Skip to main content

Mechanisms of Sodium Retention, Ascites Formation, and Renal Dysfunction in Cirrhosis

  • Chapter
Portal Hypertension

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

The mechanisms responsible for ascites formation in liver disease have aroused interest throughout the history of medicine. The Egyptians and Greeks believed that there was a relationship between liver disease and ascites. In 300 bc, Erasitratus of Cappadoccia described ascites as a consequence of “hardness of the liver” or liver disease. Several centuries later, physicians discovered the relationship between advanced liver disease and the development of ascites. Numerous studies addressing this issue have discovered that alterations in systemic and splanchnic circulation, as well as functional renal abnormalities, are the culprit of this dreaded complication of cirrhosis. Renal abnormalities occur in the setting of a hyperdynamic state characterized by an increased cardiac output, a reduction in total vascular resistance and an activation of neurohormonal vasoactive systems. This circulatory dysfunction, a consequence of intense arterial vasodilation in the splanchnic circulation, is considered a primary feature in the pathogenesis of ascites. The main factor responsible for local vasodilation seems to be the overproduction of extra-hepatic nitric oxide (NO). Splanchnic vasodilation by decreasing effective arterial blood volume causes homeostatic activation of vasoconstrictor and antinatriuretic factors triggered to compensate for a relative arterial underfilling. The net effect is avid retention of sodium and water as well as renal vasoconstriction in advanced stages. The mechanisms of ascites formation and sodium and water retention in patients with cirrhosis are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyo V, Ginès P, Planas R, Rodés J. Pathogenesis, diagnosis and treatment of ascites in cirrhosis. In: Bircher J, Benhamou JP, Mclntyre N, Rizzetto M, Rodés J, eds. Oxford Textbook of Clinical Hepatology, 2nd ed. Oxford University Press, Oxford, 1999, pp. 697–732.

    Google Scholar 

  2. Bosch J, Arroyo V, Betriu A. Hepatic heniodynaniics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology 1980;78:92–99.

    PubMed  CAS  Google Scholar 

  3. Jiménez W, Clària J, Arroyo V. Experimental cirrhosis and pathogenesis of ascites formation in chronic liver disease. In: Holstege A, Hahn EG, Scholmerich J, eds. Portal Hypertension. Kluwer Academic, Dordrecht, 1995, pp. 15–25.

    Google Scholar 

  4. Clària J, Jiménez W. Renal dysfunction and ascites in carbon tetrachloride induced cirrhosis in rats. In: Arroyo V, Ginès P, Rodés J, Schrier RW, eds. Ascites and Renal Dysfunction in Liver Disease. Blackwell Science, Maiden, 1999, pp. 378–396.

    Google Scholar 

  5. Castells A, Saló J, Planas R, et al. Impact of shunt surgery for variceal bleeding in the natural history of ascites in cirrhosis: a retrospective study. Hepatology 1994;20:584–591.

    PubMed  CAS  Google Scholar 

  6. Arroyo V, Cárdenas A. TIPS in the treatment of refractory ascites. In: Arroyo V, Bosch J, Brugera M, Rodés J, Sánchez-Tapias JM, eds. Treatment of Liver Diseases. Masson, Barcelona, 1999, pp. 43–51.

    Google Scholar 

  7. Cárdenas A, Bataller R, Arroyo V. Mechanisms of ascites formation. Clin Liver Dis 2000;4:447–465.

    Article  PubMed  Google Scholar 

  8. Laine GA, Hall JT, Laine SH, et al. Transinusoidal fluid dynamics in canine liver during venous hypertension. Circ Res 1979;45:317–323.

    PubMed  CAS  Google Scholar 

  9. Witte CL, Witte MH, Dumont AE, et al. Lymph protein and experimental hepatic and portal venous hypertension. Ann Surg 1968;168:567–577.

    Article  PubMed  CAS  Google Scholar 

  10. Witte CL, Witte MH, Dumont AE. Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology 1980;78:1059–1068.

    PubMed  CAS  Google Scholar 

  11. Harris NR, Granger DN. Alterations of hepatic and splanchnic microvascular exchange in cirrhosis: local factors in the formation of ascites. In: Arroyo V, Ginès P, Rodés J, Schrier RW, eds. Ascites and Renal Dysfunction in Liver Disease. Blackwell Science, Maiden, 1999, pp. 351–362.

    Google Scholar 

  12. Levy M. Pathophysiology of ascites formation. In: Epstein M, ed. The Kidney in Liver Disease, 4th ed. Hanley and Belfus, Philadelphia, 1996, pp. 179–220.

    Google Scholar 

  13. Huet PM, Goresky CA, Villenueve JP, et al. Assessment of liver microcirculation in human cirrhosis. J Clin Invest 1982;70:1234–1244.

    PubMed  CAS  Google Scholar 

  14. Witte CL, Witte MH, Dumont AE. Estimated net transcapillary water and protein flux in the liver and intestine of patients with portal hypertension from hepatic cirrhosis. Gastroenterology 1981;80:265–272.

    PubMed  CAS  Google Scholar 

  15. Korthuis RJ, Kinden DA, Brimer GE, et al. Intestinal capillary filtration in acute and chronic portal hypertension. Am J Physiol 1988;254:G339–G345.

    PubMed  CAS  Google Scholar 

  16. Arroyo V. Comment: Hecker R, Sherlock S. Electrolyte and circulatory changes in terminal liver failure [Lancet 1956;2:1221–1225]. J Hepatol 2002;36:315–320.

    Article  PubMed  Google Scholar 

  17. Menon K, Kamath P. Regional and systemic hemodynamic disturbances in cirrhosis. Clin Liver Dis 2001;5:617–627.

    Article  PubMed  CAS  Google Scholar 

  18. Guevara M, Bra C, Ginès P, et al. Increased cerebral vascular resistance in cirrhotic patients with ascites. Hepatology 1998;28:39–44.

    Article  PubMed  CAS  Google Scholar 

  19. Maroto A, Ginès P, Arroyo V, et al. Brachial and femoral artery blood flow in cirrhosis: relationship to kidney dysfunction. Hepatology 1993;17:788–793.

    PubMed  CAS  Google Scholar 

  20. Schrier RW, Arroyo V, Bernardi M, et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988;8:1151–1157.

    Article  PubMed  CAS  Google Scholar 

  21. Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut 2002;50:571–581.

    Article  PubMed  CAS  Google Scholar 

  22. Rockey D, Weisiger R. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 1996;24:233–240.

    Article  PubMed  CAS  Google Scholar 

  23. Titós E, Clària J, Bataller R, et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology 2000;119:794–805.

    Article  PubMed  Google Scholar 

  24. Graupera M, Garcia-Pagan JC, Abraldes JG, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 2003;37:172–181.

    Article  PubMed  CAS  Google Scholar 

  25. Bataller R, Sancho-Bru P, Ginès P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 2003;125:117–125.

    Article  PubMed  CAS  Google Scholar 

  26. Wiest R, Groszmann R. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 2002;35:478–491.

    Article  PubMed  CAS  Google Scholar 

  27. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 1998;114:344–351.

    Article  PubMed  CAS  Google Scholar 

  28. Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 1983;244:G52–G57.

    PubMed  CAS  Google Scholar 

  29. Renoit JN, Granger DN. Intestinal microvascular adaptation in chronic portal hypertension in the rat. Gastroenterology 1988;94:471–476.

    Google Scholar 

  30. Martin PY, Ginès P, Schrier R W. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med 1998;339:533–541.

    Article  PubMed  CAS  Google Scholar 

  31. Wiest R, Groszmann R. Nitric oxide and portal hypertension: its role in the regulation of inlrahepatic and splanchnic vascular resistance. Semin Liver Dis 1999;19:411–426.

    PubMed  CAS  Google Scholar 

  32. Moller S, Bendtsen F, Henriksen JH. Vasoactive substances in the circulatory dysfunction of cirrhosis. Scand J Clin Lab Invest 2001;61:421–429.

    Article  PubMed  CAS  Google Scholar 

  33. Bernardi M, Trevisani F, Gasbarrini A, Gasbarrini G. Hepatorenal disorders: the role of the renin-angiotensin-aldosterone system. Semin Liver Dis 1994;14:23–34.

    PubMed  CAS  Google Scholar 

  34. Asbert M, Jiménez W, Gaya J, et al. Assessment of the renin-angiotensin system in cirrhotic patients. Comparison between plasma renin activity and direct measurement of immunoreactive renin. J Hepatol 1992;15:179–183.

    Article  PubMed  CAS  Google Scholar 

  35. Schroeder ET, Anderson GH, Goldman SH, Streeten DHP. Effect of blockade of angiotensin II on blood pressure, renin and aldosterone in cirrhosis. Kidney Int 1976;9:511–519.

    Article  PubMed  CAS  Google Scholar 

  36. Arroyo V, Bosch J, Mauri M, et al. Effect of angiotensin-II blockade on systemic and hepatic haemodynamics and on the renin-angiotensin-aldosterone system in cirrhosis with ascites. Eur J Clin Invest 1981;11:221–229.

    PubMed  CAS  Google Scholar 

  37. Schneider AW, Kalk JF, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology 1999;29:334–339.

    Article  PubMed  CAS  Google Scholar 

  38. Henriksen JH, Moller S, Ring Larsen H, et al. The sympathetic nervous system in liver disease. J Hepatol 1998;29:328–341.

    Article  PubMed  CAS  Google Scholar 

  39. Willett I, Esler M, Burke F, et al. Total and renal sympathetic nervous system activity in alcoholic cirrhosis. J Hepatol 1985;1:639–648.

    Article  PubMed  CAS  Google Scholar 

  40. Henriksen JH, Ring-Larsen H, Christensen NJ. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity. Gut 1987;28:1637–1642.

    Article  PubMed  CAS  Google Scholar 

  41. MacGilchrist AJ, Howes LG, Hawksby C, et al. Plasma noradrenaline in cirrhosis: a study of kinetics and temporal relationship to ascites formation. Eur J Clin Invest 1991;21:238–243.

    PubMed  CAS  Google Scholar 

  42. Esler M, Dudley F, Jennings G, et al. Increased sympathetic nervous activity and the effects of its inhibition with clonidine in alcoholic cirrhosis. Ann Intern Med 1992;116:446–455.

    PubMed  CAS  Google Scholar 

  43. Henriksen JH, Ring-Larsen H, Kanstrup IL, et al. Splanchnic and renal elimination and release of catecholamines in cirrhosis. Evidence of enhanced sympathetic nervous activity in patients with decompensated cirrhosis. Gut 1984;25:1034–1043.

    Article  PubMed  CAS  Google Scholar 

  44. Esler M, Dudley F, Jennings G, et al. Increased sympathetic nervous activity and the effects of its inhibition with clonidine in alcoholic cirrhosis. Ann Inten Med 1992;116:446–455.

    CAS  Google Scholar 

  45. Moore K, Wendon J, Frazer M, et al. Plasma endothelin immunoreactivity in liver disease and the hepatorenal syndrome. N Engl J Med 1992;327:1774–1778.

    Article  PubMed  CAS  Google Scholar 

  46. Leivas A, Jiménez W, Lamas S, et al. Endothelin-1 does not play a major role in the homeostasis of arterial pressure in cirrhotic rats with ascites. Gastroenterology 1995;108:1842–1848.

    Article  PubMed  CAS  Google Scholar 

  47. Sogni P, Moreau R, Gomola A, et al. Beneficial hemodynamic effects of bosentan, a mixed ET(A) and ET(B) receptor antagonist, in portal hypertensive rats. Hepatology 1998;28:655–659.

    Article  PubMed  CAS  Google Scholar 

  48. Kogima H, Yamao J, Tsujimoto T, Uemura M, Takaya A, Fukui H. Mixed endothelin receptor antagonist, SB209670, decreases portal pressure in biliary cirrhotic rats in vivo by reducing portal venous system resistance. J Hepatol 2000;32:43–50.

    Article  Google Scholar 

  49. Soper CP, Latif AB, Bending MR. Amelioration of hepatorenal syndrome with selective endothelin-A antagonist. Lancet 1996;347:1842–1843.

    Article  PubMed  CAS  Google Scholar 

  50. Ginès P, Jiménez W, Arroyo V, et al. Atrial natriuretic factor in cirrhosis with ascites: plasma levels, cardiac release and splanchnic extraction. Hepatology 1988;8:636–642.

    Article  PubMed  Google Scholar 

  51. La Villa G, Romanelli RG, Casini Raggi V, et al. Plasma levels of brain natriuretic peptide in patients with cirrhosis. Hepatology 1992;16:156–161.

    Article  PubMed  Google Scholar 

  52. Henriksen JH, Bendtsen F, Schutten HJ, et al. Hepatic-intestinal disposal of endogenous human alpha atrial natriuretic factor 99–126 in patients with cirrhosis. Am J Gastroenterol 1990;85:1155–1159.

    PubMed  CAS  Google Scholar 

  53. Poulos JE, Gower WR, Fontanet HL, et al. Cirrhosis with ascites: increased atrial natriuretic peptide messenger RNA expression in rat ventricle. Gastroenterology 1995;108:1496–1502.

    Article  PubMed  CAS  Google Scholar 

  54. Epstein M, Loutzeinhiser R, Norsk P, et al. Relationship between plasma ANF responsiveness and renal sodium handling in cirrhotic humans. Am J Nephrol 1989;9:133–143.

    PubMed  CAS  Google Scholar 

  55. Ginès P, Uriz J, Calahorra B, et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroenterology 2002;123:1839–1847.

    Article  PubMed  Google Scholar 

  56. Salerno F, Badalamenti S, Incerti P, et al. Renal response to atrial natriuretic peptide in patients with advanced liver cirrhosis. Hepatology 1988;8:21–26.

    Article  PubMed  CAS  Google Scholar 

  57. López C, Jiménez W, Arroyo V, et al. Role of altered systemic hemodynamics in the blunted renal response to atrial natriuretic peptide in rats with cirrhosis and ascites. J Hepatol 1989;9:217–226.

    Article  PubMed  Google Scholar 

  58. Rentier JJ, Koomans HA, Rabelink TJ, et al. Blunted natriuretic response and low blood pressure after atrial natriuretic factor in early cirrhosis. Hepatology 1989;10:148–153.

    Article  Google Scholar 

  59. Laffi G, Pinzani M, Meacci E, et al. Renal hemodynamic and natriuretic effects of human atrial natriuretic factor infusion in cirrhosis with ascites. Gastroenterology 1989;96:167–177.

    PubMed  CAS  Google Scholar 

  60. La Villa G, Riccardi D, Lazzeri C, et al. Blunted natriuretic response to low-dose brain natriuretic peptide infusion in nonazotemic cirrhotic patients with ascites and avid sodium retention. Hepatology 1995;22:1745–1750.

    Article  PubMed  Google Scholar 

  61. Abraham WT, Lauwaars M, Kim J, et al. Reversal of atrial natriuretic peptide resistance by increasing distal tubular sodium delivery in patients with decompensated cirrhosis. Hepatology 1995;22:737–743.

    PubMed  CAS  Google Scholar 

  62. Koepke J, Jones S, DiBona G. Renal nerves mediate blunted natriuresis to atrial natriuretic peptide in cirrhotic rats. Am J Physiol 1987;252:R1019–R1023.

    PubMed  CAS  Google Scholar 

  63. Angeli P, Jiménez W, Arroyo V, et al. Renal effects of natriuretic peptide receptor blockade in cirrhotic rats with ascites. Hepatology 1994;20:948–954.

    Article  PubMed  CAS  Google Scholar 

  64. Pérez-Ayuso RM, Arroyo V, Camps J, et al. Evidence that renal prostaglandins are involved in renal water metabolism in cirrhosis. Kidney Int 1984;26:72–80.

    Article  PubMed  Google Scholar 

  65. Laffi G, La Villa G, Pinzani M, et al. Arachidonic acid derivatives and renal function in liver cirrhosis. Semin Nephrol 1997;17:530–548.

    PubMed  CAS  Google Scholar 

  66. Llach J, Ginès P, Arroyo V, et al. Effect of dipyridamole on kidney function in cirrhosis. Hepatology 1993;17:59–64.

    PubMed  CAS  Google Scholar 

  67. Milani L, Merkel C, Gatta A. Renal effect of aminophylline in hepatic cirrhosis. Eur J Clin Pharmacol 1983;24:757–760.

    Article  PubMed  CAS  Google Scholar 

  68. Stanley AJ, Forrest EH, Dabos K, Bouchier IAD, Hayes PC. Natriuretic effect of an adenosine-1 receptor antagonist in cirrhotic patients with ascites. Gastroenterology 1998;115:406–411.

    Article  PubMed  CAS  Google Scholar 

  69. Blantz RC, Deng A, Lortie M, et al. The complex role of nitric oxide in the regulation of glomerular ultrafiltration. Kidney Int 2002;61:782–785.

    Article  PubMed  CAS  Google Scholar 

  70. Clària J, Jiménez W, Ros J, et al. Pathogenesis of arterial hypotension in cirrhotic rats with ascites: role of endogenous nitric oxide. Hepatology 1992;15:343–349.

    Article  PubMed  Google Scholar 

  71. Ros J, Clària J, Jiménez W, et al. Role of nitric acid and prostaglandin in the control of renal perfusion in experimental cirrhosis. Hepatology 1995;22:915–920.

    PubMed  CAS  Google Scholar 

  72. Jiménez W, Martínez-Pardo A, Arroyo V, et al. Temporal relationship between hyperaldosteronism, sodium retention and ascites formation in rats with experimental cirrhosis. Hepatology 1985;5:245–250.

    Article  PubMed  Google Scholar 

  73. Levy M, Allotey JB. Temporal relationships between urinary salt retention and altered systemic hemodynamics in dogs with experimental cirrhosis. J Lab din Med 1978;92:560–569.

    CAS  Google Scholar 

  74. Pecikyan R, Kanzaki G, Berger EY. Electrolyte excretion during the spontaneous recovery from the ascitic phase of cirrhosis of the liver. Am J Med 1967;42:359–367.

    Article  PubMed  CAS  Google Scholar 

  75. Arroyo V, Rodés J. A rational approach to the treatment of ascites. Postgrad Med J 1975;51:558–562.

    PubMed  CAS  Google Scholar 

  76. Ginès P, Fernández-Esparrach G, Arroyo V, et al. Pathogenesis of ascites in cirrhosis. Semin Liver Dis 1997;17:175–189.

    PubMed  Google Scholar 

  77. Bernardi M, Laffi G, Salvagnini M, et al. Efficacy and safety of the stepped care medical treatment of ascites in liver cirrhosis: a randomized controlled clinical trial comparing two diets with different sodium content. Liver 1993;13:156–162.

    PubMed  CAS  Google Scholar 

  78. Papper S, Rosenbaum ID. Abnormalities in the excretion of water and sodium in “compensated cirrhosis of the liver. J Lab Clin Med 1952;40:523–530.

    PubMed  CAS  Google Scholar 

  79. La Villa G, Salmerón JM, Arroyo V, et al. Mineralocorticoid escape in patients with compensated cirrhosis and portal hypertension. Gaslroenterology 1992;102:2114–2119.

    Google Scholar 

  80. Wong F, Liu P, Allidina Y, et al. Pattern of sodium handling and its consequences in patients with preascitic cirrhosis. Gastroenterology 1995;108:1820–1827.

    Article  PubMed  CAS  Google Scholar 

  81. Bernardi M. Renal sodium retention in preascitic cirrhosis: expanding knowledge, enduring uncertainties. Hepatology 2002;35:1544–1547.

    Article  PubMed  Google Scholar 

  82. Bernardi M, Trevisani F, Santini C, et al. Aldosterone related blood volume expansion in cirrhosis before and after the early phase of ascites formation. Gut 1983;24:761–766.

    Article  PubMed  CAS  Google Scholar 

  83. Caregaro L, Lauro S, Angeli P, et al. Renal water and sodium handling in compensated liver cirrhosis: mechanism of the impaired natriuresis after saline loading. Eur J Clin Invest 1985;15:360–365.

    PubMed  CAS  Google Scholar 

  84. Reynolds TB, Lieberman FL, Redeker AG. Functional renal failure with cirrhosis. The effect of plasma expansion therapy. Medicine (Baltimore) 1967;46:191–196.

    Article  CAS  Google Scholar 

  85. Bernardi M, Di Marco C, Trevisani F, et al. Renal sodium retention during upright posture in preascitic cirrhosis. Gastroenterology 1993;105:188–193.

    PubMed  CAS  Google Scholar 

  86. Wong F, Liu P, Blendis L. The mechanism of improved sodium homeostasis of low-dose losartan in preascitic cirrhosis. Hepatology 2002;35:1449–1458.

    Article  PubMed  CAS  Google Scholar 

  87. Angeli P, Gatta A, Caregaro L, et al. Tubular site of renal sodium retention in ascitic liver cirrhosis evaluated by lithium clearance. Eur J Clin Invest 1990;20:111–117.

    Article  PubMed  CAS  Google Scholar 

  88. Bernardi M, Trevisani F. Caraceni P. The renin-angiotensin-aldosteronc system in cirrhosis. In: Arroyo V, Gines P, Rodes J, Schrier RW, eds. Ascites and Renal Dysfunction in Liver Disease. Blackwell Science, Maiden, 1999, pp. 175–197.

    Google Scholar 

  89. Girgrah N, Liu P, Collier J, et al. Haemodynamic, renal sodium handling, and neurohormonal effects of acute administration of low dose losartan, an angiotensin II receptor antagonist, in preascitic cirrhosis. Gut 2000;46:114–120.

    Article  PubMed  CAS  Google Scholar 

  90. Helmy A, Jalan R, Newby DE, et al. Role of angiotensin II in regulation of basal and sympathetically stimulated vascular tone in early and advanced cirrhosis. Gastroenterology 2000;118:565–572.

    Article  PubMed  CAS  Google Scholar 

  91. Trevisani F, Bernardi M, DePalma R, et al. Circadian variation in renal sodium and potasium handling in cirrhosis. The role of aldosterone, cortisol, sympathoadrenergic tone, and intratubular factors. Gastroenterology 1989;96:1187–1198.

    PubMed  CAS  Google Scholar 

  92. Pérez-Ayuso RM, Arroyo V, Planas R, et al. Randomized comparative study of furosemide versus spironolactone in patients with liver cirrhosis and ascites. Relationship between the diuretic response and the activity of the renin-aldosterone system. Gastroenterology 1983;84:961–968.

    PubMed  Google Scholar 

  93. Yang YY, Lin HC, Lee WC, et al. One-week losartan administration increases sodium excretion in cirrhotic patients with and without ascites. J Gastroenterol 2002;37:194–199.

    Article  PubMed  CAS  Google Scholar 

  94. Dudley FJ, Esler MD. The sympathetic nervous system in cirrhosis. In: Arroyo V, Gines P, Rodes J, Schrier RW, eds. Ascites and Renal Dysfunction in Liver Disease. Blackwell Science, Maiden, 1999, pp. 198–219.

    Google Scholar 

  95. Esler M, Kaye D. Increased sympathetic nervous system activity and its therapeutic reduction in arterial hypertension, portal hypertension and heart failure. J Auton Nerv Syst 1998;72:210–219.

    Article  PubMed  CAS  Google Scholar 

  96. Saiò J, Ginés A, Anibarro L, et al. Effect of upright posture and physical exercise on endogenous neurohormonal systems in cirrhotic patients with sodium retention and normal supine plasma renin, aldosterone and norepinephrine levels. Hepatology 1995;22:479–487.

    Google Scholar 

  97. Arroyo V, Clària J, Saló J, Jiménez W. Antidiuretic hormone and the pathogenesis of water retention in cirrhosis with ascites. Semin Liver Dis 1994;14:44–58.

    PubMed  CAS  Google Scholar 

  98. Arroyo V, Rodés J, Gutiérrez-Lizarraga MA, Revert L. Prognostic value of spontaneous hyponatremia in cirrhosis with ascites. Am J Dig Dis 1976;21:249–256.

    Article  PubMed  CAS  Google Scholar 

  99. Porcel A, Diaz F, Rendon P, et al. Dilutional hyponatremia in patients with cirrhosis and ascites. Arch Intern Med 2002;162:323–328.

    Article  PubMed  CAS  Google Scholar 

  100. Fernández-Esparrach G, Sánchez-Fueyo A, Ginès P, et al. A prognostic model for predicting survival in cirrhosis with ascites. J Hepatol 2001;34:46–52.

    Article  PubMed  Google Scholar 

  101. Thibonnier M, Conarty DM, Preston JA, Wilkins PL, Berti-Mattera LN, Mattera R. Molecular pharmacology of human vasopressin receptors. Adv Exp Med Biol 1998;449:251–276.

    PubMed  CAS  Google Scholar 

  102. Verbalis J. Vasopressin V2 receptor antagonists. J Mol Endocrinol 2002;29:1–9.

    Article  PubMed  CAS  Google Scholar 

  103. Kwon TH, Hager H, Nejsum LN, Andersen ML, Frokiaer J, Nielsen S. Physiology and pathophysiology of renal aquaporins. Semin Nephrol 2001;21:231–238.

    Article  PubMed  CAS  Google Scholar 

  104. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002;82:205–244.

    PubMed  CAS  Google Scholar 

  105. Cárdenas A, Ginès P. Pathogenesis and treatment of dilutional hyponatremia in cirrhosis. In: Arroyo V, Forns X, Garcia-Pagan JC, Rodés J, eds. Progress in the Treatment of Liver Diseases. Ars Medica, Barcelona, 2003, pp. 31–42.

    Google Scholar 

  106. Angeli P, De Bei E, Dalla Pria M, et al. Effects of amiloride on renal lithium handling in nonazotemic ascitic cirrhotic patients with avid sodium retention. Hepatology 1992;15:651–654.

    Article  PubMed  CAS  Google Scholar 

  107. Wong F, Blei AT, Blendis LM, Thuluvath PJ. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology 2003;37:182–191.

    Article  PubMed  CAS  Google Scholar 

  108. Gerbes AL, Gulberg V, Ginès P, et al. VPA Study Group. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: arandomizeddouble-blindmulticentertrial. Gastroenterology2003;124:933–939.

    Article  PubMed  CAS  Google Scholar 

  109. Caregaro L, Menon F, Angeli P, et al. Limitations of serum creatinine level and creatinine clearance as filtration markers in cirrhosis. Arch Intern Med 1994;154:201–205.

    Article  PubMed  CAS  Google Scholar 

  110. Sherman DS, Fish DN, Teitelbaum I. Assessing renal function in cirrhotic patients: problems and pitfalls. Am J Kidney Dis 2003;41:269–278.

    Article  PubMed  CAS  Google Scholar 

  111. Epstein M, Berck DP, Hollemberg NK, et al. Renal failure in the patient with cirrhosis. The role of active vasoconstriction. Am J Med 1970;49:175–185.

    Article  PubMed  CAS  Google Scholar 

  112. Cárdenas A, Uriz J, Ginès P, Arroyo V. Hepatorenal syndrome. Liver Transpl 2000;6(4 Suppl 1):S63–S71.

    PubMed  Google Scholar 

  113. Dagher L, Moore K. The hepatorenal syndrome. Gut 2001;49:729–737.

    Article  PubMed  CAS  Google Scholar 

  114. Platt JF, Marn CS, Baliga PK, et al. Renal dysfunction in hepatic disease: early identification with renal Duplex Doppler US in patients who undergo liver transplantation. Radiology 1992;183:801–806.

    PubMed  CAS  Google Scholar 

  115. Maroto A, Ginès A, Saló J, et al. Diagnosis of functional renal failure of cirrhosis by Doppler sonography. Prognostic value of resistive index. Hepatology 1994;20:839–844.

    Article  PubMed  CAS  Google Scholar 

  116. Newby D, Hayes PC. Hyperdynamic circulation in liver cirrhosis: not peripheral vasodilatation but’ splanchnic steal’. QJM 2002;95:827–830.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cárdenas, A., Ginès, P. (2005). Mechanisms of Sodium Retention, Ascites Formation, and Renal Dysfunction in Cirrhosis. In: Sanyal, A.J., Shah, V.H. (eds) Portal Hypertension. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-59259-885-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-885-4_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-386-2

  • Online ISBN: 978-1-59259-885-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics