. MR spectroscopic imaging of normal-appearing white matter in adrenoleukodystrophy. Pediatr Radiol. 2000;30:621–9.

    PubMed  CAS  Google Scholar 

  107. Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 1998;29:254–264.

    PubMed  CAS  Google Scholar 

  108. Kruse B, Barker PB, Van Zijl PC, Duyn JH, Moonen CT, Moser HW. Multislice proton magnetic reosnance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol. 1994;36:595–608.

    PubMed  CAS  Google Scholar 

  109. Tzika AA, Ball WS, Jr., Vigneron DB, Dunn RS, Nelson SJ, Kirks DR. Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 1993;189:467–480.

    PubMed  CAS  Google Scholar 

  110. Engelbrecht V, Rassek M, Gartner J, Kahn T, Modder U. The value of new MRI techniques in adrenoleukodystrophy. Pediatr Radiol. 1997;27:207–215.

    PubMed  CAS  Google Scholar 

  111. Sener RN. Atypical X-linked adrenoleukodystrophy: new MRI observations with FLAIR, magnetization transfer contrast, diffusion MRI, and proton spectroscopy. Magn Reson Imaging. 2002;20:215–219.

    PubMed  CAS  Google Scholar 

  112. Korenke GC, Pouwels PJ, Frahm J, et al. Arrested cerebral adrenoleukodystrophy: a clinical and proton magnetic resonance spectroscopy study in three patients. Pediatr Neurol. 1996;15:103–7.

    PubMed  CAS  Google Scholar 

  113. Rajanayagam V, Grad J, Krivit W, et al. Proton MR spectroscopy of childhood adrenoleukodystrophy. Am J Neuroradiol 1996;17:1013–1024.

    PubMed  CAS  Google Scholar 

  114. Groenendaal F, Bianchi MC, Battini R, et al. Proton magnetic resonance spectroscopy (1H-MRS) of the cerebrum in two young infants with Zellweger syndrome. Neuropediatrics 2001;32:23–27.

    PubMed  CAS  Google Scholar 

  115. Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 2003;250:300–306.

    PubMed  CAS  Google Scholar 

  116. Imamura A, Orii KE, Mizuno S, Hoshi H, Kondo T. MR imaging and 1H-MR spectroscopy in a case of juvenile Alexander disease. Brain Development. 2002;24:723–726.

    PubMed  Google Scholar 

  117. Takanashi J, Sugita K, Tanabe Y, Niimi H. Adolescent case of Alexander disease: MR imaging and MR spectroscopy. Pediatr Neurol. 1998;18:67–70.

    PubMed  CAS  Google Scholar 

  118. Matalon R, Michals-Matalon K. Biochemistry and molecular biology of Canavan disease. Neurochemistry Research 1999;24:507–513.

    CAS  Google Scholar 

  119. Marks HG, Caro PA, Wang Z, et al. Use of computed tomography, magnetic resonance imaging, and localized 1H magnetic resonance spectroscopy in Canavan’s disease: a case report. Ann Neurol. 1991;30:106–110.

    PubMed  CAS  Google Scholar 

  120. Austin SJ, Connelly A, Gadian DG, Benton JS, Brett EM. Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases. Magn Reson Med 1991;19:439–445.

    PubMed  CAS  Google Scholar 

  121. Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging. 1996;6:889–893.

    PubMed  CAS  Google Scholar 

  122. Leone P, Janson CG, Bilianuk L, et al. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol. 2000;48:27–38.

    PubMed  CAS  Google Scholar 

  123. van der Knaap MS, Barth PG, Stroink H. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol. 1995;37:324–334.

    PubMed  Google Scholar 

  124. Sener RN. van der Knaap syndrome: MR imaging findings including FLAIR, diffusion imaging, and proton MR spectroscopy. Eur Radiol 2000;10:1452–1455.

    PubMed  CAS  Google Scholar 

  125. Mejaski-Bosnjak V, Besenski N, Brockmann K, Pouwels PJ, Frahm J, Hanefeld FA. Cystic leukoencephalopathy in a megalencephalic child: clinical and magnetic resonance imaging/magnetic resonance spectroscopy findings. Pediatr Neurol. 1997;16:347–350.

    PubMed  CAS  Google Scholar 

  126. Brockmann K, Finsterbusch J, Terwey B, Frahm J, Hanefeld F. Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI. Neuroradiology. 2003; 45:137–142.

    PubMed  CAS  Google Scholar 

  127. Topcu M, Gartioux C, Ribierre F. Vacuolating megalencephalic leukoencephalopathy with subcortical cysts, mapped to chromosome 22qtel. Am J Human Genet. 2000;66:733–739.

    CAS  Google Scholar 

  128. van der Knaap MS, Kamphorst W, Barth PG, Kraaijeveld CL, Gut E, Valk J. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 1998;51:540–547.

    PubMed  Google Scholar 

  129. Tedeschi G, Bonavita S, Barton NW, et al. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann-Pick type C disease. J Neurol Neurosurg Psychiatry 1998;65:72–79.

    PubMed  CAS  Google Scholar 

  130. Seitz D, Grodd W, Schwab A, Seeger U, Klose U, Nagele T. MR imaging and localized proton MR spectroscopy in late infantile neuronal ceroid lipofuscinosis. AJNR Am J Neuroradiol. 1998;19:1373–1377.

    PubMed  CAS  Google Scholar 

  131. Brockmann K, Pouwels PJ, Christen HJ, Frahm J, Hanefeld F. Localized proton magnetic resonance spectroscopy of cerebral metabolic disturbances in children with neuronal ceroid lipofuscinosis. Neuropediatrics. 1996; 27: 242–248.

    PubMed  CAS  Google Scholar 

  132. Confort-Gouny S, Chabrol B, Vion-Dury J, Mancini J, Cozzone PJ. MRI and localized proton MRS in early infantile form of neuronal ceroid lipofuscinosis. Pediatr Neurol 1993;9:57–60.

    PubMed  CAS  Google Scholar 

  133. Breunig F, Weidemann F, Beer M, et al. Fabry disease: diagnosis and treatment. Kidney IntSuppl 2003: S181–S185.

    Google Scholar 

  134. Neufeld EF, Meunzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 1995:2465–2494.

    Google Scholar 

  135. Bonavita S, Virta A, Jeffries N, Goldin E, Tedeschi G, Schiffmann R. Diffuse neuroaxonal involvement in mucolipidosis IV as assessed by proton magnetic resonance spectroscopic imaging. J Child Neurol 2003;18: 443–449.

    PubMed  Google Scholar 

  136. Takahashi Y, Sukegawa K, Aoki M, et al. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res 2001;49:349–355.

    PubMed  CAS  Google Scholar 

  137. Savage AV, Applegarth DA. Diagnosis of mucopolysaccharidoses using 1H-n.m.r. spectroscopy of glycosaminoglycans. Carbohydrate Res 1986;149:471–474.

    CAS  Google Scholar 

  138. Seto T, Kono K, Morimoto K, et al. Brain magnetic resonance imaging in 23 patients with mucopolysaccharidoses and the effect of bone marrow transplantation. Ann Neurol 2001;50:79–92.

    PubMed  CAS  Google Scholar 

  139. De Laurenzi VD, Rogers GR, Hamrock DJ, et al. Sjogren-Larsson syndrome is caused by mutatuions in the fatty aldehyde dehydrogenase gnee. Nat Genet 1996;12:52–57.

    PubMed  Google Scholar 

  140. Mano T, Ono J, Kaminaga T, et al. Proton MR spectroscopy of Sjogren-Larsson’s syndrome. AJNR Am J Neuroradiol 1999;20: 1671–1673.

    PubMed  CAS  Google Scholar 

  141. Miyanomae Y, Ochi M, Yoshioka H, et al. Cerebral MRI and spectroscopy in Sjogren-Larsson syndrome: case report. Neuroradiology 1995;37:225–228.

    PubMed  CAS  Google Scholar 

  142. De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 2001;124:121–131.

    PubMed  Google Scholar 

  143. Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707–710.

    PubMed  CAS  Google Scholar 

  144. Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 2000;105:597–605.

    PubMed  CAS  Google Scholar 

  145. Auer DP, Schirmer T, Heidenreich JO, Herzog J, Putz B, Dichgans M. Altered white and gray matter metabolism in CADASIL: a proton MR spectroscopy and 1H-MRSI study. Neurology 2001;56: 635–642.

    PubMed  CAS  Google Scholar 

  146. Berry GT, Hunter JV, Wang Z, et al. In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. J Pediatr 2001;138:260–262.

    PubMed  CAS  Google Scholar 

  147. Wang ZJ, Berry GT, Dreha SF, Zhao H, Segal S, Zimmerman RA. Proton magnetic resonance spectroscopy of brain metabolities in galactosemia. Ann Neurol. 2001;50:266–269.

    PubMed  CAS  Google Scholar 

  148. Moller HE, Ullrich K, Vermathen P, Schuierer G, Koch HG. In vivo study of brain metabolism in galactosemia by 1H and 31P magnetic resonance spectroscopy. Eur J Pediatr. 1995;154:S8–S13.

    PubMed  CAS  Google Scholar 

  149. Bruhn H, Frahm J, Merboldt KD, et al. Multiple sclerosis in children: cerebral metabolic alterations monitored by localized proton magnetic resonance spectroscopy in vivo. Ann Neurol. 1992;32: 140–150.

    PubMed  CAS  Google Scholar 

  150. Malik GK, Pandey M, Kumar R, Chawla S, Rathi B, Gupta RK. MR imaging and in vivo proton spectroscopy of the brain in neonates with hypoxic ischemic encephalopathy. Eur J Radiol 2002;43:6–13.

    PubMed  CAS  Google Scholar 

  151. Amess PN, Penrice J, Wylezinska M, et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999;41:436–445.

    PubMed  CAS  Google Scholar 

  152. Noda S, Yamanouchi N, Okada S, et al. Proton MR spectroscopy in solvent abusers. Ann NY Acad Sci 1996;801:441–444.

    PubMed  CAS  Google Scholar 

  153. Sakamoto K, Murata T, Omori M, et al. Clinical studies on three cases of the interval form of carbon monoxide poisoning: serial proton magnetic resonance spectroscopy as a prognostic predictor. Psychiatry Res 1998;83: 179–192.

    PubMed  CAS  Google Scholar 

  154. Murata T, Kimura H, Kado H, et al. Neuronal damage in the interval form of CO poisoning determined by serial diffusion weighted magnetic resonance imaging plus 1H-magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 2001;71:250–253.

    PubMed  CAS  Google Scholar 

  155. Smith LM, Chang L, Yonekura ML, et al. Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 2001;107:227–231.

    PubMed  CAS  Google Scholar 

  156. Smith LM, Chang L, Yonekura ML, Grob C, Osborn D, Ernst T. Brain proton magnetic resonance spectroscopy in children exposed to methamphetamine in utero. Neurology 2001;57:255–260.

    PubMed  CAS  Google Scholar 

  157. Simone IL, Federico F, Tortorella C, et al. Localised 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry 1998;64: 516–523.

    PubMed  CAS  Google Scholar 

  158. Pavlakis SG, Lu D, Frank Y, et al. Brain lactate and N-acetylaspartate in pediatric AIDS encephalopathy. Ajnr: Am J Neuroradiol. 1998;19: 383–385.

    CAS  Google Scholar 

  159. Brown MS, Stemmer SM, Simon JH, et al. White matter disease induced by high-dose chemotherapy: longitudinal study with MR imaging and proton spectroscopy [comment]. Ajnr: Am J Neuroradiol 1998;19:217–221.

    CAS  Google Scholar 

  160. Davidson A, Tait DM, Payne GS, et al. Magnetic resonance spectroscopy in the evaluation of neurotoxicity following cranial irradiation for childhood cancer. Br J Radiol 2000;73:421–424.

    PubMed  CAS  Google Scholar 

  161. Filippi CG, Ulug AM, Deck MD, Zimmerman RD, Heier LA. Developmental delay in children: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol. 2002;23:882–888.

    PubMed  Google Scholar 

  162. Gruetter R, Weisdorf SA, Rajanayagan V, et al. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson. 1998;135:260–264.

    PubMed  CAS  Google Scholar 

  163. Gonen O, Gruber S, Li BS, Mlynarik V, Moser E. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol 2001;22: 1727–1731.

    PubMed  CAS  Google Scholar 

  164. Dreher W, Leibfritz D. A new method for fast proton spectroscopic imaging: spectroscopic GRASE. Magn Reson Med 2000;44:668–672.

    PubMed  CAS  Google Scholar 

  165. Mader I, Seeger U, Weissert R, et al. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain 2001;124:953–961.

    PubMed  CAS  Google Scholar 

  166. Thomas MA, Yue K, Binesh N, et al. Localized Two-Dimensional Shift Correlated MR Spectroscopy of Human Brain. Magn Reson Med 2001;46:58–67.

    PubMed  CAS  Google Scholar 

  167. Binesh N, Yue K, Fairbanks L, Thomas MA. Reproducibility of localized 2D correlated MR spectroscopy. Magn Reson Med 2002;48:942–948.

    PubMed  Google Scholar 

  168. Thomas MA, Ryner LN, Mehta M, Turski P, Sorenson JA. Localized J-resolved 1H MR spectroscopy of human brain tumors in vivo. J Magn Reson Imaging. 1996;6:453–459.

    PubMed  CAS  Google Scholar 

  169. Rashed MS. Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr B 2001;758:27–48.

    CAS  Google Scholar 

  170. Collins FS, Green ED, Guttmacher AE, Guyer MS. A vision for the future of genomics research. Nature 2003;422:835–847.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, E.Y., Law, M. (2005). Advanced Magnetic Resonance Imaging in Leukodystrophies. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_21

Download citation

Publish with us

Policies and ethics