Skip to main content

Bioimaging L-Tryptophan in Human Hippocampus and Neocortex

Subtyping Temporal Lobe Epilepsy

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

We have previously demonstrated serotonin (5-HT) alterations in the hippocampi (HPC) and neocortices of patients with mesial temporal lobe epilepsy (MTLE) as compared with those presenting with neocortical temporal lobe epilepsy (NTLE). Now, we extend these findings by analysis of L-tryptophan (L-Trp) concentrations, recorded within the same patient population. We used an electrochemical technology, that is, neuromolecular imaging (NMI) with a novel miniature sensor, the carbon-based BRODERICK PROBEĀ®. These sensors detected L-Trp in resected HPC subparcellations as well as in temporal lobe neocortex of patients diagnosed with either MTLE or NTLE. Five patients were classified as NTLE and nine as MTLE based on magnetic resonance imaging (MRI) and intracranial EEG evaluations. HPC subparcellations studied in 12 of 14 patients were (1) granular cells of the dentate gyrus (DG); (2) polymorphic layer of the DG; and (3) HPC pyramidal layer. Layer IV of temporal neocortex was studied in all 14 patients. A specific oxidation potential voltametrically provided the signature for L-Trp. The results showed that in granular cells of DG and, in pyramidal layer, L-Trp concentrations were significantly higher in MTLE patients in contrast to NTLE patients (p < 0.05, Mann-Whitney rank sum). Taken together with our recently published data, L-Trp concentrations were inversely proportional to 5-HT concentrations in these neuroanatomic substrates. In polymorphic layer of the DG, there was a trend toward lower 5-HT and higher L-Trp concentrations in MTLE patients. In neocortical layer IV, NTLE patients had significantly lower L-Trp concentrations than MTLE patients; however, 5-HT concentrations were similar in both groups (p < 0.01, Mann-Whitney rank sum). Our results indicate markedly different alterations in L-Trp and 5-HT synthesis and metabolism in the epileptogenic temporal lobes of patients with MTLE as compared with NTLE. Considering that various L-Trp metabolites may have proconvulsant or anticonvulsant properties, these alterations have important implications in the pathogenesis of both types of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobula B, Zahorodna A, Bijak M. Different receptor subtypes are involved in the serotonin-induced modulation of epileptiform activity in rat frontal cortex in vitro. J Physiol Pharmacol 2001;52:265ā€“274.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Waterhouse BD. Electrophysiological assessment of monamine synaptic function in neuronal circuits of seizure susceptible brains. Life Sci 1986;39:807ā€“818.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Lerner Natoli M. Serotonin and kindling development. Int J Neurosci 1987;36:139ā€“151.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Jobe PC, Dailey JW, Reigel CE. Noradrenergic and serotonergic determinants of seizure susceptibility and severity in genetically epilepsy prone rats. Life Sci 1986;39:775ā€“782.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Laird HE, Dailey JW, Jobe PC. Neurotransmitter abnormalities in genetically epileptic rodents. Fed Proc 1984;43:2505ā€“2509.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Neuman BS. Suppression of penicillin-induced epileptiform activity by noxious stimulation: mediation by 5-hydroxytryptamine. Electroencephal Clin Neurophysiol 1986;64:546ā€“555.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Lu KT, Gean PW. Endogenous serotonin inhibits epileptiform activity in rat hippocampal CA1 neurons via 5-hydroxytryptamine1A receptor activation. Neuroscience 1998;86:729ā€“737.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Andrade R, Nicoll RA. Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J Physiol 1987;394:99ā€“124.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Barlow-Walden LR, Reigter RJ, Abe M, et al. Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 1995;26:497ā€“502.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Luow D, Sutherland GR, Glavin GB, Girvin J. A study of monamine metabolism in human epilepsy. Can J Neurol Sci 1989;16:394ā€“397.

    Google ScholarĀ 

  11. Reiter RJ, Tan DX, Poeggeler B, Menendez PA. Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann NY Acad Sci 1994;719:1ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Stone TW. Endogenous neurotoxins from tryptophan. Toxicon 2001; 39:61ā€“73.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Kabuto H, Yokoi I, Norio O. Melatonin inhibits iron-induced epileptic discharges in rats by suppressing peroxidation. Epilepsia 1998; 39:237ā€“243.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Munoz-Hoyos A, Sanchez-Forte M, Molina-Carballo A, et al. Melatoninā€™s role as an anticonvulsant and neuronal protector: experimental and clinical evidence. J Child Neurol. 1998;13:501ā€“509.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Noguchi KK. NMDA antagonist-induced neurotoxicity and psychosis. In: Massaro EJ, Schardein JL, Broderick PA, Schlaepfer TE, Mattson JL, eds. Handbook of Neruotoxicology, Vol 2. (Totowa, NJ: Humana Press Inc.; 2001.

    Google ScholarĀ 

  16. Hayashi T. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 1952;3:46ā€“64.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Stone TW. Kynurenic acid antagonists and kynurenine pathway inhibitors. Expert Opin Invest. Drugs 2001; 10:633ā€“645.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Bibileishvili S. Amino acid tryptophan, as an antiepileptic agent. Klin Med (Mosk) 1980;58: 91ā€“106.

    Google ScholarĀ 

  19. Afifi AK, Bergman RA. Brain Neuroscience. Baltimore: Urban and Schwarzenberg Inc.; 1980.

    Google ScholarĀ 

  20. Mathern GW, Babb TL, Armstrong DL. Hippocampal sclerosis. In: Engel J Jr., Pedley TA, editors. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven Pub.; 1997:1807ā€“1817.

    Google ScholarĀ 

  21. Broderick PA, Pacia SV, Doyle WK, Devinsky O. Monoamine neurotransmitters in resected hippocampal subparcellations from neocortical and mesial temporal lobe epilepsy patients: in situ microvoltammetric studies., Brain Res 2000;878:48ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Broderick PA. Microsensors detect neuroadaptation by cocaine: serotonin released in motor basal ganglia is not rhythmic with movement. In Massaro EJ, Broderick PA, Mattson JL, Schardein JL, Schlaepfer TE, editors. Handbook of Neurotoxicology, Vol. 2. Totowa, NJ: Humana Press; 2001, pp. 323ā€“367.

    Google ScholarĀ 

  23. Broderick PA. Rat striatal dopamine release mechanisms of cocaine. NIDA Res. Mono. Ser. 1986;75: 367ā€“370.

    CASĀ  Google ScholarĀ 

  24. Broderick PA, Gibson GE. Dopamine and serotonin in rat striatum during in vivo hypoxic-hypoxia. Metab Br Dis 1989;4: 143ā€“153.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Broderick PA. State-of-the-art microelectrodes for in vivo voltammetry. Electroanalysis 1990;2: 241ā€“251.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Broderick PA. Microelectrodes and their use in cathodic electrochemical current arrangement with telemetric application. European Patent 90914306.7, 1996.

    Google ScholarĀ 

  27. Broderick PA. Microelectrodes and their use in an electrochemical arrangement with telemetric application. US Patent 5,938,903, 1999.

    Google ScholarĀ 

  28. Broderick PA. In vivo electrochemical studies of gradient effects of (sc) cocaine on dopamine and serotonin release in dorsal striatum of conscious rats, Pharmacol Biochem Behav 1993;46:973ā€“984.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Broderick PA, Pacia SV. Identification, diagnosis, and treatment of neuropathologies, neurotoxicities, tumors, and brain and spinal cord injuries using microelectrodes with microvoltammetry. U.S. 10/118,571 and Foreign Patent pending # PCTUS021/11244, 2002.

    Google ScholarĀ 

  30. Coury LA Jr, Huber EW, Heineman WR. Applications of modified electrodes in the voltammetric determination of catecholamine neurotransmitters. Biotechnology 1989;11: 1ā€“37.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  31. Heyes MP, Saito K, Devinsky O, Nadi SN. Kynurenine pathway metabolites in cerebrospinal fluid and serum in complex partial seizures. Epilepsia 1994;35:251ā€“257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Stone TW. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 2001;64:185ā€“218.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Van der Stelt HM, Olivier B, Westenburg HGM. Effects of availability of tryptophan on serotonin levels in the dorsal hippocampus of rats. Society for Neuroscience 32nd annual meeting, Orlando, FL, 2002.

    Google ScholarĀ 

  34. Statnick MA, Dailey JW, Jobe PC, Browning RA. Abnormalities in brain serotonin concentration, high affinity uptake, and tryptophan hydroxylase activity in severe-seizure genetically epilepsy-prone rats. Epilepsia 1996; 37:311ā€“321.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Scharfman HE, Ofer A. Pretreatment with L-kynurenine, the precursor to the excitatory amino acid antagonist kynurenic acid, suppresses epileptiform activity in combined hippocampal/entorhinal slices. Neurosci Lett 1997; 224:115ā€“118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 1999;375:87ā€“100.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Gentsch K, Heinemann U, Schmitz B, Behr J. Fenfluramine blocks low Mg2+-induced epileptiform activity in rat entorhinal corx. Epilepsia 2001;35:251ā€“257.

    Google ScholarĀ 

  38. Salgado-Commissariat D, Alkadhi KA. Serotonin inhibits epileptiform discharge by activation of 5-HTIA receptors in CA1 pyramidal neurons, Neuropharmacology 1997;36:1705ā€“1712.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Shouse MN, Staba RJ, Ko PY, Saquib SF, Farber PR. Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain Res 2001;892:176ā€“192.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Fedi M, Reutens D, Okazawa H, Andermann F, Boling W, Dubeau F, et al. Localizing value of-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology 2001;57:1629ā€“1636.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Natsume J, Kumakura Y, Bernasconi N, et al. Ī±-(11C) Methyl-l-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. Neurology 2003;60:756ā€“761.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Pacia SV, Doyle WK, Broderick PA. Biogenic amines in the human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ microvoltammetry. Brain Res 2001;899-:106-111.

    Google ScholarĀ 

  43. Watanabee K, Ashby CR Jr, Katsumoriand H,. Minabe Y. The effect of acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 2000; 398:239ā€“246.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pacia, S.V., Broderick, P.A. (2005). Bioimaging L-Tryptophan in Human Hippocampus and Neocortex. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_13

Download citation

Publish with us

Policies and ethics