Advertisement

Abstract

Hordeum vulgare is grass that may be either a winter or a spring annual of the POACEAE (GRAMINAE) family. It forms a rosette type of growth in fall and winter, developing elongated stems and flower heads in early summer. Winter varieties form branched stems or tillers at the base, so several stems rise from a single plant. The stems of both winter and spring varieties may vary in length from 30 to 120 cm, depending on variety and growing conditions. Stems are round, hollow between nodes, and develop five to seven nodes below the head. At each node, a clasping leaf develops. In most varieties, the leaves are coated with a waxy chalk-like deposit. Shape and size of leaves vary with variety, growing conditions, and position on the plant. The spike contains the flowers and consists of spike-lets attached to the central stem or rachis.

Keywords

Dietary Fiber Glycemic Index Petroleum Ether Extract Zingiber Officinale Barley Grain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HV001.
    Dhar, M. L., M. M. Dhar, B. N. Dhawan, B. N. Mehrotha, and C. Ray. Screening of Indian plants for biological activity. Part I. Indian J Exp Biol 1968; 6: 232–247.PubMedGoogle Scholar
  2. HV002.
    Stoessl, A. The antifungal factors in barley—3. Isolation of P-coumaroy-lagmatine. Phytochemistry 1965; 4: 973–976.CrossRefGoogle Scholar
  3. HV003.
    Yu Y. M., C. H. Wu, Y. H. Tseng, C. E. Tsai, and W. C. Chang. Antioxidative and hypolipidemic effects of barley leaf essence in a rabbit model of atherosclerosis. Jpn J Pharmacol 2002; 89(2): 142–148.PubMedCrossRefGoogle Scholar
  4. HV004.
    McElroy, L. W., H. A. Rigney, and H. H. Draper. Choline content of live stock feeds used in Western Canada. Sci Agr 1948; 28: 268–271.Google Scholar
  5. HV005.
    Spencer, E. V., A. D. Robinson, L. W. McElroy, and J. Kastelic. Collaborative analysis of wheat, oats and barley for their thiamine and riboflavin. Can J Res Ser F 1949; 27: 194–198.Google Scholar
  6. HV006.
    Mendez, J. Indole auxins in barley seedlings. Phytochemistry 1967; 6: 313–315.CrossRefGoogle Scholar
  7. HV007.
    Donard, E., and H. Labbe. The coexistence in barley rootlets of hyperglycemic and hypoglycemic substances. Comp Rend 1933; 196: 1047–1050.Google Scholar
  8. HV008.
    Cheunsoontorn, S., and N. Udompon-sanontha. Nutritional value of ant larvae (Oecophylla smaragdina Hym.). Abstr 3rd Congress of the Federation of Asian and Oceanian Biochemists Bangkok Thailand 1983.Google Scholar
  9. HV009.
    Hejgaard, J., S. Jacobsen, and I. Svendsen. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 1991; 291(1): 127–131.PubMedCrossRefGoogle Scholar
  10. HV010.
    Osawa, T., H. Katsuzaki, Y. Hagiwara, H. Hagiwara, and T. Shibamoto. AS novel antioxidant isolated from young green barley leaves. J Agr Food Chem 1992; 40(7): 1135–1138.CrossRefGoogle Scholar
  11. HV011.
    Svensson, B., I. B. Svendsen, P. Hojrup, P. Roepstorff, S. Ludvigsen, and F. M. Poulsen. Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 1992; 31(37): 8767–8770.PubMedCrossRefGoogle Scholar
  12. HV012.
    Molina, A., A. Segura, and F. Garcia-Olmedo. Lipid transfer proteins (NSLTPS) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 1993; 316(2): 119–122.PubMedCrossRefGoogle Scholar
  13. HV013.
    Purmohseni, H., W. D. Ibenthal, R. Machinek, G. Remberg, and V. Wray. Cyanoglucosides in the epidermis of Hordeum vulgare. Phytochemistry 1993; 33(2): 295–297.CrossRefGoogle Scholar
  14. HV014.
    Upreti, R. K., S. Ahmad, S. Shukla, and A. M. Kidwai. Experimental anorexigenic effect of a membrane proteoglycan isolated from plants. J Ethnopharmacol 1994; 42(1): 53–61.PubMedCrossRefGoogle Scholar
  15. HV015.
    Mendez, E., A. Rocher, M. Calero, T. Girbes, L. Citores, and F. Soriano. Primary structure of omega-hordothionin, a member of a novel family of thionins from barley endosperm, and its inhibition of protein synthesis in eucaryotic and procaryotic cell-free system. Eur J Biochem 1996; 239(1): 67–73.PubMedCrossRefGoogle Scholar
  16. HV016.
    Hamberg, M., and G. Hamberg. 14(R)-hydroxylinoleic acid, an oxylipid from oat seeds. Phytochemistry 1996; 42(3): 729–732.CrossRefGoogle Scholar
  17. HV017.
    Ohikawa, M., J. Kinjo, Y. Hagiwara, et al. Three new anti-oxidative saponarin analogs from young green barley leaves. Chem Pharm Bull 1998; 46(12): 1887–1890.Google Scholar
  18. HV018.
    Linnestad, C., D. N. P. Doan, R. C. Brown, et al. Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nuclear cell walls. Plant Physiol 1998; 118(4): 1169–1180.PubMedCrossRefGoogle Scholar
  19. HV019.
    Zagari, A. Medicinal plants. Vol 4, 5th ed., Tehran University Publications, No 1810/4, Tehran, Iran 1992; 969 pp.Google Scholar
  20. HV020.
    Stalay, A. E. Starch granulation. Patent-Neth Appl-73 10,688 1975.Google Scholar
  21. HV021.
    Savchenko, G. E. Effect of chloramphenicol on the accumulation and transformation of protochlorophyll in barley leaves. Biol Nauch-Tekhn Progress 1974: 60.Google Scholar
  22. HV022.
    Bonnafous, J. C., J. L. Olive, J. L. Borgna, and M. Mousseron-Canet. Cyclic AMP in barley seeds and seedlings, and the bacterial or fungal contamination. Biochimie 1975; 57: 661.PubMedCrossRefGoogle Scholar
  23. HV023.
    Lichtenthaler, H. K., and V. Straub. The formation of lipoquinones in tissue cultures. Planta Med Sauppl 1975; 198.Google Scholar
  24. HV024.
    Gross, D., H. Lehmann, and H. R. Shutte. Biosynthesis of Graminae. Biochem Physiol Pflanz 1974; 166: 281.Google Scholar
  25. HV025.
    Lenton, J. R., L. J. Goad, and T. W. Goodwin. Sitosterol biosynthesis in Hordeum vulgare. Phytochemistry 1975; 14: 1523–1528.CrossRefGoogle Scholar
  26. HV026.
    Zimlyanukhin, L. A. Dynamics of aconitic acid formation in corn and barley roots. Fiziol I Fiz-Khim Mekhanizmy Regulyatsii Obmen Protsessov Organizma 1974; 1974(3): 18.Google Scholar
  27. HV027.
    Faull, K. R., B. G. Coombe, and L. G. Paleg. Extraction and characterization of gibberellins from Hordeum vulgare seedlings. Aust J Plant Physiol 1974; 1: 183.Google Scholar
  28. HV028.
    Vassilev, G. N., and N. P. Mashev. Synthesis, chemical structure and cytokinin-like activity of some derivatives of N-Phenyl-N′-alk-yl or arylt thiourea and their influence on the nitrogen metabolism in barley seedlings. Biochem Physiol Pflanz 1974; 165:467.Google Scholar
  29. HV029.
    Solomakhina, V. A., N. V. Novotel’nov, and M. T. Golovkina. Extraction of phenolic compounds from barley and their determination. Ezv Vyssh Uchebn Zaved Pishch Tekhnol 1975; 1975(3): 183.Google Scholar
  30. HV030.
    Perez, C., and C. Anesini. In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J Ethnopharmacol 1994; 44(1): 41–46.PubMedCrossRefGoogle Scholar
  31. HV031.
    Nakamura, T. H., M. B. Ishitani, P. Harinasut, M. Nomura, T. H. Takabe, and T. T. Takabe. Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants. Plant Cell Physiol 1996; 37(6): 873–877.Google Scholar
  32. HV032.
    Reuber, S., B. Jende-Strid, V. Wray, and G. Weissenbock. Accumulation of the chalcone isosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalcone isomerase. Physiol Plant 1997; 101(4): 827–832.CrossRefGoogle Scholar
  33. HV033.
    Park, J, H., B. K. Kim, M. K. Park, et al. Anti-diabetic activity of herbal drugs. Korean J Pharmacog 1997; 28(2): 72–74.Google Scholar
  34. HV034.
    Kobayashi, M., M. Gomi, J. Agematsu, T. Asami, S. Yoshida, and A. Sakurai. Fluctuation of endogenous gibberelin and abscisic acid levels in germinating seeds of barley. Biosci Biotech Biochem 1995; 59(10): 1969–1970.Google Scholar
  35. HV035.
    Davies, J. T., P. R. Shewry, and N. Harris. Spatial and temporal patterns of B hordein synthesis in developing barley (Hordeum vulgare L.) caryopses. Cell Biol Int 1993; 17(2): 195–203.CrossRefGoogle Scholar
  36. HV036.
    Mayoral, A. M., C. Gutierrez, M. L. Ruiz, and P. Castanera. A high performance liquid chromatography method for quantification of diboa, dimboa and mboa from aqueous extracts of corn and winter cereal plants. J Liq Chromatogr 1994; 17(12): 2651–2665.CrossRefGoogle Scholar
  37. HV037.
    Zupfer, J. M., K. E. Churchil, D. C. Rasmusson, and R. G. Fulcher. Variation in ferulic acid concentration among diverse barley cultivars measured by HPLC and microspectrophotometry. J Agr Food Chem 1998; 46(4): 1350–1354.CrossRefGoogle Scholar
  38. HV038.
    Shin, N. H., K. S. Lee, S. H. Kang, K. R. Min, S. H. Lee, and Y. S. Kim. Inhibitory effects of herbal extracts on dopa oxidase activity of tyrosinase. Nat Prod Sci 1997; 3(2): 111–121.Google Scholar
  39. HV039.
    Bruckner, C. The use of plant galactagogues in middle Europe. Gleditschia 1989; 17(2): 189–201Google Scholar
  40. HV040.
    Shibamoto, T., Y. Hagiwara, H. Hagiwara, and T. Osawa. Flavonoid with strong antioxidative activity isolated from young barley leaves. ACS Symp Ser 1994; 547:154–163.CrossRefGoogle Scholar
  41. HV041.
    Nakajima, S., Y. Hagiwara, H. Hagiwara, and T. Shibamoto. Effect of the antioxidant 2′-O-glycosylisovi-texin from young green barley leaves on acetaldehyde formation in beer stored at 50C for 90 days. J Agr Food Chem 1998; 46(4): 1529–1531.CrossRefGoogle Scholar
  42. HV042.
    Song, M. J., and D. H. Kim. Inhibitory effect of herbal medicines on rotavirus infection. Korean J Pharmacog 1998; 292): 125–128.Google Scholar
  43. HV043.
    Dundelova, M., and S. Prochazka. The level of indolyl-3-acetic acid in kernels of winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). Rostl Vyroba 1989; 35(4): 381–389.Google Scholar
  44. HV044.
    Periera, F., M. Rafael, and M. H. Lacerda. Contact dermatitis from barley. Contact Dermatitis 1998; 39(5): 261.CrossRefGoogle Scholar
  45. HV045.
    Kanauchi, O., T. Nakamura, K. Agata, T. Fushiki, and H. Hara. Effects of germinated barley foodstuff in preventing diarrhea and forming normal feces in ceco-colectomized rats. Biosci Biotech Biochem 1998; 62(2): 366–368.CrossRefGoogle Scholar
  46. HV046.
    Cho, H. M., J. S. Jung, T. H. Lee, et al. Inhibitory effects of extracts from traditional herbal drugs on 5-hydrox-ytryptamine uptake in primary cultured rats brainstem neurons. Korean J Pharmacog 1995; 26(4): 349–354.Google Scholar
  47. HV047.
    Shukla, K., J. P. Narain, P. Puri, et al. Glycemic response to maize, bajra and barley. Indian J Physiol Pharmacol 1991; 35(4): 249–254.PubMedGoogle Scholar
  48. HV048.
    Poocharoen, B., J. F. Barbour, L. M. Libbey, and R. A. Scanlan. Precursors of N-nitrosodimethylamine in malted barley. 1. Determination of hordenine and gramine. J Agr Food Chem 1992; 40(11): 2216–2221.CrossRefGoogle Scholar
  49. HV049.
    De Feo, V., and F. Senatore. Medicinal plants and phytotherapy in the Amafitan Coast, Salerno province, Campania, Southern Italy. J Ethno-pharmacol 1993; 39(1): 39–51.Google Scholar
  50. HV050.
    Luptn, J. R., J. L. Morn, and M. Robinson. Barley bran flour accelerates gastrointestinal transit time. J Amer Diet Ass 1993; 93(8): 881–885.CrossRefGoogle Scholar
  51. HV051.
    Sekiya, K., T. Fushimi, T. Kanamori, et al. Regulation of arachidonic acid metabolism in platelets by vegetables. Biosci Biotech Biochem 1993; 57(4): 670–671.Google Scholar
  52. HV052.
    Miller, J. B., E. Pang, and L. Bramall. Rice: a high or low glycemic index food? Amer J Clin Nutr 1992; 56(6): 1034–1036.PubMedGoogle Scholar
  53. HV053.
    Poplavskaya, R. S. Flavonoid accumulation of leaves of spring barley during development. Vestsi Akad Navuk BSSR Biyal Navuk 1991; 1991(5): 17–20.Google Scholar
  54. HV054.
    Brandon, M. J., L. Y. Foo, L. J. Porter, and P. Meredith. Proanthocyanidins of barley and sorghum: composition as a function of maturity of barley ears. Phytochemistry 1982; 21(12): 2953–2957.CrossRefGoogle Scholar
  55. HV055.
    Rustamani, M. A., K. Kanehisa, H. Tsumuki, and T. Shiraga. Additional observations on Aphid densities and gramine contents in barley lines. Appl Entomol Zool 1992; 27(1): 151–153.Google Scholar
  56. HV056.
    Anesini, C., and C. Perez. Screening of plants used in argentine folk medicine for antimicrobial activity. J Ethno-pharmacol 1993; 39(2): 119–128.Google Scholar
  57. HV057.
    Sasatamoinen, M., S. Plaami, J. Kumpulainen, and O. Rantanen. Concentrations of water soluble and insoluble beta-glucan and phytic acid in 6 row and 2-row barley. Cereal Res Commun 1991; 19(4): 391–397.Google Scholar
  58. HV058.
    Hagiwara, Y., and H. Hagiwara. Isovitexin derivative from plant leaves as a xanthine oxidase inhibitor. Patent-Japan Kokai Tokkyo Koho-05,238,943 1993; 10 pp.Google Scholar
  59. HV059.
    Lupton, J. R., M. C. Robinson, and J. L. Morin. Cholesterol-lowering effect of barley bran flour and oil. J Amer Diet Ass 1994; 94(1): 65–70.PubMedCrossRefGoogle Scholar
  60. HV060.
    Toshida, H., H. Tsumuki, K. Kanehisa, and L. J. Corcuera. Release of gramine from the surface of barley leaves. Phytochemistry 1993; 34(4): 1011–1013.CrossRefGoogle Scholar
  61. HV061.
    Hyun, J. W., K. H. Lim, J. E. Shin, et al. Antineoplastic effect of extracts from traditional medicinal plants and various plants. Korean J Pharmacol 1994; 25(2): 171–177.Google Scholar
  62. HV062.
    Mahdi, G. S., D. J. Naismith, R. G. Price, S. A. Taylor, J. Risteli, and L. Risteli. Modulating influence of barley on the altered metabolism of glucose and of basement membranes in the diabetic rat. Ann Nutr Metab 1994; 38(2): 61–67.PubMedCrossRefGoogle Scholar
  63. HV063.
    Perez, C., and C. Anesini. Inhibition of Pseudomonas aeruginosa by Argentinean medicinal plants. Fitoterapia 1994; 65(2): 169–172.Google Scholar
  64. HV064.
    Nishiyam, T., Y. Hagiwara, H. Hagiwara, and T. Shibamoto. Inhibition of malonaldehyde foration from lip ids by an isoflavonoid isolated from young green barley leaves. J Amer Oil Chem Soc 1993; 70(8): 811–813.CrossRefGoogle Scholar
  65. HV065.
    Miyagawa, H., H. Toda, T. Tsurushima, T. Ueno, and J. Shishiyama. Accumulation of tryptamine in barley leaves irradiated with UV light. Biosci Biotech Biochem 1994; 58(9): 1723–1724.Google Scholar
  66. HV066.
    Scott, I. M., and H. Yamamoto. Mass spectrometric quantification f salicylic acid in plant tissues. Phytochemistry 1994; 37(2): 336.CrossRefGoogle Scholar
  67. HV067.
    Liu, D. L., and J. L. Lovett. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelo-chemicals. J Chem Ecol 1993; 19(10): 2231–2244.CrossRefGoogle Scholar
  68. HV068.
    Jackson, K. A., D. A. I. Suter, and D. L. Topping. Oat bran, barley and malted barley lower plasma cholesterol relative to wheat bran but differ in their effects on liver cholesterol in rats fed diet with and without cholesterol. J Nutr 1994; 124(9): 1678–1684.PubMedGoogle Scholar
  69. HV069.
    Hattori, A., H. Migitaka, M. Iigo, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 1995; 35(3): 527–634.Google Scholar
  70. HV070.
    Wijaya, E., Z. M. Wu, and F. Ng. Effect of’ slimax’, a Chinese herbal mixture, on obesity. Int J Pharmacog 1995; 33(1): 41–46.CrossRefGoogle Scholar
  71. HV071.
    Moore, B. D., E. Isidoro, and J. R. Seemann. Distribution of 2-carboxy-arabibitol among plants. Phytochemistry 1993; 34(3): 703–707.CrossRefGoogle Scholar
  72. HV072.
    Ohba, R., S. Kitaoka, S. Ohda, and S. Ueda. Storage stability and thermal stability of hordeumin, an anthocyanin pigment from barley. Biosci Biotech Biochem 1995; 59(4): 746–748.Google Scholar
  73. HV072.
    Lia, A., G. Hallmans, A. S. Sandberg, B. Sundberg, P. Aman, and H. Anders-son. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Amer J Clin Nutr 1995; 62(6): 1245–1251.PubMedGoogle Scholar
  74. HV073.
    Perez, C., and C. Anesini. Antibacterial activity of alimentary plants against Staphylococcus aureus growth. Amer J Chinese Med 1994; 22(2): 169–174.CrossRefGoogle Scholar
  75. HV074.
    Fujita, T., E. Sezik, M. Tabata, E. Yesilada, G. Honda, Y. Takeda, T. Taanka, and Y. Takaishi. Traditional medicine in Turkey. VII. Folk medicine in middle and west Black Sea regions. Econ Bot 1995; 49(4): 406–422.Google Scholar
  76. HV075.
    Arisawa, M. Cell growth inhibition of KB cells by plant extracts. Nat Med 1994; 48(4): 338–347.Google Scholar
  77. HV076.
    Bae, E. A., M. J. Han, N. J. Kim, and D. H. Kim. Anti-Helicobacter pylori activity of herbal medicines. Boil Pharm Bull 1998; 21(9): 990–992.Google Scholar
  78. HV077.
    Mitsuyama, K., T. Saiki, O. Kanauchi, et al. Treatment of ulcerative colitis with germinated barley foodstuff feeding: a pilot study. Aliment Pharmacol Ther 1998; 12(12): 1225–1230.PubMedCrossRefGoogle Scholar
  79. HV078.
    Munoz, O., V. H. Argandona, and L. J. Corcuera. Chemical constituents from shoots of Hordeum vulgare infected by the Aphid schizapsis graminum. Z Naturforsch Ser C 1998; 53C(9/10): 811–817.Google Scholar
  80. HV079.
    Duh, P. D., and G. C. Yen. Antioxidative activity of three herbal water extracts. Food Chem 1997; 60(4): 639–645.CrossRefGoogle Scholar
  81. HV080.
    Miyake, T., and T. Shibamoto. Inhibition of malonaldehyde and acetaldehyde formation from blood plasma oxidation by naturally occurring anti-oxidants. J Agr Food Chem 1998; 46(9): 3694–3697.CrossRefGoogle Scholar
  82. HV081.
    Lukas, T. J., D. B. Iverson, M. Schleicher, and D. M. Watterson. Structural characterization of a higher plant calmodulin. Plant Physiol 1984; 75(3): 788–795.PubMedCrossRefGoogle Scholar
  83. HV082.
    Meyer, A., O. Miersch, C. Buttner, W. Dathe, and G. Sembdner. Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 1984; 3: 1–8.CrossRefGoogle Scholar
  84. HV083.
    Dorne, A. J, G. Cadel, and R. Douce. Polar lipid composition of leaves from nine typical alpine species. Phytochemistry 1986; 25(1): 65–68.CrossRefGoogle Scholar
  85. HV084.
    Asano, K., B. Svensson, and F. M. Polsen. Isolation and characterization of inhibitors of animal cell-free protein synthesis from barley seeds. Carlsberg Res Commun 1984; 49(7): 619–626.CrossRefGoogle Scholar
  86. HV085.
    Roberts, W. K., and C. P. Selitrennikoff. Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta 1986; 880:161–170.PubMedGoogle Scholar
  87. HV086.
    Smith, T. A., S. J. Croker, and R. S. T. Loeffler. Occurrence in higher plants of 1-(3-aminopropyl)-pyrrolinium and pyrroline: products of polyamine oxidation. Phytochemistry 1986; 25(3): 683–689.CrossRefGoogle Scholar
  88. HV087.
    Kaneta, M., and N. Sugiyama. Identification of flavone compounds in eighteen Gramineae species. Agr Biol Chem 1973; 37: 2663–2665.Google Scholar
  89. HV088.
    Oashi, H., E. Yamamoto, N. G. Lewis, and G. H. N. Towers. 5-Hydroxy-ferulic acid in Zea mays and Hordeum vulgare cell walls. Phytochemistry 1987; 26(7): 1915–1916.CrossRefGoogle Scholar
  90. HV089.
    Lehtonen, M., and R. Aikasalo. Beta-glucan in two-and six-rowed barley. Cereal Chem 1987; 64(3): 191–193.Google Scholar
  91. HV090.
    Argandona, V. H., G. E. Zuniga, and L. J. Corcuera. Distribution of gramine and hydroxamic acids and wheat leaves. Phytochemistry 1987; 26(7): 1917–1918.CrossRefGoogle Scholar
  92. HV091.
    Werner, C., and P. Matile. Accumulation of coumarylglucosides in vacuoles of barley protoplasts. J Plant Physiol 1985; 118(3): 237–249.Google Scholar
  93. HV092.
    Quewshi, A.A., T. D. Crenshaw, N. Abuirmeileh, D. M. Peterson, and C. E. Elson. Influence of minor plant constituents on porcine hepatic lipid metabolism. Atherosclerosis 1987; 64(2/3): 109–115.Google Scholar
  94. HV093.
    Yu, J., and K. J. Chen. Clinical observations of AIDS treated with herbal formulas. Int J Orient Med 1989; 14(4): 189–193.Google Scholar
  95. HV094.
    Johansson, I. M., and B. Schubert. Separation of hordenine and N-methyl derivatives from germinating barley by liquid chromatography with dual-electrode coulometric detection. J Chromatogr 1990; 498(1): 241–247.CrossRefGoogle Scholar
  96. HV095.
    Leah, R., H. Tommerup, I. Svendsen, and J. Mundy. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 1991; 266(3): 1564–1573.PubMedGoogle Scholar
  97. HV096.
    Pang, H. A., Y. W. Lee, N. J. Suh, and I. M. Chang. Toxicological study on Korean tea materials: screening of potential mutagenic activities by using SOS-chromotest. Korean J Pharmacog 1990; 21(1): 83–87.Google Scholar
  98. HV097.
    Laman, M. A., and R. S. Poplavskaya. Hydroxycinnamine acid derivatives in spring barley. Vestsi Akad Navuk BSSR Ser Biyal Navuk 1990; 1990(2): 37–39.Google Scholar
  99. HV098.
    Sato, A. Studies on anti-tumor activity of crude drugs. I. The effects of aqueous extracts of some crude drugs in shortterm screening test. Yakugaku Zasshi 1989; 109(6): 407–423.PubMedGoogle Scholar
  100. HV099.
    Giordano, J., and P. J. Levine. Botanical preparations used in Italian folk medicine: possible pharmacological and chemical basis of effect. Social Pharmacol 1989; 3(1/2): 83–110.Google Scholar
  101. HV100.
    Newman, R.K., S. E. Lewis, C. W. Newman, R. J. Boik, and R. T. Ramage. Hypocholesterolemic effect of barley foods on healthy men. Nutr Rep Int 1989; 39(4): 749–760.Google Scholar
  102. HV101.
    Barria, B. N., S. V. Cpaj, and H. M. Niemeyer. Occurrence of Diboa in wild Hordeum species and its relation to Aphid resistance. Phytochemistry 1992; 31(1): 89–91.CrossRefGoogle Scholar
  103. HV102.
    Haggblom, P. Isolation o-froquefortine C from feed grain. Appl Environ Microbiol 1990; 56(9): 2924–2926.PubMedGoogle Scholar
  104. HV103.
    Hengtrakul, P., K. Lorenz, and M. Mathias. Alkylresorcinol homologs in cereal grains. J Food Compos Anal 1991; 4(1): 52–57.CrossRefGoogle Scholar
  105. HV104.
    Hyldon, R. G., and J. S. O’Mahony. Treating hypercholesterolemia. Patent-US-4,175,124 1979; 3 pp.Google Scholar
  106. HV105.
    Grand, R. J. A., A. C. Nairn, and S. V. Perry. The preparation of calmodulins from barley (Hordeum sp) and Basidi-omycete fungi. Biochem J 1980; 185: 755–760.PubMedGoogle Scholar
  107. HV106.
    Mc Murrough, I. High-performance liquid chromatography of flavonoids in barley and hops. J Chromatogr 1981; 218:683–693.CrossRefGoogle Scholar
  108. HV107.
    Frost, S., J. B. Harborne, and L. King. Identification of the flavonoids in five chemical races of cultivated barley. Hereditas 1977; 85: 163–168.CrossRefGoogle Scholar
  109. HV108.
    Banerjee, M., and A. K. Sharma. Variations in DNA content. Experientia 1979; 35: 2–43.CrossRefGoogle Scholar
  110. HV109.
    Kloos, H., W. Sidrak, A. A. M. Michael, E. W. Mohareb, and G. I. Higashi. Disease concepts and treatment practices relating to Schistosomiasis haematobium in upper Egypt. J Trop Med Hyg 1982; 85(3): 99–117.PubMedGoogle Scholar
  111. HV110.
    Storey, H., and R. G. Wyn Jones. Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry 1977; 16: 447–453.CrossRefGoogle Scholar
  112. HV111.
    Neurath, G. B., M. Dunger, F. G. Pein, D. Ambrosius, and O. Schreiber. Primary and secondary amines in the human environment. Food Cosmet Toxicol 1977; 15: 275–282.PubMedCrossRefGoogle Scholar
  113. HV112.
    Hong, N. D., J. W. Kim, B. W. Kim, and J. G. Shon. Studies on the efficacy of the combined preparation of crude drugs. 6. Effect of “Saengkankunbitang” on activities of the liver enzyme, protein contents and the excretory action of bile juice in the serum of CCL4-intoxicated rabbits. Korean J Pharmacog 1982; 13: 33–38.Google Scholar
  114. HV113.
    Han, D. S., S. J. Lee, and H. K. Lee. Ethnobotanical survey in Korea. Proc Fifth Asian Symposium on Medical Plants and Spices Seoul Korea August 20–24 1984 PH Han DS Han Yn Han, and WS Woo (eds) 1984; 5: 125–144.Google Scholar
  115. HV114.
    Ishii, R., K. Yoshikawa, H. Minakata, H. Komura, and T. Kada. Specifities of bio-antimutagens in plant kingdom. Agr Biol Chem 1984; 48(10): 2587–2591.Google Scholar
  116. HV115.
    Sahu, T. R., Less known uses of weeds as medicinal plants. Ancient Sci Life 1984; 3(4): 245–249.Google Scholar
  117. HV116.
    Ohtake, H., H. Yuasa, C. Komura, T. Miyauchi, Y. Hagiwara, and K. Kubota. Studies on the constituents of green juice from young barley leaves. Antiulcer activity of fractions from barley juice. Yakugaku Zasshi 1985; 105(11): 1046–1051.PubMedGoogle Scholar
  118. HV116.
    Woo, W. S., E. B. Lee, K. H. Shin, S. S. Kang, and H. J. Chi. A review of research on plants for fertility regulation in Korea. Korean J Pharmacog 1981; 12(3): 153–170.Google Scholar
  119. HV117.
    Ohtake, H., S. Nonaka, Y. Sawada, Y. Hagiwara, H. Hagiwara, and K. Kubota. Studies on the constituents of green juice from young barley leaves. Effect on dietary induced hypercholesterolemia in rats. Yakugaku Zasshi 1985; 105(11): 1052–1057.PubMedGoogle Scholar
  120. HV118.
    Evans, L. S., and W. A. Tramontano. Trigonelline and promotion of cell arrest in G2 of various legumes. Phytochemistry 1984; 23(9): 1837–1840.CrossRefGoogle Scholar
  121. HV119.
    Matsuoka, Y., H. Seki, K. Kubota, H. Ohtake, and Y. Hagiwara. Anti-inflammatory effect of glycoprotein, D1-G1, isolated from barley leaves. Ensho 1983; 3(4): 602–604.Google Scholar
  122. HV120.
    Caceres, A., L. M. Giron, and A. M. Martinez. Diuretic activity of plants used for the treatment of urinary ailments in Guatemala. J Ethnopharmacol 1987; 19(3): 233–245.PubMedCrossRefGoogle Scholar
  123. HV121.
    Ramiez, V. R., L. J. Mostacero, A. E. Garcia, et al. Vegetales empleados en medicina traditional Norperuana. Banco Agrario Del Peru & NACL Univ Trujillo, Trujillo, Peru, June, 1988; 54 pp.Google Scholar
  124. HV122.
    Caceres, A., L. M. Giron, S. R. Alvarado, and M. F. Torres. Screening of antimicrobial activity of plants popularly used in Guatemala for the treatment of dermatomucosal diseases. J Ethnopharmacol 1987; 20(3): 223–237.PubMedCrossRefGoogle Scholar
  125. HV123.
    Leporatti, M. L., and A. Pavesi. New or uncommon uses of several medicinal plants in some areas of central Italy. J Ethnopharmacol 1990; 29(2): 213–223.PubMedCrossRefGoogle Scholar
  126. HV124.
    Chetal, S., D. S. Wagle, and H. S. Nainawatee. Phosphatidylethanolamine in wheat and barley leaves under water stress. Phytochemistry 1982; 21(6): 1432–1433.CrossRefGoogle Scholar
  127. HV125.
    Ariffin, A., P. H. Mc Neil, R. J. Cooke, C. Wood, and D. R. Thomas. Carnitine content of greening barley leaves. Phytochemistry 1982; 21(6): 1431–1432.CrossRefGoogle Scholar
  128. HV126.
    Lee, E. B., H. S. Yun, and W. S. Woo. Plants and animals used for fertility regulation in Korea. Korean J Pharmacog 1977; 8: 81–87.Google Scholar
  129. HV127.
    Hunte, P., M. Safi, A. Macey, and G. B. Kerr. Indigenous methods of voluntary fertility regulation in Afghanistan. Natl Demographic Family Guidance Survey of Settled Population Afghanistan 1975; 4: 1.Google Scholar
  130. HV128.
    Kapoor, P. D., and A. K. Pal. Estrogenic activity of pasture plants used as cattle feed. Indian J Exp Biol 1965; 3: 61–63.PubMedGoogle Scholar
  131. HV129.
    Peake, I. R., P. J. Dunphy, and J. F. Pennock. The chemical diversity of the plastochromanols. Phytochemistry 1970; 9: 1345.CrossRefGoogle Scholar
  132. HV130.
    El-Dean Mahmoud, A. A. G. Study of indigenous (folk ways) birth control methods in Alexandria. Thesis-MS-University of Alexandria-Higher Institute of Nursing 1972.Google Scholar
  133. HV131.
    Celayeta, F. D. Action of the tissues of various plants on the growth of Spha-celia segetum. Farmacognosia (Madrid) 1960; 20: 91–101.Google Scholar
  134. HV132.
    Datko, A. H., S. H. Mudd, and J. Giovaneli. A sensitive and specific assay for cystathione: cystathione content of several plant tissues. Ann Biochem 1974; 62(2): 531–545.CrossRefGoogle Scholar
  135. HV133.
    Kawai, S., Y. Sato, S. I. Takagi, and K. Nomoto. Separation and determination of mugineic acid and its analogues by high-performance liquid chromatography. J Chromatogr 1987; 391:325–327.PubMedCrossRefGoogle Scholar
  136. HV134.
    Dongowski G, M. Huth, and E. Gebhardt. Steroids in the intestinal tract of rats are affected by dietary-fibre-rich barley-based diets. Br J Nutr 2003; 90(5): 895–906.PubMedGoogle Scholar
  137. HV135.
    Li J., T. Kaneko, L. Q. Qin, J. Wang, Y. Wang, and A. Sato. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: comparison among barley, rice, and cornstarch. Metabolism 2003; 52(9): 1206–1210.PubMedCrossRefGoogle Scholar
  138. HV136.
    Li J., T. Kaneko, Y. Wang, L. Q. Qin, and A. Sato. Effects of dietary fiber on the glucose tolerance in spontaneously diabetic rats-comparison among barley, rice, and corn starch. Nippon EiseigakuZasshi 2003; 58(2): 281–286.Google Scholar
  139. HV137.
    Delaney B., T. Carlson, S. Frazer, et al. Evaluation of the toxicity of concentrated barley beta-glucan in a 28-day feeding study in Wistar rats. Food Chem Toxicol 2003; 41(4): 477–487.PubMedCrossRefGoogle Scholar
  140. HV138.
    Dongowski G., M. Huth, E. Gebhardt, and W. Flamme. Dietary fiber-rich barley products beneficially affect the intestinal tract of rats. J Nutr 2002; 132(12): 3704–3714.PubMedGoogle Scholar
  141. HV139.
    Fukuda M., O. Kanauchi, Y. Araki, et al. Prebiotic treatment of experimental colitis with germinated barley foodstuff: a comparison with probiotic or antibiotic treatment. Int J Mol Med 2002; 9(1): 65–70.PubMedGoogle Scholar
  142. HV140.
    Kanauchi O., T. Iwanaga, A. Andoh, et al. Dietary fiber fraction of germinated barley foodstuff attenuated mucosal damage and diarrhea, and accelerated the repair of the colonic mucosa in an experimental colitis. J Gastroenteol Hepatol 2001; 16(2): 160–168.CrossRefGoogle Scholar
  143. HV141.
    Kanauchi O, T. Iwanaga, and K. Mitsuyama. Germinated barley foodstuff feeding. A novel neutraceutical therapeutic strategy for ulcerative colitis. Digestion 2001; 63Suppl 1:60–67.PubMedCrossRefGoogle Scholar
  144. HV142.
    Kanauchi O., Y. Araki, A. Andoh, et al. Effect of germinated barley foodstuff administration on mineral utilization in rodents. J Gastroenterol 2000; 35(3): 188–194.PubMedCrossRefGoogle Scholar
  145. HV143.
    Araki Y., Y. Fujiyama, A. Andoh, S. Koyama, O. Kanauchi, and T. Bamba. The dietary combination of germinated barley foodstuff plus Clostridium butyricum suppresses the dextran sulfate sodium-induced experimental colitis in rats. Scand J Gastroenterol 2000;35(10): 1060–1067.PubMedCrossRefGoogle Scholar
  146. HV144.
    Araki Y., A. Andoh, S. Koyama, Y. Fujiyama, O. Kanauchi, and T. Bamba. Effects of germinated barley foodstuff on microflora and short chain fatty acid production in dextran sulfate sodium-induced colitis in rats. Biosci Biotechnol Biochem 2000; 64(9): 1794–1800.PubMedCrossRefGoogle Scholar
  147. HV145.
    Kanauchi O., A. Andoh, T. Iwanaga, et al. Germinated barley foodstuffs attenuate colonic mucosal damage and mucosal nuclear factor kappa B activity in a spontaneous colitis model. J Gastroenterol Hepatol 1999; 14(12): 1173–1179.PubMedCrossRefGoogle Scholar
  148. HV146.
    Kanauchi O., T. Iwanaga, K. Mitsuyama, et al. Butyrate from bacterial fermentation of germinated barley foodstuff preserves intestinal barrier function in experimental colitis in the rat model. J Gastroenterol Hepatol 1999;14(9): 880–888.PubMedCrossRefGoogle Scholar
  149. HV147.
    Kanauchi O., K. Mitsuyama, T. Saiki, K. Agata, T. Nakamura, and T. Iwanaga. Preventive effects of germinated barley foodstuff on methotrexate-induced enteritis in rats. Int J Mol Med 1998;1(6): 961–966.PubMedGoogle Scholar
  150. HV148.
    Kanauchi O., Y. Hitomi, K. Agata, T. Nakamura, and T. Fushiki. Germinated barley foodstuff improves constipation induced by loperamide in rats. Biosci Biotechnol Biochem 1998; 62(9): 1788–1790.PubMedCrossRefGoogle Scholar
  151. HV149.
    Kanauchi O., K. Mitsuyama, T. Saiki, K. Agata, T. Nakamura, and T. Iwanaga. Effects of germinated barley foodstuff on dextran sulfate sodium-induced colitis in rats. J Gastroenterol 1998; 33(2): 179–188.PubMedCrossRefGoogle Scholar
  152. HV150.
    Kanauchi O., T. Nakamura, K. Agata, T. Fushiki, and H. Hara. Effects of germinated barley foodstuff in preventing diarrhea and forming normal feces in ceco-colectomized rats. Biosci Biotechnol Biochem 1998; 62(2): 366–368.PubMedCrossRefGoogle Scholar
  153. HV151.
    Kanauchi O., T. Nakamura, K. Agata, and T. Fushiki. Preventive effect of germinated barley foodstuff on diarrhea induced by water-soluble dietary fiber in rats. Biosci Biotechnol Biochem 1997; 61(3): 449–354.PubMedCrossRefGoogle Scholar
  154. HV152.
    Kanauchi O., T. K. Agata, and T. Fushiki. Mechanism for the increased defecation and jejunum mucosal protein content in rats by feeding germinated barley foodstuff. Biosci Biotechnol Biochem 1997; 61(3): 443–448.PubMedGoogle Scholar
  155. HV153.
    McIntosh G. H., R. K. Le Leu, P. J. Royle, and G. P. Young. A comparative study of the influence of differing barley brans on DMH-induced intestinal tumours in male Sprague-Dawley rats. J Gastroenterol Hepatol 1996; 11(2): 113–119.PubMedCrossRefGoogle Scholar
  156. HV154.
    Oda T, S. Aoe, S. Imanishi, Y. Kanazawa, H. Sanada and Y. Ayano. Effects of dietary oat, barley, and guar gums on serum and liver lip id concentrations in diet-induced hypertriglyceridemic rats. J Nutr Sci Vitaminol (Tokyo) 1994; 40(2): 213–217.Google Scholar
  157. HV155.
    McIntosh G. H., L. Jorgensen, and P. Royle. The potential of an insoluble dietary fiber-rich source from barley to protect from DMH-induced intestinal tumors in rats. Nutr Cancer 1993; 19(2): 213–221.PubMedCrossRefGoogle Scholar
  158. HV156.
    Robinson M., D. Hart, and G. H. Pigott. The effects of diet on the incidence of periodontitis in rats. Lab Anim 1991; 25(3): 247–253.PubMedCrossRefGoogle Scholar
  159. HV157.
    Naismith D. J., G. S. Mahdi, and N. N. Shakir. Therapeutic value of barley in the management of diabetes. Ann Nutr Metab 1991; 35(2): 61–64.PubMedCrossRefGoogle Scholar
  160. HV158.
    Qureshi A. A., W. C. Burger, D. M. Peterson, and C. E. Elson. The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J Biol Chem 1986; 261(23): 10544–10550.PubMedGoogle Scholar
  161. HV159.
    Donangelo C. M., and B. O. Eggum. Comparative effects of wheat bran and barley husk on nutrient utilization in rats. 2. Zinc, calcium and phosphorus. Br J Nutr 1986; 56(1): 269–280.PubMedCrossRefGoogle Scholar
  162. HV160.
    Puls R., and J. A. Greenway. Fusariotoxicosis from barley in British Columbia. II. Analysis and toxicity of syspected barley. Can J Comp Med 1976; 40(1): 16–19.PubMedGoogle Scholar
  163. HV161.
    Kanauchi O., I. Serizawa, Y. Araki, et al. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol 2003; 38(2): 134–141.PubMedCrossRefGoogle Scholar
  164. HV162.
    Kamimura A., and T. Takahashi. Procyanidin B-3, isolated from barley and identified as a hair-growth stimulant, has the potential to counteract inhibitory regulation by TGF-beta1. Exp Dermatol 2002;11(6): 532–541.PubMedCrossRefGoogle Scholar
  165. HV163.
    Jeong H. J., Y. Lam, and B. O. de Lumen. Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. J Agric Food Chem 2002; 50(21): 5903–5908.PubMedCrossRefGoogle Scholar
  166. HV164.
    Astwood J.D., and R. D. Hill. Molecular characterization of Hor v 9. Conservation of a T-cell epitope among group IX pollen allergens and human VCAM and CD2. Adv Exp Med Biol 1996; 409: 269–277.PubMedGoogle Scholar
  167. HV165.
    Vainio E., and E. Varjonen. Antibody response against wheat, rye, barley, oats and corn: comparison between gluten-sensitive patients and monoclonal antigliadin antibodies. Int Arch Allergy Immunol 1995; 106(2): 134–138.PubMedCrossRefGoogle Scholar
  168. HV166.
    Delaney B., T. Carlson, G. H. Zheng, et al. Repeated dose oral toxicological evaluation of concentrated barley beta-glucan in CD-1 mice including a recovery phase. Food Chem Toxicol 2003; 41(8): 1089–1102.PubMedCrossRefGoogle Scholar
  169. HV167.
    Fredlund K., E. L. Bergman, L. Rossander-Hulthen, M. Isaksson, A. Almgren, and A. S. Sandberg. Hydro-thermal treatment and malting of barley improved zinc absorption but not calcium absorption in humans. Eur J Clin Nutr 2003; 57(12): 1507–1513.PubMedCrossRefGoogle Scholar
  170. HV168.
    Li J., T. Kaneko, L. Q. Qin, J. Wang, and Y. Wang. Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition 2003; 19(11–12): 926–929.PubMedCrossRefGoogle Scholar
  171. HV169.
    Keogh G. F., G. J. Cooper, T. B. Mulvey, et al. Randomized controlled crossover study of the effect of a highly beta-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am J Clin Nutr 2003; 78(4): 711–718.PubMedGoogle Scholar
  172. HV170.
    Kanauchi O., T. Suga, M. Tochihara, et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 2002; 37Suppl 14: 67–72.PubMedGoogle Scholar
  173. HV171.
    Lifschitz C. H., M. A. Grusak, and N. F. Butte. Carbohydrate digestion in humans from a beta-glucan-enriched barley is reduced. J Nutr 2002; 132(9): 2593–2596.PubMedGoogle Scholar
  174. HV172.
    Armentia A., R. Rodriguez, A. Callejo, et al. Allergy after ingestion or inhalation of cereals involves similar allergens in different ages. Clin Exp Allergy 2002; 32(8): 1216–1222.PubMedCrossRefGoogle Scholar
  175. HV173.
    Suganuma H., T. Inakuma, and Y. Kikuchi. Amelioratory effect of barley tea drinking on blood fluidity. J Nutr Sci Vitaminol (Tokyo) 2002; 48(2): 165–168.Google Scholar
  176. HV174.
    Bamba T., O. Kanauchi, A. Andoh, and Y. Fujiyama. A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroenterol Hepatol 2002; 17(8): 818–824.PubMedCrossRefGoogle Scholar
  177. HV175.
    Kaplan R.J., and C. E. Greenwood. Influence of dietary carbohydrates and glycaemic response on subjective appetite and food intake in healthy elderly persons. Int J Food Sci Nutr 2002; 53(4): 305–316.PubMedCrossRefGoogle Scholar
  178. HV176.
    Ostman E. M., H. G. Liljeberg Elmstahl, and I. M. Bjorck. Barley bread containing lactic acid improves glucose tolerance at a subsequent meal in healthy men and women. J Nutr 2002; 132(6): 1173–1175.PubMedGoogle Scholar
  179. HV177.
    Yu Y. M., W. C. Chang, C. T. Chang, C. L. Hsieh, and C. E. Tsai. Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metab 2002; 28(2): 107–114.PubMedGoogle Scholar
  180. HV178.
    Cremer L., A. Herold, D. Avram, and G. Szegli. A purified green barley extract with modulatory properties upon TNF alpha and ROS released by human specialised cells isolated from RA patients. Roum Arch Microbiol Immunol 1998; 57(3–4): 231–242.PubMedGoogle Scholar
  181. HV179.
    Garcia-Casado G., J. F. Crespo, J. Rodriguez, and G. Salcedo. Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens. J Allergy Clin Immunol 2001; 108(4): 647–649.PubMedCrossRefGoogle Scholar
  182. HV180.
    Palosuo K., H. Alenius, E. Varjonen, N. Kalkkinen, and T. Reunala. Rye gamma-70 and gamma-35 secalins and barley gamma-3 hordein cross-react with omega-5 gliadin, a major allergen in wheat-dependent, exercise-induced anaphylaxis. Clin Exp Allergy 2001; 31(3): 466–473.PubMedCrossRefGoogle Scholar
  183. HV181.
    Granfeldt Y., A. C. Eliasson, and L. Bjorck. An examination of the possibility of lowering the glycemic index of oat and barley flakes by minimal processing. J Nutr 2000; 130(9): 2207–2214.PubMedGoogle Scholar
  184. HV182.
    Kennefick S., and K. D. Cashman. Inhibitory effect of wheat fibre extract on calcium absorption in Caco-2 cells: evidence for a role of associated phytate rather than fibre per se. Eur J Nutr 2000; 39(1): 12–17.PubMedCrossRefGoogle Scholar
  185. HV183.
    Bonadonna P., M. Crivellaro, A. Dama, G. E. Senna, G. Mistrello, and G. Passalacqua. Beer-induced anaphylaxis due to barley sensitization: two case reports. J Invest Allerg Clin Immunol 1999; 9(4): 268–270.Google Scholar
  186. HV184.
    Curioni A., B. Santucci, A. Cristaudo, et al. Urticaria from beer: an immediate hypersensitivity reaction due to a 10-kDa protein derived from barley. Clin Exp Allergy 1999; 29(3): 407–413.PubMedCrossRefGoogle Scholar
  187. HV185.
    Bourdon I., W. Yokoyama, P. Davis, et al. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan. Am J Clin Nutr 1999; 69(1): 55–63.PubMedGoogle Scholar
  188. HV186.
    Kanauchi O., Y. Fujiyama, K. Mitsuyama, et al. Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int J Mol Med 1999; 3(2): 175–179.PubMedGoogle Scholar
  189. HV187.
    Kanauchi O., K. Mitsuyama, T. Saiki, T. Fushikia, and T. Iwanaga. Germinated barley foodstuff increases fecal volume and butyrate production in humans. Int J Mol Med 1998; 1(6): 937–941.PubMedGoogle Scholar
  190. HV188.
    Tamagawa K., S. Fukushima, M. Kobori, H. Shinmoto, and T. Tsushida. Proanthocyanidins from barley bran potentiate retinoic acid-induced granulocytic and sodium butyrate-induced monocytic differentiation of HL60 cells. Biosci Biotechnol Biochem 1998; 62(8): 1483–1487.PubMedCrossRefGoogle Scholar
  191. HV189.
    Ammari, F. F., K. T. Faris, and T. M. Mahafza. Inhalation of wild barley into the airways: two different outcomes. Saudi Med J 2000; 21(5): 468–470.PubMedGoogle Scholar
  192. HV190.
    Robertson J. A., G. Majsak-Newman, and S. G. Ring. Release of mixed linkage (1→3),(1→4) beta-D-glucans from barley by protease activity and effects on ileal effluent. Int J Biol Macromol 1997; 21(1–2): 57–60.PubMedCrossRefGoogle Scholar
  193. HV191.
    Lia A., B. Sundberg, P. Aman, A. S. Sandberg, G. Hallmans, and H Andersson. Substrates available for colonic fermentation from oat, barley and wheat bread diets. A study in ileostomy subjects. Br J Nutr 1996; 76(6): 797–808.PubMedCrossRefGoogle Scholar
  194. HV192.
    Dahl S. W., S. K. Rasmussen, L. C. Petersen, and J. Hejgaard. Inhibition of coagulation factors by recombinant barley serpin BSZx. FEBS Lett 1996; 394(2): 165–168.PubMedCrossRefGoogle Scholar
  195. HV193.
    Ikegami S., M. Tomita, S. Honda, et al. Effect of boiled barley-rice-feeding in hypercholesterolemic and normolipemic subjects. Plant Foods Hum Nutr 1996; 49(4): 317–328.PubMedCrossRefGoogle Scholar
  196. HV194.
    Lia A., G. Hallmans, A. S. Sandberg, B. Sundberg, P. Aman, and H. Andersson. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr 1995; 62(6): 1245–1251.PubMedGoogle Scholar
  197. HV195.
    Vidal C., and A. Gonzalez-Quintela. Food-induced and occupational asthma due to barley flour. Ann Allergy Asthma Immunol 1995; 75(2): 121–124.PubMedGoogle Scholar
  198. HV196.
    Livesey G., J. A. Wilkinson, M. Roe, et al. Influence of the physical form of barley grain on the digestion of its starch in the human small intestine and implications for health. Am J Clin Nutr 1995; 61(1): 75–81.PubMedGoogle Scholar
  199. HV197.
    Yap J.C., C. C. Chan, Y. T. Wang, S.C. Poh, H. S. Lee, and K. T. Tan. A case of occupational asthma due to barley grain dust. Ann Acad Med Singapore 1994; 23(5): 734–736PubMedGoogle Scholar
  200. HV198.
    Granfeldt Y., H. Liljeberg, A. Drews, R. Newman, and I. Bjorck. Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 1994; 59(5): 1075–1082.PubMedGoogle Scholar
  201. HV199.
    Liljeberg H., and I. Bjorck. Bioavailability of starch in bread products. Postprandial glucose and insulin responses in healthy subjects and in vitro resistant starch content. Eur J Clin Nutr 1994; 48(3): 151–163.PubMedGoogle Scholar
  202. HV200.
    Cockcroft A. E., M. McDermott, J. H. Edwards, and P. McCarthy. Grain exposure—symptoms and lung function. Eur J Respir Dis 1983; 64(3): 189–196.PubMedGoogle Scholar
  203. HV201.
    Lupton J. R., J. L. Morin, and M. C. Robinson. Barley bran flour accelerates gastrointestinal transit time. J Am Diet Assoc 1993; 93(8): 881–885.PubMedCrossRefGoogle Scholar
  204. HV202.
    Thorburn A., J. Muir J, and J. Proietto. Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 1993; 42(6): 780–785.PubMedCrossRefGoogle Scholar
  205. HV203.
    Wisker E, R. Nagel, T. K. Tanudjaja, and W. Feldheim. Calcium, magnesium, zinc, and iron balances in young women: effects of a low-phytate barley-fiber concentrate. Am J Clin Nutr 1991; 54(3): 553–559.PubMedGoogle Scholar
  206. HV204.
    McIntosh G. H., J. Whyte, R. McArthur, and P. J. Nestel. Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr 1991; 53(5): 1205–1209.PubMedGoogle Scholar
  207. HV205.
    Arenaz P., and L. Hallberg. Genotoxicity of azidoalanine in mammalian cells. Environ Mol Mutagen 1989; 13(3): 263–270.PubMedCrossRefGoogle Scholar
  208. HV206.
    De Vries J. J., T. Collin, C. M. Bijleveld, J. H. Kleibeuker, and R. J. Vonk. The use of complex carbohydrates in barley groats for determination of the mouth-to-caecum transit time. Scand J Gastroenterol 1988; 23(8): 905–912.PubMedCrossRefGoogle Scholar
  209. HV207.
    Paillard S., P. Cochat, and L. David. A migrating ear of barley: a curious story of an intrabronchial foreign body. Pediatrie 1987; 42(6): 447–449.PubMedGoogle Scholar
  210. HV208.
    Zuskin E., J. Mustajbegovic, and V. Sitar-Srebocan. Pharmacologic study of the effects of the components of beer in vitro. Lijec Vjesn 1997; 119(3–4): 103–105.PubMedGoogle Scholar
  211. HV209.
    McCarthy P. E., A. E. Cockcroft, and M. McDermott. Lung function after exposure to barley dust. Br J Ind Med 1985; 42(2): 106–110.PubMedGoogle Scholar
  212. HV210.
    Delaney, B., R. J. Nicolosi, T. A. Wilson, T. Carlson, S. Frazer, G. H. Zheng, R. Hess, K. Ostergren, J. Haworth and N. Knutson. Beta-glucan franctions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr 2003; 133(2): 468–475.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Personalised recommendations