Skip to main content

Assessment of Ventricular Repolarization From Body-Surface ECGs in Humans

  • Chapter
Book cover Cardiac Safety of Noncardiac Drugs

Abstract

In 1887, the first recording of electrical activity of the human heart was done using Waller’s capillary meter. The recorded signal included four waves called A, B, C, and D. Einthoven mathematically modified this signal to correct the inertia associated with the movement of the mercury column in the capillary electrometer. To avoid confusion with Waller’s recording, Einthoven named the five identified deflections P, Q, R, S, and T having used the O point as the origin of the time scale (by mathematical convention O is used for the origin of the Cartesian coordinates). The interval QT was defined as the interval between the beginning of the QRS complex and the end of the T wave. The ventricular repolarization process of the heart begins in the early-activated myocardial cells while the rest of the ventricle is still depolarizing. This is why the entire duration of the ventricular repolarization is commonly associated with a measure including the QRS complex. It is also during the late 19th century that new discovery, including the electrical triggering of contraction during late refractory period, would open an entire field of quantitative electrocardiology focusing on a better understanding of the cardiac repolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taccardi B, Punske B B, Lux RL, MacLeod RS, Ershler PR, Dustman TJ, Vyhmeister Y. Useful lessons from body surface mapping. JCardiovasc Electrophysiol 1998;9:773–786.

    Article  CAS  Google Scholar 

  2. Zabel M, Franz MR. The electrophysiological Basis of QT dispersion: global or local repolarization? Circulation 6-27-2000;101:E235–E236.

    Google Scholar 

  3. Antzelevitch C, Neterenko VV. Contribution of electrical heterogeneity of repolarization to the ECG. In Cardiac Repolarization: Bridging Basic and Clinical Sciences. Gussak I, Antzelevitch C, eds. Totowa, NJ: Humana Press 2004;111-126.

    Google Scholar 

  4. Ghanem RN, Ramanathan C, Jia P, Rudy Y. Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of dardiac electrical activity. IEEE Trans.Med.Imaging 2003;22:1307–1318.

    Article  PubMed  Google Scholar 

  5. Moss AJ, Zareba W, Benhorin J, Couderc JP, Kennedy H, Locati-Heilbron E, Maison-Blanche P. ISHNE guidelines for electrocardiographic evaluation of drug-related QT prolongation and other alterations in ventricular repolarization: task force summary. A report of the task force of the International Society for Holter and Noninvasive Electrocardiology (ISHNE), Committee on Ventricular Repolarization. Ann. Noninvasive Electrocardiol 2001;6:333–341.

    Article  PubMed  CAS  Google Scholar 

  6. Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG., et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med 1998;339:960–965.

    Article  PubMed  CAS  Google Scholar 

  7. De Ponti F, Poluzzi E, Cavalli A, Recanatini M, Montanaro N. Safety of non-antiarrhythmic drugs that prolong the QT interval or induce Torsade de Pointes: an overview. Drug Saf 2002;25:263–286.

    Article  PubMed  Google Scholar 

  8. Dessertenne F. La tachycardie ventriculaire a deux foyers opposes variables. Arch Mal Coeur 1966;59:263–272.

    PubMed  CAS  Google Scholar 

  9. D’Alnoncourt CN, Zierhut W, Bluderitz B. “Torsade de Pointes” tachycardia. Re-entry or focal activity? Br Heart J 1982;48:213–216.

    Article  PubMed  CAS  Google Scholar 

  10. Antzelevitch C, Burashnikov A, Di Diego JM. Cellular and ionic mechanisms underlying arrhythmogenesis. In Cardiac Repolarization: Brodging Basic and Clinical Sciences. Gussak I, Antzelevitch C, eds. Totowa, NJ: Humana Press 2004:201–251.

    Google Scholar 

  11. Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS oundation Task Force on LQTS. Circulation 1996;94:1996–2012.

    PubMed  CAS  Google Scholar 

  12. Antzelevitch C, Nesterenko VV, Yan GX. Role of M cells in acquired long QT syndrome, U waves, and Torsade de Pointes. J Electrocardiol 1995;28:131–138.

    Article  PubMed  Google Scholar 

  13. Jackman WM, Friday KJ, Anderson JL., Aliot EM, Clark M, Lazzara R. The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 1988;31:115–172.

    Article  PubMed  CAS  Google Scholar 

  14. Asano Y, Davidenko JM, Baxter WT, Gray RA, Jalife J. Optical mapping of drug-induced polymorphic arrhythmias and Torsade fd Pointes in the isolated rabbit heart. J Am Coll Cardiol. 1997;29:831–842.

    Article  PubMed  CAS  Google Scholar 

  15. Ben David J, Zipes DP. Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation 1988;78:1241–1250.

    PubMed  CAS  Google Scholar 

  16. Koumi S, Backer CL, Arentzen CE. Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation 1995;92:164–174.

    PubMed  CAS  Google Scholar 

  17. Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, Gintant GA, Liu DW. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res 1991;69:1427–1449.

    PubMed  CAS  Google Scholar 

  18. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995;76:351–365.

    PubMed  CAS  Google Scholar 

  19. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res 1991;68:1729–1741.

    CAS  Google Scholar 

  20. Gilmour RF, Jr., Zipes DP. Different electrophysiological responses of canine endocardium and epicardium to combined hyperkalemia, hypoxia, and acidosis. Circ Res 1980;46:814–825.

    PubMed  Google Scholar 

  21. Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular mMyocardium. Circ Res 1990;67:615–627.

    PubMed  CAS  Google Scholar 

  22. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993;72:671–687.

    PubMed  CAS  Google Scholar 

  23. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H. electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 1995;26:185–192.

    Article  PubMed  CAS  Google Scholar 

  24. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium. In vitro and in vivo correlations. Circulation 1996;94:1981–1988.

    PubMed  CAS  Google Scholar 

  25. Vos MA, Cora Verduyn S, Wellens HJ. Early afterdepolarization in the In situ canine heart: Mechanistic insights into acquired torsades de pointes arrhythmias. In Monophasic Action Potentials: Bridging cell and Bedside. (Franz MR, ed.). Armonk, NY: Futura Publishing Company, Inc. 2000:553–569.

    Google Scholar 

  26. Verduyn SC, Vos MA., van der Zande J, Kulcsar A, Wellens HJ. Further observations to elucidate the role of interventricular dispersion of repolarization and early afterdepolarizations in the genesis of acquired Torsade de Pointes arrhythmias: a comparison between almokalant and D-sotalol using the dog as its own control. J Am Coll Cardiol 1997;30:1575–1584.

    Article  PubMed  CAS  Google Scholar 

  27. Weissenburger J, Nesterenko VV, Antzelevitch C. Transmural heterogeneity of ventricular tepolarization under naseline and long QT vonditions in the canine heart in vivo: Torsades fe Pointes fevelops with halothane but not pentobarbital snesthesia. J Cardiovasc Electrophysiol 2000;11:290–304.

    Article  PubMed  CAS  Google Scholar 

  28. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and Torsade de Pointes. J Am Coll Cardiol 1996;28:1836–1848.

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing Torsade de Pointes in LQT2 and LQT3 models of the long QT syndrome. Circulation 1997;96:2038–2047.

    PubMed  CAS  Google Scholar 

  30. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, et al. The long QT syndrome. prospective longitudinal study of 328 families. Circulation 1991;84:1136–1144.

    PubMed  CAS  Google Scholar 

  31. Zareba W, Moss AJ, le Cessie S, Locati EH., Robinson JL, Hall WJ, Andrews ML. Risk of cardiac events in family members of patients with long QT syndrome. J Am Coll Cardiol 1995;26:1685–1691.

    Article  PubMed  CAS  Google Scholar 

  32. Moss AJ, Zareba W, Kaufman ES, Gartman E, Peterson DR, Benhorin J, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-gogo-related gene potassium channel. Circulation 2002;105:794–799.

    Article  PubMed  CAS  Google Scholar 

  33. Zareba W, Moss AJ. QT interval and its drug-induced prolongation. In Cardiac Repolarization: Bridging Basic and Clinical Science. Gussak I, Antzelevitch C, eds. Totowa, NJ: Humana Press 2004:311–328.

    Google Scholar 

  34. Zareba W, Moss AJ, Rosero SZ, Hajj-Ali R, Konecki J, Andrews M. Electrocardiographic findings in patients with diphenhydramine overdose. Am J Cardiology 1997;80:1168–1173.

    Article  CAS  Google Scholar 

  35. Drici MD, Clement N. Is gender a risk factor for adverse drug reactions? The example of drug-induced long QT syndrome. Drug Saf 2001;24:575–585.

    Article  PubMed  CAS  Google Scholar 

  36. Drici MD, Baker L, Plan P, Barhanin J, Romey G, Salama G. Mice display sex differences in halothaneinduced polymorphic ventricular tachycardia. Circulation 2002;106:497–503.

    Article  PubMed  Google Scholar 

  37. Lehmann MH, Hardy S, Archibald D, Quart B, MacNeil DJ. Sex difference in risk of Torsade de Pointes with D, l-sotalol. Circulation 1996;94:2535–2541.

    PubMed  CAS  Google Scholar 

  38. Lehmann MH, Hardy S, Archibald D, MacNeil DJ. JTc prolongation with D,l-sotalol in women versus men. Am J Cardiol 1999;83:354–359.

    Article  PubMed  CAS  Google Scholar 

  39. Lehmann MH., Yang H. Sexual dimorphism in the electrocardiographic dynamics of human ventricular repolarization: characterization in true time domain. Circulation 2001;104:32–38.

    Article  PubMed  CAS  Google Scholar 

  40. Merri M, Benhorin J, Alberti M, Locati E, Moss AJ. Electrocardiographic quantitation of ventricular repolarization. Circulation 1989;80:1301–1308.

    PubMed  CAS  Google Scholar 

  41. Couderc JP, Zareba W, Moss AJ. Assessment of the stability of the individual-based correction of QT interval for heart rate. Ann Noninvasive Electrocardiol 2004; in press.

    Google Scholar 

  42. Stramba-Badiale M, Locati EH, Martinelli A, Courville J, Schwartz PJ. Gender and the relationship between ventricular repolarization and cardiac cycle length during 24-h Holter recordings. Eur Heart J 1997;18:1000–1006.

    PubMed  CAS  Google Scholar 

  43. Rodriguez I, Kilborn MJ, Liu XK, Pezzullo JC, Woosley RL. Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001;285:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  44. Surawicz B, Parikh SR. Differences between ventricular repolarization in men and women: description, mechanism and implications. Ann Noninvasive Electrocardiol 2003;8:333–340.

    Article  PubMed  Google Scholar 

  45. Locati EH, Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Lehmann MH, et al. Age-and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the International LQTS Registry. Circulation 1998;97:2237–2344.

    PubMed  CAS  Google Scholar 

  46. Sesti F, Abbott GW, Wei J, Murray KT, Saksena S, Schwartz PJ, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 2000;97:10613–10618.

    Article  PubMed  CAS  Google Scholar 

  47. Yang P, Kanki H, Prolet B, Yang T, Wei J, Viswanathan PC, et al. Allelic variants in Long-QT disease genes in patients with drug-associated Torsades de Vointes. Circulation 2002;105:1943–1948.

    Google Scholar 

  48. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002;297:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  49. McLaughlin NB, Campbell RW, Murray A. Comparison of automatic QT measurement techniques in the normal 12 lead electrocardiogram. Br Heart J 1995;74:84–89.

    Article  PubMed  CAS  Google Scholar 

  50. McLaughlin NB, Campbell RW, Murray A. Accuracy of four automatic QT measurement techniques in cardiac patients and healthy subjects. Heart 1996;76:422–426.

    Article  PubMed  CAS  Google Scholar 

  51. Stramba-Badiale M, Locati EH, Martinelli A, Courville J, Schwartz PJ. Gender and the relationship between ventricular repolarization and cardiac cycle length during 24-h Holter recordings. Eur Heart J 1997;18:1000–1006.

    PubMed  CAS  Google Scholar 

  52. Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM. Autonomic nervous system influences on QT interval in normal subjects. J Am Coll Cardiol 2002;39:1820–1826.

    Article  PubMed  Google Scholar 

  53. Franz MR, Swerdlow CD, Liem LB, Schaefer J. Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Invest 1988;82:972–979.

    Article  PubMed  CAS  Google Scholar 

  54. Krahn AD, Klein GJ, Yee R. Hysteresis of the RT interval with exercise: a new marker for the long-QT syndrome? Circulation 1997;96:1551–1556.

    PubMed  CAS  Google Scholar 

  55. Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol 1993;72:17B–22B.

    Article  PubMed  CAS  Google Scholar 

  56. Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. J Cardiovasc Electrophysiol 2001;12:411–420.

    Article  PubMed  CAS  Google Scholar 

  57. Couderc JP, Zareba W, Moss AJ, Sarapa N, Morganroth J, Darpo B. Identification of sotalol-induced changes in repolarization with T wave area-based repolarization duration parameters. J Electrocardiol 2003;36Suppl:115–120.

    Article  PubMed  Google Scholar 

  58. Malik M. The imprecision in heart rate correction may lead to artificial observations of drug induced QT interval changes. Pacing Clin Electrophysiol 2002;25:209–216.

    Article  PubMed  Google Scholar 

  59. Malik M, Farbom P, Batchvarov V, Hnatkova K, Camm AJ. Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart 2002;87:220–228.

    Article  PubMed  CAS  Google Scholar 

  60. Badilini F, Maison-Blanche P, Childers R, Coumel P. QT interval analysis on ambulatory electrocardiogram recordings: a selective beat averaging approach. Med Biol Eng Comput 1999;37:71–79.

    Article  PubMed  CAS  Google Scholar 

  61. Murray A, McLaughlin NB, Bourke JP, Doig JC, Furniss SS, Campbell RW. Errors in manual measurement of QT intervals. Br Heart J 1994;71:386–390.

    Article  PubMed  CAS  Google Scholar 

  62. Franz MR, Swerdlow CD, Liem LB, Schaefer J. Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Invest 1988;82:972–979.

    PubMed  CAS  Google Scholar 

  63. Pueyo E, Smetana P, Laguna P, Malik M. Estimation of the QT/RR hysteresis lag. J Electrocardiol 2003;36:187–190.

    Article  PubMed  Google Scholar 

  64. Lau CP, Freedman AR, Fleming S, Malik M, Camm AJ, Ward DE. Hysteresis of the ventricular paced QT interval in response to abrupt changes in pacing rate. Cardiovasc Res 1988;22:67–72.

    PubMed  CAS  Google Scholar 

  65. Extramiana F, Tavernier R, Maison-Blanche P, Neyroud N, Jordaens L, Leenhardt A, Coumel P. Ventricular repolarization and Holter monitoring. Effect of sympathetic blockage on the QT/RR ratio. Arch Mal Coeur Vaiss 2000;93:1277–1283.

    PubMed  CAS  Google Scholar 

  66. Browne KF, Prystowsky E, Heger JJ, Zipes DP. Modulation of the Q-T interval by the autonomic nervous system. Pacing Clin Electrophysiol 1983;6:1050–1056.

    Article  PubMed  CAS  Google Scholar 

  67. Bellavere F, Ferri M, Guarini L, Bax G, Piccoli A, Cardone C, Fedele D. Prolonged QT period in diabetic autonomic neuropathy: a possible role in sudden cardiac death? Br Heart J 1988;59:379–383.

    Article  PubMed  CAS  Google Scholar 

  68. Coumel P, Maison-Blanche P. Neuro-mediated repolarization abnormalities. In Cardiac Repolarization: Bridging Basic and Clinical Science. Totowa, New-Jersey: Humana Press 2003:329–350.

    Google Scholar 

  69. Malik M, Bradford A. Human precision of operating a digitizing board: implications for electrocardiogram measurements. Pacing Clin Electrophysiol 1998;21:1656–1662.

    Article  PubMed  CAS  Google Scholar 

  70. Sarapa N, Morganroth J, Couderc JP, Francom SF, Darpo B, Fleishaker JC, et al. Electrocardiographic identification of drug-induced QT prolongation: assessment by different recording and measurement methods. Ann Noninvasive Electrocardiol 2004;9:48–57.

    Article  PubMed  Google Scholar 

  71. Savelieva I, Yi G, Guo X, Hnatkova K, Malik M. Agreement and reproducibility of automatic versus manual measurement of QT interval and QT dispersion. Am J Cardiol 1998;81:471–477.

    Article  PubMed  CAS  Google Scholar 

  72. Kors JA, van Herpen G. The coming of age of computerized ECG processing: can it replace the cardiologist in epidemiological studies and clinical trials? Medinfo 2001;10:1161–1167.

    PubMed  CAS  Google Scholar 

  73. Willems JL. Common standards for quantitative electrocardiography. Leuven: ACCO Publ; 1986. Report No.: CSE 86-12-08. (CSE 6th Progress Report;vol.)

    Google Scholar 

  74. Lepeschkin E, Surawicz B. The measurement of the Q-T interval of the electrocardiogram. Circulation 1952;6:378–388.

    PubMed  CAS  Google Scholar 

  75. Puddu PE, Bernard PM, Chaitman BR, Bourassa MG. QT interval measurement by a computer assisted program: a potentially useful clinical parameter. J Electrocardiol 1982;15:15–21.

    Article  PubMed  CAS  Google Scholar 

  76. O’Donnell J, Knoebel SB, Lovelace DE, McHenry PL. Computer quantitation of Q-T and terminal T wave (aT-ET) intervals during exercise: methodology and results in normal men. Am J Cardiol 1981;47:1168–1172.

    Article  PubMed  CAS  Google Scholar 

  77. O’Donnell J, Lovelace DE, Knoebel SB, McHenry PL. Behavior of the terminal T wave during exercise in normal subjects, patients with symptomatic coronary artery disease and apparently healthy wubjects with abnormal ST segment depression. J Am Coll Cardiol 1985;5:78–84.

    PubMed  CAS  Google Scholar 

  78. Pisani E, Pelligrini E, Ansuini G. Performances of algorithms for QT interval measurements in ambulatory ECG monitoring. Los Alamitos, CA: IEEE Computer Society Press, 1985, Computers in Cardiology 11:459–462.

    Google Scholar 

  79. Algra A, Le Brun H, Zeelenberg C. An algorithm for computer measurements of the QT intervals in the 24 hour ECG. IEEE Computer Society Press, 1987 Computers in Cardiology 13:117–119.

    Google Scholar 

  80. Moody GB, Mark RG, Goldberger AL. PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 2001;20:70–75.

    Article  PubMed  CAS  Google Scholar 

  81. Lund K, Nygaard H, Pedersen A. Weighing the QT intervals with the slope or the amplitude of the T wave. Ann Noninvasive Electrocardiol 2002;7:4–9.

    Article  PubMed  Google Scholar 

  82. Murray A, McLaughlin NB, Bourke JP, Doig JC, Furniss SS, Campbell RW. Errors in manual measurement of QT intervals. Br Heart J 1994;71:386–390.

    Article  PubMed  CAS  Google Scholar 

  83. Demolis JL, Kubitza D, Tenneze L, Funck-Brentano C. Effect of a single oral dose of moxifloxacin (400 mg and 800 mg) on ventricular repolarization in healthy subjects. Clin Pharmacol Ther 2000;68:658–666.

    Article  PubMed  CAS  Google Scholar 

  84. Kuo CS, Munakata K, Reddy CP, Surawicz B. Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation 1983;67:1356–1367.

    PubMed  CAS  Google Scholar 

  85. Kuo, C. S., Reddy, C. P., Munakata, K., and SURAWICZ, B. Mechanism of Ventricular Arrhythmias Caused by Increased Dispersion of Repolarization. Eur.Heart J. 1985;6Suppl D:63–70.

    PubMed  Google Scholar 

  86. Vassallo JA, Cassidy DM, Kindwall KE, Marchlinski FE, Josephson ME. Nonuniform recovery of excitability in the left ventricle. Circulation 1988;78:1365–1372.

    PubMed  CAS  Google Scholar 

  87. Lund K, Lund B, Brohet C, Nygaard H. Evaluation of electrocardiogram T-wave dispersion measurement methods. Med Biol Eng Comput 2003;41:410–415.

    Article  PubMed  CAS  Google Scholar 

  88. Zabel M, Klingenheben T, Franz MR, Hohnloser SH. Assessment of QT dispersion for prediction of mortality or arrhythmic events after myocardial infarction: results of a prospective, long-term followup study. Circulation 1998;97:2543–2550.

    PubMed  CAS  Google Scholar 

  89. Fu GS, Meissner A, Simon R. Repolarization dispersion and sudden cardiac death in patients with impaired left ventricular function. Eur Heart J 1997;18:281–289.

    PubMed  CAS  Google Scholar 

  90. Priori SG, Napolitano C, Diehl L, Schwartz PJ. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic Long QT syndrome. Circulation 1994;89:1681–1689.

    PubMed  CAS  Google Scholar 

  91. Hii JT, Wyse DG, Gillis AM, Duff HJ, Solylo MA, Mitchell LB. Precordial QT interval dispersion as a marker of Torsade de Pointes. Disparate effects of class Ia antiarrhythmic drugs and amiodarone. Circulation 1992;86:1376–1382.

    PubMed  CAS  Google Scholar 

  92. Shah BR, Yamazaki T, Engel G, Cho S, Chun SH, Froelicher VF. Computerized QT dispersion measurement and cardiovascular mortality in male veterans. Am J Cardiol 2004;93:483–486.

    Article  PubMed  Google Scholar 

  93. Das BB, Sharma J. Repolarization abnormalities in children with a structurally normal heart and ventricular ectopy. Pediatr Cardiol 2004.

    Google Scholar 

  94. Jain H, Avasthi R. Correlation between dispersion of repolarization (QT dispersion) and ventricular ectopic beat frequency in patients with acute myocardial infarction: a marker for risk of arrhythmogenesis? Int J Cardiol. 2004;93:69–73.

    Article  PubMed  Google Scholar 

  95. Kors JA, van Herpen G. Measurement error as a source of QT dispersion: a computerised analysis. Heart 1998;80:453–458.

    PubMed  CAS  Google Scholar 

  96. de Bruyne MC, Hoes AW, Kors JA, Dekker JM, Hofman A, van Bemmel JH., Grobbee DE. Prolonged QT interval: a tricky diagnosis? Am J Cardiol 1997;80:1300–1304.

    Article  PubMed  Google Scholar 

  97. Lee KW, Kligfield P, Okin PM, Dower GE. Determinants of precordial QT dispersion in normal subjects. J Electrocardiol 1998;31Suppl:128–133.

    Article  PubMed  Google Scholar 

  98. Macfarlane PW, McLaughlin SC, Rodger JC. Influence of lead selection and population on automated measurement of QT dispersion. Circulation 1998;98:2160–2167.

    PubMed  CAS  Google Scholar 

  99. Day CP, McComb JM, Matthews J, Campbell RW. Reduction in QT dispersion by sotalol following myocardial infarction. Eur Heart J 1991;12:423–427.

    PubMed  CAS  Google Scholar 

  100. Kors JA, van Herpen G. Measurement error as a source of QT dispersion: a computerised analysis. Heart 1998;80:453–458.

    PubMed  CAS  Google Scholar 

  101. Taccardi B, Punske BB, Lux RL, MacLeod RS, Ershler PR., Dustman TJ, Vyhmeister Y. Useful lessons from body surface mapping. J Cardiovasc Electrophysiol 1998;9:773–786.

    Article  PubMed  CAS  Google Scholar 

  102. Rautaharju PM. Why did QT dispersion die? Card Electrophysiol Rev 2002;6:295–301.

    Article  PubMed  Google Scholar 

  103. Di Bernardo D, Langley P, Murray A. Dispersion of QT intervals: a measure of dispersion of repolarization or simply a projection effect? Pacing Clin Electrophysiol 2000;23:1392–1396.

    Article  PubMed  Google Scholar 

  104. Zabel M, Hohnloser SH, Behrens S, Woosley RL, Franz MR. Differential effects of D-sotalol, quinidine, and amiodarone on dispersion of ventricular repolarization in the isolated rabbit heart. J Cardiovasc Electrophysiol 1997;8:1239–1245.

    Article  PubMed  CAS  Google Scholar 

  105. Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, et al. H. ECG T-wave patterns in genetically distinct forms of the hereditary Long QT syndrome [see comments]. Circulation 1995;92:2929–2934.

    PubMed  CAS  Google Scholar 

  106. Couderc JP, Burratini L, Konecki JA, Moss AJ. Detection of abnormal time-frequency components of the QT interval using wavelet transformation technique. Computers in Cardiology 1999;24:661–664.

    Google Scholar 

  107. Zareba W, Moss AJ, Konecki J. TU wave area-derived measures of repolarization dispersion in the Long QT syndrome. J Electrocardiol 1998;30Suppl:191–195.

    Article  PubMed  Google Scholar 

  108. Monahan BP, Ferguson CL, Killeavy ES, Lloyd BK, Troy J, Cantilena L. R, Jr. Torsades de Pointes occurring in association with terfenadine use. JAMA 1990;264:2788–2790.

    Article  PubMed  CAS  Google Scholar 

  109. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol 2001;96:517–527.

    Article  PubMed  CAS  Google Scholar 

  110. Couderc JP, Nomura A, Zareba W, Moss AJ. Heterogeneity of venticular repolarization morphology measured using orthogonal wavelet time-sale decomposition of the surface ECG. Computers in Cardiology 1999;26:61–64.

    Google Scholar 

  111. De Ambroggi L, Bertoni T, Locati E, Stramba-Badiale M, Schwartz PJ. Mapping of body surface potentials in patients with the idiopathic Long QT syndrome. Circulation 1986;74:1334–1345.

    PubMed  Google Scholar 

  112. Taccardi B, Punske BB, Lux RL, MacLeod RS, Ershler PR, Dustman TJ, Vyhmeister Y. Useful lessons from body surface mapping. J Cardiovasc Electrophysiol 1998;9:773–786.

    Article  PubMed  CAS  Google Scholar 

  113. Day CP, McComb JM, Campbell RW. QT dispersion: an indication of arrhythmia risk in patients with Long QT intervals. Br Heart J 1990;63:342–344.

    Article  PubMed  CAS  Google Scholar 

  114. Priori SG, Mortara DW, Napolitano C, Diehl L, Paganini V, Cantu F, Cantu G, Schwartz PJ. Evaluation of the spatial aspects of T-wave complexity in the Long QT syndrome. Circulation 1997;96:3006–3012.

    PubMed  CAS  Google Scholar 

  115. Kallert T, Couderc JP, Voss A, Zareba W. Semi-automatic method quantifying T wave loop morphology: relevance for assessment of heterogenous repolarization. Computers in Cardiology 1999;26:153–156.

    Google Scholar 

  116. Fayn J, Rubel P, Mohsen N. An improved method for the precise measurement of serial ECG changes in QRS duration and QT interval. Performance assessment on the CSE moise-testing database and a healthy 720 case-set population. J Electrocardiol 1992;24Suppl:123–127.

    PubMed  Google Scholar 

  117. Zareba W, Couderc JP, Moss AJ. Automatic detection of spatial and temporal heterogeneity of repolarization. Ann Noninvasive Electrocardiol 2000;5:1–3.

    Article  Google Scholar 

  118. Kors JA, van Herpen G, van Bemmel JH. QT dispersion as an attribute of T-loop morphology. Circulation 1999;99:1458–1463.

    PubMed  CAS  Google Scholar 

  119. Priori SG, Mortara DW, Napolitano C, Diehl L, Paganini V, Cantu F, Cantu G, Schwartz PJ. Evaluation of the spatial aspects of T-wave complexity in the Long QT syndrome. Circulation 1997;96:3006–3012.

    PubMed  CAS  Google Scholar 

  120. Yi G, Prasad K, Elliott P, Sharma S, Guo X, McKenna WJ, Malik M. T wave complexity in patients with hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 1998;21:2382–2386.

    Article  PubMed  CAS  Google Scholar 

  121. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 2000;102:1252–1257.

    PubMed  CAS  Google Scholar 

  122. Zabel M, Malik M. Predictive value of T-wave morphology variables and QT dispersion for postmyocardial infarction risk assessment. J Electrocardiol 2001;34:27–35.

    Article  PubMed  Google Scholar 

  123. Zabel M, Malik M, Hnatkova K, Papademetriou V, Pittaras A, Fletcher RD, Franz MR. Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation 2002;105:1066–1070.

    Article  PubMed  Google Scholar 

  124. Acar B, Yi G, Hnatkova,K, Malik M. Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med Biol Eng Comput 1999;37:574–584.

    Article  PubMed  CAS  Google Scholar 

  125. Zabel M, Acar B, Klingenheben T, Franz MR, Hohnloser SH, Malik M. analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 2000;102:1252–1257.

    PubMed  CAS  Google Scholar 

  126. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol 1998;9:934–948.

    Article  PubMed  CAS  Google Scholar 

  127. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, et al. S. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995;92:3381–3386.

    PubMed  CAS  Google Scholar 

  128. Mirvis DM. Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:625–631.

    Article  PubMed  CAS  Google Scholar 

  129. van Bemmel JH, Zywietz C, Kors JA. Signal analysis for ECG interpretation. Methods Inf Med 1990;29:317–329.

    PubMed  Google Scholar 

  130. Laguna P, Thakor NV, Caminal P, Jane R, Yoon HR, Bayes de Luna A, Marti V, Guindo J. New algorithm for QT interval analysis in 24-hour Holter ECG: performance and applications. Med Biol Eng Comput 1990;28:67–73.

    Article  PubMed  CAS  Google Scholar 

  131. Laguna P, Jane R, Caminal P. Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput Biomed Res 1994;27:45–60.

    Article  PubMed  CAS  Google Scholar 

  132. Ferretti GF. A New Method for the Simultaneous Automatic Measurments of the RR and the QT Intervals in Ambulatory ECG Recordings. Durham, NC: IEEE Computer Society Press, 1992.

    Google Scholar 

  133. Xue Q, Reddy S. Algorithms for computerized QT analysis. J Electrocardiol 1998;30Suppl:181–186.

    Article  PubMed  Google Scholar 

  134. Sosnowski M, Czyz Z, Leski J, Petelenz T, Tendera, M. High resolution electrocardiography-its application for the measurement of the QT interval in the presence of low-amplitude T-wave. Ann Noninvasive Electrocardiol 1998;3:304–310.

    Article  Google Scholar 

  135. Bystricky W, Safer A. Modelling T-end in Holter ECGs by 2-layer Perceptrons: IEEE Computer Society; 2002, 29:105–108.

    Google Scholar 

  136. Hayn D, Schreier G, Lobodzinski S. Development and evaluation of a QT interval algorithm using different ECG databases. Intl J Bioelectromagnetism 2003;5:122–123.

    Google Scholar 

  137. Almeida R, Martinez JP, Olmos S., Rocha AP, Luguna P Doblare, M, Cerrolaza M, Rodrigues H. Automatic Delineation of T and P Waves Using a Wavelet-Based Multiscale Approach. Proc. Int. Congr. Comput. Bioeng. Madrid, Spain, 2003, pp. 243–247.

    Google Scholar 

  138. Schreier G, Hayn D, Lobodzinski S. Development of a new QT algorithm with heterogenous ECG databases. J Electrocardiol 2003;36Suppl:145–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Couderc, JP., Zareba, W. (2005). Assessment of Ventricular Repolarization From Body-Surface ECGs in Humans. In: Morganroth, J., Gussak, I. (eds) Cardiac Safety of Noncardiac Drugs. Humana Press. https://doi.org/10.1007/978-1-59259-884-7_6

Download citation

Publish with us

Policies and ethics