Skip to main content

Imaging White Matter Signals in Epilepsy Patients

A Unique Sensor Technology

  • Chapter

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

We studied 15 temporal lobe epilepsy patients who presented with either neocortical or mesial temporal lobe epilepsy. Resected tissue from these patients was studied with neuromolecular imaging (NMI) using miniature carbon-based BRODERICK PROBE® stearic and lauric acid sensors. In separate studies, a sensor was inserted into neocortex or hippocampus, specifically into individual layers of neocortical temporal gyrus as well as temporal stem and hippocampal pyramidal layer, dentate gyrus, alveus, and subiculum. The catecholamines, dopamine and norepinephrine, and the indoleamine, serotonin, as well as ascorbic acid, an enzyme catalyst in the dopamine metabolic pathway, were detected in separate electroactive signals by these sensors in real time. Results showed that gray matter and white matter were readily distinguished both by characteristic microvoltammetric waveforms and by concentration differences, that is, (1) electroactive species for catecholamine signals in white matter were diffusion waveforms whereas the indoleamine waveform was an adsorption waveform and (2) concentrations of neurotransmitters were significantly lower in white matter than in gray matter. White matter signals were detected and distinguished from gray matter signals in both neocortical and hippocampal neuroanatomic substrates. Results showed that an average of 80% of patient electroactive signals for white matter in the three white matter structures were positive both for waveforms and for concentration characteristics. Another 21.4% and 10% were partially positive for white matter in alveus and subiculum, respectively, that is, positive for concentration characteristics but not positive for both catecholamine and indoleamine waveforms. An average of 90% of patient electroactive signals for gray matter were positive both for waveforms and for concentrations. Thus, NMI with these specialized sensors provide a unique technology for detecting, monitoring, and measuring neurotransmitters and related neurochemicals in white matter vis-à-vis gray matter in temporal lobe epilepsy patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas P, Hazif-Thomas C, Saccardy F, Vandermarq P. Loss of motivation and frontal dysfunction. Role of the white matter change. Encephale 2004;30:52–59.

    Article  PubMed  CAS  Google Scholar 

  2. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis J Neurol Neurosurg Psychiatry 2004;75: 441–447.

    Article  PubMed  CAS  Google Scholar 

  3. van der Knaap MS, Naidu S, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol 2002;23:1466–1474.

    PubMed  Google Scholar 

  4. Leegwater PA, Pronk JC, van der Knaap MS. Leukoencephalopathy with vanishing white matter: from magnetic resonance imaging pattern to five genes. J Child Neurol 2003;18:639–645.

    Article  PubMed  Google Scholar 

  5. Kendal C, Everall I, Polkey C, Al-Sarraj S. Glial cell changes in the white matter in temporal lobe epilepsy. Epilepsy Res 1999;36:43–51.

    Article  PubMed  CAS  Google Scholar 

  6. Emery JA, Roper SN, Rojiani AM. White matter neuronal heterotopia in temporal lobe epilepsy: a morphometric and immunohistochemical study. J Neuropathol Exp Neurol 1997;56:1276–1282.

    PubMed  CAS  Google Scholar 

  7. Hammers A, Koepp MJ, Hurlemann R, et al. Abnormalities of grey and white matter [11C] flumazenil binding in temporal lobe epilepsy with normal MRI. Brain 2002;125:2257–2271.

    Article  PubMed  CAS  Google Scholar 

  8. Meiners LC, van der Grond J, van Rijen PC, Springorum R, de Kort GA, Jansen GH. Proton magnetic resonance spectroscopy of temporal lobe white matter in patients with histologically proven hippocampal sclerosis. J Magn Reson Imaging 2000;11:25–31.

    Article  PubMed  CAS  Google Scholar 

  9. Marsh L, Sullivan EV, Morrell M, Lim KO, Pfefferbaum A. Structural brain abnormalities in patients with schizophrenia, epilepsy, and epilepsy with chronic interictal psychosis. Psychiatry Res 2001;108:1–15.

    Article  PubMed  CAS  Google Scholar 

  10. Hermann B, Hansen R, Seidenberg M, Magnotta V, O’Leary D. Neurodevelopmental vulnerability of the corpus callosum to childhood onset localization-related epilepsy. Neuroimage 2003; 18:284–292.

    Article  PubMed  Google Scholar 

  11. Cadet JL, Brannock C. Mechanisms of methamphetamine-induced neurotoxicity. In: Massaro EJ, Broderick PA, Mattsson JL, Schardein JL, Schlaepfer TE, eds. Handbook of Neurotoxicology, vol. 2. Totowa, NJ: Humana Press; 2002:259–268.

    Chapter  Google Scholar 

  12. Broderick PA, Pacia SV, Doyle WK, Devinsky O. Monoamine neurotransmitters in resected hippocampal subparcellations from neocortical and mesial temporal lobe epilepsy patients: in situ microvoltammetric studies. Brain Res 2000;878:49–63.

    Article  Google Scholar 

  13. Pacia SV, Doyle WK, Broderick PA. Biogenic amines in the human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ micovoltammetry. Brain Res 2001; 899:106–111.

    Article  PubMed  CAS  Google Scholar 

  14. Pacia SV, Broderick PA. Bioimaging L-Tryptophan in human hippocampus and neocortex: subtyping temporal lobe epilepsy. In: Broderick PA, Rahni DN, Kolodny EH, eds. Bioimaging in Neurodegeneration, Totowa, NJ: Humana Press; 2005: pp. 141–147.

    Google Scholar 

  15. Broderick PA. Distinguishing in vitro electrochemical signatures for norepinephrine and dopamine. Neurosci Lett 1988;95:275–280.

    Article  PubMed  CAS  Google Scholar 

  16. Broderick PA. Characterizing stearate probes in vitro for the electrochemical detection of dopamine and serotonin. Brain Res 1989;495:115–121.

    Article  PubMed  CAS  Google Scholar 

  17. Broderick PA. State-of-the-art microelectrodes for in vivo voltammetry. Electroanalysis 1990;2: 241–251.

    Article  CAS  Google Scholar 

  18. Broderick PA. In vivo voltammetric studies on release mechanisms for cocaine with α-butyrolactone. Pharmacol Biochem Behav 1991; 40:969–975.

    Article  PubMed  CAS  Google Scholar 

  19. Broderick PA. Microelectrodes and their use in cathodic electrochemical circuits. 1995;US Patent #5,433,710.

    Google Scholar 

  20. Broderick PA. Microelectrodes and their use in cathodic electrochemical arrangement with telemetric application. 1996; European Patent #90914306.7.

    Google Scholar 

  21. Broderick PA. Microelectrodes and their use in an electrochemical arrangement with telemetric application. 1999; US Patent #5,938,903.

    Google Scholar 

  22. Broderick PA, Pacia SV. Identification, diagnosis and treatment of neuropathologies, neurotoxicities, tumors, and brain and spinal cord injuries using microelectrodes with microvoltammetry. 2002;#PCT/02/11244. Pending.

    Google Scholar 

  23. Broderick PA, Pacia SV. Identification, diagnosis and treatment of neuropathologies, neurotoxicities, tumors, and brain and spinal cord injuries using microelectrodes with microvoltammetry. 2002; US Patent Application Serial No. 10/118,571. Pending.

    Google Scholar 

  24. Broderick PA., Rahni DN and Pacia SV. Nano-and microimaging surgical anesthesia in epilepsy patients. In: Broderick PA, Rahni DN, Kolodny EH, eds. Bioimaging in Neurodegeneration, Totowa, NJ: Humana Press Inc.; 2005: pp. xiii–xvi.

    Google Scholar 

  25. Oldham K. Semi-integral electroanalysis: analog implementation. Anal Chem 1973;45:39–50.

    Article  CAS  Google Scholar 

  26. Broderick PA, Gibson GE. Dopamine and serotonin in rat striatum during in vivo hypoxic-hypoxia. Metab Br Disease 1989;4:143–153.

    Article  CAS  Google Scholar 

  27. Wieser H. Electroclinical Features of the Psychomotor Seizure: A Stereo-Encephalographic Study of Ictal Symptoms and Chronotopographical Seizure Patterns Including Clinical Effects of Intracerebral Stimulation. New York: Gustav Fisher Vertag; 1983.

    Google Scholar 

  28. Broderick PA. Striatal neurochemistry of dynorphin-(1–13): In vivo electrochemical semidifferential analyses. Neuropeptides 1987;10: 369–386.

    Article  PubMed  CAS  Google Scholar 

  29. Van der Knaap MS, Valk J. Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. 2nd ed. Berlin: Springer; 1995:1–17.

    Google Scholar 

  30. Kucharczyk W, Macdonald PM, Stanisz GJ, et al. Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 1994;192:521–529.

    PubMed  CAS  Google Scholar 

  31. Barkovich AJ, Lyon G, Evrard P. Formation, maturation, and disorders of white matter. AJNR Am J Neuroradiol 1992;13:447–461.

    PubMed  CAS  Google Scholar 

  32. Walz W. Role of glial cells in the regulation of brain microenvironment. Prog Neurobiol 1989;33: 309–333.

    Article  PubMed  CAS  Google Scholar 

  33. Bordey A, Sontheimer H. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 1998;32:286–303.

    Article  PubMed  CAS  Google Scholar 

  34. Foucault R, Broderick PA, Rahni DN, Lombardi JR, Birke RL. Neurotransmitter signatures: a correlation between Raman spectroscopy and the microvoltammetric BRODERICK PROBE®. NIH/NIGMS Symposium, New Orleans, LA, Nov. 2002.

    Google Scholar 

  35. Adams, RN, Marsden CA. New techniques in psychopharmacology. In: Iversen, LL, Synder SH, eds. Handbook of Psychopharmacology. New York: Plenum Press; 1982.

    Google Scholar 

  36. Kissinger PT, Preddy CR, Shoup RE, Heineman WR. Fundamental concepts of analytical electrochemistry. In: Kissinger PT, Heineman, WR. eds. Laboratory Techniques in Electroanalytical Chemistry, New York: Marcell Dekker Inc.; 1996:11–50.

    Google Scholar 

  37. Dayton MA, Brown JC, Stutts KJ, Wightman RM. Faradaic electrochemistry at microvoltammetric electrodes. Anal Chem 1980; 52:948–950.

    Google Scholar 

  38. Koenig SH. Cholesterol of myelin is the determinant of gray-white matter contrast in MRI of the brain. Magn Reson Med 1991;20: 285–296.

    Article  PubMed  CAS  Google Scholar 

  39. Fralix TA, Ceckler TL, Wolff SD, et al. Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 1991;18:214–223.

    Article  PubMed  CAS  Google Scholar 

  40. Brody BA, Kinney HC, Kloman AS, et al. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 1987;46:283–301.

    Article  PubMed  CAS  Google Scholar 

  41. Nusbaum AO, Fung K, Atlas SW. White matter diseases and inherited metabolic disorders. In: Atlas SW, ed. Magnetic Resonance Imaging of the Brain and Spine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002:457–563.

    Google Scholar 

  42. Koenig SH, Brown RD, Spiller M, Lundbom N. Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 1990;14:482–490.

    Article  PubMed  CAS  Google Scholar 

  43. Kolodny, EH. Overview of the leukoencephalopies: an MRI point of view. In: Broderick, PA, Rahni DN, Kolodny EH, eds. Bioimaging in Neurodegeneration, Totowa, NJ: Humana Press Inc.; 2005: pp. 209–214.

    Google Scholar 

  44. Bordey A, Spencer DD. Distinct electrophysiological alterations in dentate gyrus versus glial cells from epileptic humans with temporal lobe sclerosis. Epilepsy Res 2004;59:107–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Broderick, P.A., Pacia, S.V. (2005). Imaging White Matter Signals in Epilepsy Patients. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_17

Download citation

Publish with us

Policies and ethics