Skip to main content

Molecular Physiology of Ion Channels That Control Cardiac Repolarization

  • Chapter
Book cover Cardiac Safety of Noncardiac Drugs

Abstract

The mammalian heart operates as an electromechanical pump, the proper functioning of which depends critically on the sequential activation of cells throughout the myocardium and the coordinated activation of the ventricles (Fig. 1). Electrical signaling in the heart is mediated through regenerative action potentials that reflect the synchronized activity of multiple ion channels that open, close, and inactivate in response to changes in membrane potential (Fig. 1). The rapid upstroke of the action potential (phase 0) in ventricular and atrial cells, for example, is attributed to inward currents through voltage-gated Na+ (Nav) channels. Phase 0 is followed by a rapid phase of repolarization (phase 2), reflecting Nav channel inactivation and the activation of voltage-gated outward K+ (Kv) currents (Fig. 1). In ventricular cells, this transient repolarization or notch influences the height and duration of the action potential plateau (phase 2), which depends on the balance of inward (Ca2+ and Na+) currents and outward (K+) currents. The main contributor of inward current during the plateau phase is Ca2+ influx through high threshold, L-type voltage-gated Ca2+ (Cav) channels. The (L-type Ca2+) channels undergo Ca2+ and voltage-dependent inactivation and, as these channels inactivate, the outward K+ currents predominate resulting in a second, rapid phase (phase 3) of repolarization back to the resting potential (Fig. 1). The height and duration of the plateau, as well as the time-and voltage-dependent properties of the underlying Na+, Ca2+, and K+ channels determine action potential durations in individual cardiac cells. Changes in the properties or the densities of any of these channels, owing to underlying cardiac disease or as a result of the actions of cardiac and noncardiac drugs, therefore, is expected to have dramatic effects on action potential waveforms, refractory periods, and cardiac rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antzelevitch C, Dumaine R. Electrical heterogeneity in the heart: physiological, pharmacological and clinical implications. In Handbook of Physiology. Vol. 1. Solaro RJ, ed.. New York: Oxford, 2002:654–692.

    Google Scholar 

  2. Nerbonne JM. Molecular analysis of voltage-gated K+ channel diversity and functioning in the mammalian heart. In Handbook of Physiology. Vol. 1. Solaro RJ, ed. New York: Oxford, 2002:568–594.

    Google Scholar 

  3. Nerbonne JM, Guo W. Heterogeneous expression of voltage-gated potassium channels in the heart: Roles in normal excitation and arrhythmias. J Cardiovasc Electrophysiol 2002;13:406–409.

    PubMed  Google Scholar 

  4. Wetzel GT, Klitzner TS. Developmental cardiac electrophysiology recent advances in cellular physiology. Cardiovasc Res 1996; 31 Spec No:E52–E60.

    PubMed  Google Scholar 

  5. Beuckelmann DJ, Näbauer M, Erdmann E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 1993; 73:379–385.

    PubMed  CAS  Google Scholar 

  6. Näbauer M, Beuckelmann DJ, Erdmann E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res 1993; 73:386–394.

    PubMed  Google Scholar 

  7. Boyden PA, Jeck CD. Ion channel function in disease. Cardiovasc Res 1995; 29:312–318.

    PubMed  CAS  Google Scholar 

  8. Bailly P, Benitah JP, Mouchoniere M, Vassort G, Lorente P. Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 1997; 96:1266–1274.

    PubMed  CAS  Google Scholar 

  9. Näbauer M, Käab S. Potassium channel down-regulation in heart failure. Cardiovasc Res 1998; 37:324–334.

    PubMed  Google Scholar 

  10. Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79:609–634.

    PubMed  CAS  Google Scholar 

  11. Tomaselli GF, Marbán E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999; 42:270–283.

    PubMed  CAS  Google Scholar 

  12. Van Wagoner D. Electrophysiological remodeling in human atrial fibrillation. Pacing and Clin Electrophysiol 2003; 26:1572–1575.

    Google Scholar 

  13. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26:13–25.

    PubMed  CAS  Google Scholar 

  14. Bennett PB. Long QT syndrome: biophysical and pharmacologic mechanisms in LQT3. J Cardiovasc Electrophysiol 2000; 11:819–822.

    PubMed  CAS  Google Scholar 

  15. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104:569–580.

    PubMed  CAS  Google Scholar 

  16. Balser JR. Inherited sodium channelopathies: models for acquired arrhythmias? Am J Physiol 2002; 282:H1175–H1180.

    CAS  Google Scholar 

  17. Clancy CE, Kass RS. Defective cardiac ion channels: from mutations to clinical syndromes. J Clin Invest 2002; 110:1075–1077.

    PubMed  CAS  Google Scholar 

  18. Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C. The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 1979; 379:137–142.

    PubMed  CAS  Google Scholar 

  19. Weidmann S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol 1951; 115:227–236.

    PubMed  CAS  Google Scholar 

  20. Salata JJ, Wasserstrom JA. Effects of quinidine on action potentials and ionic currents in isolated canine ventricular myocytes. Circ Res 1988; 62:324–337.

    PubMed  CAS  Google Scholar 

  21. Sakmann BF, Spindler AJ, Bryant SM, Linz KW, Noble D. Distribution of a persistent sodium current across the ventricular wall in guinea pigs. Circ Res 2000; 87:910–914.

    PubMed  CAS  Google Scholar 

  22. Bean BP. Classes of calcium channels in vertebrate cells. Ann Rev Physiol 1989; 51:367–384.

    CAS  Google Scholar 

  23. Perez-Reyes E. T type Ca channels. Physiol Rev 2003; 83:117–161.

    PubMed  CAS  Google Scholar 

  24. Bers D, Perez-Reyes E. Ca channels in cardiac myocytes: Structure function in Ca influx and intracellular Ca release. Cardiovasc Res 1999; 42:339–360.

    PubMed  CAS  Google Scholar 

  25. Barry DM, Nerbonne JM. Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol 1996; 58:363–394.

    PubMed  CAS  Google Scholar 

  26. Campbell DL, Rasmusson RL, Qu Y, Strauss HC. The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization and kinetic analysis. J Gen Physiol 1993; 101:571–601.

    PubMed  CAS  Google Scholar 

  27. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC. Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J Gen Physiol 1999; 113:581–600.

    PubMed  CAS  Google Scholar 

  28. Xu H, Guo W, Nerbonne JM. Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 1999; 113:661–678.

    PubMed  CAS  Google Scholar 

  29. Guo W, Xu H, London B, Nerbonne JM. Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol 1999; 521Pt 3:587–599.

    PubMed  CAS  Google Scholar 

  30. Guo W, Li H, London B, Nerbonne JM. Functional consequences of elimination of I(to,f) and I(to,s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circ Res 2000; 87:73–79.

    PubMed  CAS  Google Scholar 

  31. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 1990; 67:1287–1291.

    PubMed  CAS  Google Scholar 

  32. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1988; 62:116–126.

    PubMed  CAS  Google Scholar 

  33. Apkon M, Nerbonne JM. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 1991; 97:973–1011.

    PubMed  CAS  Google Scholar 

  34. Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U. Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 1993; 27:1662–1669.

    PubMed  CAS  Google Scholar 

  35. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 1994; 75:473–482.

    PubMed  CAS  Google Scholar 

  36. Konarzewska H, Peeters GA, Sanguinetti MC. Repolarizing K+ currents in nonfailing human hearts. Similarities between right septal subendocardial and left subepicardial ventricular myocytes. Circulation 1995; 92:1179–1187.

    PubMed  CAS  Google Scholar 

  37. Yue L, Feng J, Li GR, Nattel S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol 1996; 270:H2157–H2168.

    PubMed  CAS  Google Scholar 

  38. Sanguinetti MC, Johnson JH, Hammerland LG, et al. Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol 1997; 51:491–498.

    PubMed  CAS  Google Scholar 

  39. Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V, Houser SR, Tomaselli GF. Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol 2004; 286:H602–H609.

    CAS  Google Scholar 

  40. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 1988; 405:123–145.

    PubMed  CAS  Google Scholar 

  41. Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 1991; 442:191–209.

    PubMed  CAS  Google Scholar 

  42. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 1999; 84:551–561.

    PubMed  CAS  Google Scholar 

  43. Horie M, Hayashi S, Kawai C. Two types of delayed rectifying K+ channels in atrial cells of guinea pig heart. Jpn J Physiol 1990; 40:479–490.

    PubMed  CAS  Google Scholar 

  44. Sanguinetti MC, Jurkiewicz NK. Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am J Physiol 1991; 260:H393–H399.

    PubMed  CAS  Google Scholar 

  45. Walsh KB, Arena JP, Kwok WM, Freeman L, Kass RS. Delayed-rectifier potassium channel activity in isolated membrane patches of guinea pig ventricular myocytes. Am J Physiol 1991; 260:H1390–H1393.

    PubMed  CAS  Google Scholar 

  46. Anumonwo JM, Freeman LC, Kwok WM, Kass RS. Delayed rectification in single cells isolated from guinea pig sinoatrial node. Am J Physiol 1992; 262:H921–H925.

    PubMed  CAS  Google Scholar 

  47. Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Circulation 1990; 82:289–293.

    PubMed  CAS  Google Scholar 

  48. Wang Z, Fermini B, Nattel S. Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc Res 1994; 28:1540–1546.

    PubMed  CAS  Google Scholar 

  49. Li GR, Feng J, Yue L, Carrier M, Nattel S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 1996; 78:689–696.

    PubMed  CAS  Google Scholar 

  50. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995; 76:351–365.

    PubMed  CAS  Google Scholar 

  51. Veldkamp MW, van Ginneken AC, Bouman LN. Single delayed rectifier channels in the membrane of rabbit ventricular myocytes. Circ Res 1993; 72:865–878.

    PubMed  CAS  Google Scholar 

  52. Xu H, Dixon JE, Barry DM, Trimmer JS, Merlie JP, McKinnon D, Nerbonne JM. Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes. J Gen Physiol 1996; 108:405–419.

    PubMed  CAS  Google Scholar 

  53. Fiset C, Clark RB, Larsen TS, Giles WR. A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle. J Physiol 1997; 504(Pt 3):557–563.

    PubMed  CAS  Google Scholar 

  54. Zhou J, Jeron A, London B, Han X, Koren G. Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circ Res 1998; 83:806–814.

    PubMed  CAS  Google Scholar 

  55. Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM. Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit. Circ Res 1999; 85:623–633.

    PubMed  CAS  Google Scholar 

  56. London B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF, Koren G. Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proc Natl Acad Sci USA 1998; 95:2926–2931.

    PubMed  CAS  Google Scholar 

  57. London B, Guo W, Pan XH, Lee JS, Shusterman V, Logothetis DA, Nerbonne JM, Hill JA. Targeted replacement of Kv1.5 in the mouse leads to loss of the 4 amino pyridine-sensitive component of IK,slow and resistance to drug-induced QT prolongation. Circ Res 2001; 88:940–946.

    PubMed  CAS  Google Scholar 

  58. Zhou J, Kodirov S, Murata M, Buckett PD, Nerbonne JM, Koren G. Regional upregulation of Kv2.1-encoded current, IK,slow1, in Kv1 DN mice is abolished by crossbreeding with Kv2 DN mice. Am J Physiol 2003; 284:H491–H500.

    CAS  Google Scholar 

  59. Li H, Guo W, Yamada KA, Nerbonne JM. Selective elimination of one component of delayed rectification, IK,slow1, in mouse ventricular myocytes expressing a dominant negative Kv1.5α subunit. Am J Physiol 2004; 286:H319–H328.

    CAS  Google Scholar 

  60. Boyle WA, Nerbonne JM. Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol 1992; 100:1041–1067.

    PubMed  CAS  Google Scholar 

  61. Yue L, Feng J, Li GR, Nattel S. Characterization of an ultra rapid delayed rectifier potassium channel involved in canine atrial repolarizzation. J Physiol 1996;496:647–662.

    PubMed  CAS  Google Scholar 

  62. Wang Z, Fermini B, Nattel S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res 1993; 73:1061–1076.

    PubMed  CAS  Google Scholar 

  63. Wang Z, Fermini B, Nattel S. Delayed rectifier outward current and repolarization in human atrial myocytes. Circ Res 1993; 73:276–285.

    PubMed  CAS  Google Scholar 

  64. Yue D, Marbán E. A novel potassium channel that is active and conductive at depolarized potentials. Pflügers Arch 1988;413:127–133.

    PubMed  CAS  Google Scholar 

  65. Liu DW, Gintant GA, Antzelevitch C. Ionic basis for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993; 72:671–687.

    PubMed  CAS  Google Scholar 

  66. Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 1993; 27:1795–1799.

    PubMed  CAS  Google Scholar 

  67. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ. Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 1992; 70:91–103.

    PubMed  CAS  Google Scholar 

  68. Main MC, Bryant SM, Hart G. Regional differences in action potential characteristics and membrane currents of guinea-pig left ventricular myocytes. Exp Physiol 1998; 83:747–761.

    PubMed  CAS  Google Scholar 

  69. Bryant SM, Wan X, Shipsey SJ, Hart G. Regional differences in the delayed rectifier current (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res 1998; 40:322–331.

    PubMed  CAS  Google Scholar 

  70. Kilborn MJ, Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 1990; 430:37–60.

    PubMed  CAS  Google Scholar 

  71. Jeck CD, Boyden PA. Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization. Circ Res 1992; 71:1390–1403.

    PubMed  CAS  Google Scholar 

  72. Wahler GM, Dollinger SJ, Smith JM, Flemal KL. Time course of postnatal changes in rat heart action potential and in transient outward current is different. Am J Physiol 1994; 267:H1157–H1166.

    PubMed  CAS  Google Scholar 

  73. Sanchez-Chapula J, Elizalde A, Navarro-Polanco R, Barajas H. Differences in outward currents between neonatal and adult rabbit ventricular cells. Am J Physiol 1994; 266:H1184–H1194.

    PubMed  CAS  Google Scholar 

  74. Shimoni Y, Fiset C, Clark RB, Dixon JE, McKinnon D, Giles WR. Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol 1997; 500( Pt 1):65–73.

    PubMed  CAS  Google Scholar 

  75. Wang L, Duff HJ. Developmental changes in transient outward current in mouse ventricle. Circ Res 1997; 81:120–127.

    PubMed  CAS  Google Scholar 

  76. Wickenden AD, Kaprielian R, Parker TG, Jones OT, Backx PH. Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle. J Physiol 1997; 504(Pt 2):271–286.

    PubMed  CAS  Google Scholar 

  77. Wang L, Feng Z, Kondo C, Sheldon RS, Duff HJ. Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 1996; 79:79–85.

    PubMed  CAS  Google Scholar 

  78. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 1997; 59:171–191.

    PubMed  CAS  Google Scholar 

  79. Lopatin AN, Nichols CG. Inward rectifiers in the heart: an update on IK1. J Mol Cell Cardiol 2001; 33:625–638.

    PubMed  CAS  Google Scholar 

  80. Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA 1987; 84:2560–2564.

    PubMed  CAS  Google Scholar 

  81. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 1994; 266:1068–1072.

    PubMed  CAS  Google Scholar 

  82. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 1994; 372:366–369.

    PubMed  CAS  Google Scholar 

  83. Patton DE, West JW, Catterall WA, Goldin AL. Amino acid residues required for fast Na+-channel inactivation: charge neutralizations and deletions in the III-IV linker. PNAS, USA 1992; 89:10905–10909.

    Google Scholar 

  84. Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 1988; 241:1658–1661.

    PubMed  CAS  Google Scholar 

  85. Vassilev P, Scheuer T, Catterall WA. Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci USA 1989; 86:8147–8151.

    PubMed  CAS  Google Scholar 

  86. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA. A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci USA 1992; 89:10910–10914.

    PubMed  CAS  Google Scholar 

  87. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA. A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. Journal of Biological Chemistry 1995; 270:12025–12034.

    PubMed  CAS  Google Scholar 

  88. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. Journal of Biological Chemistry 1998; 273:1121–1129.

    PubMed  CAS  Google Scholar 

  89. Bennett PB, Yazawa K, Makita N, George AL. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376:683–685.

    PubMed  CAS  Google Scholar 

  90. Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 1999; 400:566–569.

    PubMed  CAS  Google Scholar 

  91. Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng W, Clancy CE, Moons L, Vos MA, Dewerchin M, Benndorf K, Collen D, Carmeliet E, Carmeliet P. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 2001; 7:1021–1027.

    PubMed  CAS  Google Scholar 

  92. Bennett PB. Long QT syndrome: biophysical and pharmacologic mechanisms in LQT3. J Cardiovasc Electrophysiol 2000; 11:819–822.

    PubMed  CAS  Google Scholar 

  93. Kambouris NG, Nuss HB, Johns DC, Marban E, Tomaselli G, Balser JR. A revised view of cardiac sodium channel “blockade” in the long-QT syndrome. J Clin Invest 2000; 105:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  94. Viswanathan PC, Bezzina CR, George AL, Jr, Roden DM, Wilde AA, Balser JR. Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 2001; 104:1200–1205.

    PubMed  CAS  Google Scholar 

  95. Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS. Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation 2000; 102:921–925.

    PubMed  CAS  Google Scholar 

  96. Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I, Medina A. Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation 2000; 101:1698–1706.

    PubMed  CAS  Google Scholar 

  97. Liu H, Tateyama M, Clancy CE, Abriel H, Kass RS. Channel openings are necessary but not sufficient for use-dependent block of cardiac Na+ channels by flecainide: Evidence from the analysis of disease-linked mutations. J Gen Physiol 2002; 120:39–51.

    PubMed  CAS  Google Scholar 

  98. Keating MT, Atkinson D, Dunn C, Timothy K, Vincent GM, Leppert M. Evidence of genetic heterogeneity in the long QT syndrome. Science 1993; 260:1960–1961.

    Google Scholar 

  99. Cormier JW, Rivolta I, Tateyama M, Yang AS, Kass RS. Secondary structure of the human cardiac Na+ channel C terminus. Evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem 2002; 277:9233–9241.

    PubMed  CAS  Google Scholar 

  100. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994; 74:1071–1096.

    PubMed  CAS  Google Scholar 

  101. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. II. After depolarizations, triggered activity, and potentiation. Circ Res 1994; 74:1097–1113.

    PubMed  CAS  Google Scholar 

  102. Clancy CE, Tateyama M, Liu H, Wehrens HHT, Kass RS. Non-equilibrium gating in cardiac Na+ channels: An original mechanism of arrhythmia. Circulation 2003; 107:2233–2237.

    PubMed  CAS  Google Scholar 

  103. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002; 297:1333–1336.

    PubMed  CAS  Google Scholar 

  104. Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12:1183–1194.

    PubMed  CAS  Google Scholar 

  105. Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 1992; 256:839–842.

    PubMed  CAS  Google Scholar 

  106. Makita N, Sloan-Brown K, Weghuis DO, Ropers HH, George AL, Jr. Genomic organization and chromosomal assignment of the human voltage-gated Na+ channel beta 1 subunit gene (SCN1B). Genomics 1994; 23:628–634.

    PubMed  CAS  Google Scholar 

  107. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 1995; 83:433–442.

    PubMed  CAS  Google Scholar 

  108. Jones JM, Meisler MH, Isom LL. Scn2b, a voltage-gated sodium channel beta2 gene on mouse chromosome 9. Genomics 1996; 34:258–259.

    PubMed  CAS  Google Scholar 

  109. Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, Jackson AP. beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 2000; 97:2308–2313.

    PubMed  CAS  Google Scholar 

  110. Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE 3rd, Lee K, Pinnock R, Morgan K, Jackson AP, Vandenberg JI. The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol 2001; 537:693–700.

    PubMed  CAS  Google Scholar 

  111. Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL. Characterization of sodium channel alpha-and beta-subunits in rat and mouse cardiac myocytes. Circulation 2001; 103:1303–1310.

    PubMed  CAS  Google Scholar 

  112. Santana LF, Gomez AM, Lederer WJ. Ca2+ flux through promiscuous cardiac Na+channels: slip-mode conductance. Science 1998; 279:1027–1033.

    PubMed  CAS  Google Scholar 

  113. Malhotra JD, Koopmann MC, Kazen-Gillespie KA, Feltman N, Hortsch M, Isom LL. Structural requirements for interaction of sodium channel β1 subunits with ankyrin. J Biol Chem 2002; 277:26681–26688.

    PubMed  CAS  Google Scholar 

  114. Chauhan VS, Tuvia S, Buhusi M, Bennett V, Grant AO. Abnormal cardiac Na+ channel properties and QT heart rate adaptation in neonatal ankyrin B knockout mice. Circ Res 2000; 86:441–447.

    PubMed  CAS  Google Scholar 

  115. Bennett PB. Anchors aweigh! Ion channels, cytoskeletal proteins and cellular excitability. Circ Res 2000; 86:367–368.

    PubMed  CAS  Google Scholar 

  116. Mohler PJ, Schott J-J, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song L-S, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, LeMarec H, Bennett V. Ankyrin B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003; 421:634–637.

    PubMed  CAS  Google Scholar 

  117. Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25:533–535.

    PubMed  CAS  Google Scholar 

  118. Soldatov NM. Genomic structure of human L-type Ca2+ channel. Genomics 1994; 22:77–87.

    PubMed  CAS  Google Scholar 

  119. Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340:230–233.

    PubMed  CAS  Google Scholar 

  120. Biel M, Ruth P, Bosse E, Hullin R, Stuhmer W, Flockerzi V, Hofmann F. Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett 1990; 269:409–412.

    PubMed  CAS  Google Scholar 

  121. Ruth P, Rohrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1989; 245:1115–1118.

    PubMed  CAS  Google Scholar 

  122. Pragnell M, Sakamoto J, Jay SD, Campbell KP. Cloning and tissue-specific expression of the brain calcium channel beta-subunit. FEBS Lett 1991; 291:253–258.

    PubMed  CAS  Google Scholar 

  123. Perez-Reyes E, Castellano A, Kim HS, Bertrand P, Baggstrom E, Lacerda AE, Wei XY, Birnbaumer L. Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem 1992; 267:1792–1797.

    PubMed  CAS  Google Scholar 

  124. Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal N, Hofmann F, Flockerzi V. Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. Embo J 1992; 11:885–890.

    PubMed  CAS  Google Scholar 

  125. Castellano A, Wei X, Birnbaumer L, Perez-Reyes E. Cloning and expression of a neuronal calcium channel beta subunit. J Biol Chem 1993; 268:12359–12366.

    PubMed  CAS  Google Scholar 

  126. Vance CL, Begg CM, Lee WL, Haase H, Copeland TD, McEnery MW. Differential expression and association of calcium channel alpha1B and beta subunits during rat brain ontogeny. J Biol Chem 1998; 273:14495–14502.

    PubMed  CAS  Google Scholar 

  127. Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 1994; 368:67–70.

    PubMed  CAS  Google Scholar 

  128. Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R, Powers PA. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 1996; 93:13961–13966.

    PubMed  CAS  Google Scholar 

  129. Yamaguchi H, Hara M, Strobeck M, Fukasawa K, Schwartz A, Varadi G. Multiple modulation pathways of calcium channel activity by a beta subunit. Direct evidence of beta subunit participation in membrane trafficking of the alpha1C subunit. J Biol Chem 1998; 273:19348–19356.

    PubMed  CAS  Google Scholar 

  130. Beurg M, Sukhareva M, Strube C, Powers PA, Gregg RG, Coronado R. Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta 1 subunit transfected with beta 1 cDNA. Biophys J 1997; 73:807–818.

    Article  PubMed  CAS  Google Scholar 

  131. Wei SK, Colecraft HM, DeMaria CD, Peterson BZ, Zhang R, Kohout TA, Rogers TB, Yue DT. Ca2+ channel modulation by recombinant auxiliary beta subunits expressed in young adult heart cells. Circ Res 2000; 86:175–184.

    PubMed  CAS  Google Scholar 

  132. Chien AJ, Zhao X, Shirokov RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM. Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 1995; 270:30036–30044.

    PubMed  CAS  Google Scholar 

  133. Chien AJ, Gao T, Perez-Reyes E, Hosey MM. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem 1998; 273:23590–23597.

    PubMed  CAS  Google Scholar 

  134. Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, Schwartz A, Harpold MM. Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    PubMed  CAS  Google Scholar 

  135. Klugbauer N, Marais E, Lacinova L, Hofmann F. A T-type calcium channel from mouse brain. Pflugers Arch 1999; 437:710–715.

    PubMed  CAS  Google Scholar 

  136. Gurnett CA, De Waard M, Campbell KP. Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron 1996; 16:431–440.

    PubMed  CAS  Google Scholar 

  137. Gurnett CA, Felix R, Campbell KP. Extracellular interaction of the voltage-dependent Ca2+ channel alpha 2 delta and alpha1 subunits. J Biol Chem 1997; 272:18508–18512.

    PubMed  CAS  Google Scholar 

  138. Wiser O, Trus M, Tobi D, Halevi S, Giladi E, Atlas D. The alpha 2/delta subunit of voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is involved in regulated secretion. FEBS Lett 1996; 379:15–20.

    PubMed  CAS  Google Scholar 

  139. Bangalore R, Mehrke G, Gingrich K, Hofmann F, Kass RS. Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells. Am J Physiol 1996; 270:H1521–1528.

    PubMed  CAS  Google Scholar 

  140. Felix R, Gurnett CA, De Waard M, Campbell KP. Dissection of functional domains of the voltage-dependent Ca2+ channel alpha2delta subunit. J Neurosci 1997; 17:6884–6891.

    PubMed  CAS  Google Scholar 

  141. Shistik E, Ivanina T, Puri T, Hosey M, Dascal N. Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J Physiol 1995; 489 ( Pt 1):55–62.

    PubMed  Google Scholar 

  142. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol Rev 1992; 72:S69–S88.

    PubMed  CAS  Google Scholar 

  143. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994; 91:3438–34342.

    PubMed  CAS  Google Scholar 

  144. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional IKr channels. J Biol Chem 2000; 275:5997–6006.

    PubMed  CAS  Google Scholar 

  145. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995; 80:795–803.

    PubMed  CAS  Google Scholar 

  146. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995; 81:299–307.

    PubMed  CAS  Google Scholar 

  147. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 1995; 269:92–95.

    PubMed  CAS  Google Scholar 

  148. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12:17–23.

    PubMed  Google Scholar 

  149. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 1996; 384:78–80.

    PubMed  CAS  Google Scholar 

  150. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 1996; 384:80–83.

    PubMed  CAS  Google Scholar 

  151. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279:403–406.

    PubMed  CAS  Google Scholar 

  152. Wang Z, Yue L, White M, Pelletier G, Nattel S. Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 1998; 98:2422–2428.

    PubMed  CAS  Google Scholar 

  153. Schroeder BC, Kubisch C, Stein V, Jentsch TJ. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998; 396:687–690.

    PubMed  CAS  Google Scholar 

  154. Murai T, Kakizuka A, Takumi T, Ohkubo H, Nakanishi S. Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits a slowly activating potassium channel activity. Biochem Biophys Res Commun 1989; 161:176–181.

    PubMed  CAS  Google Scholar 

  155. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci USA 1990; 87:2975–2979.

    PubMed  CAS  Google Scholar 

  156. Lesage F, Attali B, Lazdunski M, Barhanin J. IsK, a slowly activating voltage-sensitive K+ channel. Characterization of multiple cDNAs and gene organization in the mouse. FEBS Lett 1992; 301:168–172.

    PubMed  CAS  Google Scholar 

  157. Abbott GW, Goldstein SA. A superfamily of small potassium channel subunits: form and function of the minK-related peptides (MiRPs). Q Rev Biophys 1998; 31:357–398.

    PubMed  CAS  Google Scholar 

  158. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97:175–187.

    PubMed  CAS  Google Scholar 

  159. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 2001; 104:217–231.

    PubMed  CAS  Google Scholar 

  160. Zhang M, Jiang M, Tseng GN. minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ Res 2001; 88:1012–1019.

    PubMed  CAS  Google Scholar 

  161. Muniz ZM, Parcej DN, Dolly JO. Characterization of monoclonal antibodies against voltage-dependent K+ channels raised using alpha-dendrotoxin acceptors purified from bovine brain. Biochemistry 1992; 31:12297–12303.

    PubMed  CAS  Google Scholar 

  162. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 1994; 369:289–294.

    PubMed  CAS  Google Scholar 

  163. Castellino RC, Morales MJ, Strauss HC, Rasmusson RL. Time-and voltage-dependent modulation of a Kv1.4 channel by a beta-subunit (Kv beta 3) cloned from ferret ventricle. Am J Physiol 1995; 269:H385–H391.

    PubMed  CAS  Google Scholar 

  164. England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM. A novel K+ channel beta-subunit (hKv beta 1.3) is produced via alternative mRNA splicing. J Biol Chem 1995; 270:28531–28534.

    PubMed  CAS  Google Scholar 

  165. England SK, Uebele VN, Shear H, Kodali J, Bennett PB, Tamkun MM. Characterization of a voltage-gated K+ channel beta subunit expressed in human heart. Proc Natl Acad Sci USA 1995; 92:6309–6313.

    PubMed  CAS  Google Scholar 

  166. Majumder K, De Biasi M, Wang Z, Wible BA. Molecular cloning and functional expression of a novel potassium channel beta-subunit from human atrium. FEBS Lett 1995; 361:13–16.

    PubMed  CAS  Google Scholar 

  167. Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC. A novel beta subunit increases rate of inactivation of specific voltage-gated potassium channel alpha subunits. J Biol Chem 1995; 270:6272–6277.

    PubMed  CAS  Google Scholar 

  168. Deal KK, England SK, Tamkun MM. Molecular physiology of cardiac potassium channels. Physiol Rev 1996; 76:49–67.

    PubMed  CAS  Google Scholar 

  169. Nakahira K, Shi G, Rhodes KJ, Trimmer JS. Selective interaction of voltage-gated K+ channel beta-subunits with alpha-subunits. J Biol Chem 1996; 271:7084–7089.

    PubMed  CAS  Google Scholar 

  170. Sewing S, Roeper J, Pongs O. Kv beta 1 subunit binding specific for shaker-related potassium channel alpha subunits. Neuron 1996; 16:455–463.

    PubMed  CAS  Google Scholar 

  171. Fink M, Duprat F, Lesage F, Heurteaux C, Romey G, Barhanin J, Lazdunski M. A new K+ channel beta subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 1996; 271:26341–26348.

    PubMed  CAS  Google Scholar 

  172. Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM. Cloning and expression of a novel K+ channel regulatory protein, KChAP. J Biol Chem 1998; 273:11745–11751.

    PubMed  CAS  Google Scholar 

  173. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000; 403:553–556.

    PubMed  CAS  Google Scholar 

  174. Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 2001; 533:119–125.

    PubMed  CAS  Google Scholar 

  175. Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D. Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 2001; 276:23888–23894.

    PubMed  CAS  Google Scholar 

  176. Decher N, Uyguner O, Scherer CR, Karaman B, Yuksel-Apak M, Busch AE, Steinmeyer K, Wollnik B. hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res 2001; 52:255–264.

    PubMed  CAS  Google Scholar 

  177. Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001; 353:1–12.

    PubMed  CAS  Google Scholar 

  178. Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, Nerbonne J. Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 2002; 90:586–593.

    PubMed  CAS  Google Scholar 

  179. Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D. Co-ordinate patterns of KChIP2 mRNA, protein and transient outward current expression throughout canine ventricle. J Physiol, London 2003;548:815–822.

    PubMed  CAS  Google Scholar 

  180. Dixon JE, McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 1994; 75:252–260.

    PubMed  CAS  Google Scholar 

  181. Maruoka ND, Steele DF, Au BP, Dan P, Zhang X, Moore ED, Fedida D. alpha-actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett 2000;473:188–194.

    PubMed  CAS  Google Scholar 

  182. Cukovic D, Lu GW, Wible B, Steele DF, Fedida D. A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of alpha-actinin-2. FEBS Lett 2001;498:87–92.

    PubMed  CAS  Google Scholar 

  183. Petrecca K, Miller DM, Shrier A. Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin binding protein filamin. J Neurosci 2000; 20:8736–8744.

    PubMed  CAS  Google Scholar 

  184. Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D. Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol 2004; 286:H749–H759.

    CAS  Google Scholar 

  185. Fiset C, Clark RB, Shimoni Y, Giles WR. Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol 1997; 500( Pt 1):51–64.

    PubMed  CAS  Google Scholar 

  186. Johns DC, Nuss HB, Marban E. Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs. J Biol Chem 1997; 272:31598–31603.

    PubMed  CAS  Google Scholar 

  187. Barry DM, Xu H, Schuessler RB, Nerbonne JM. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circ Res 1998; 83:560–567.

    PubMed  CAS  Google Scholar 

  188. Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH. Targeted expression of a dominant-negative K(v)4.2 K(+) channel subunit in the mouse heart. Circ Res 2002;90:497–499.

    Google Scholar 

  189. Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996; 79:659–668.

    PubMed  CAS  Google Scholar 

  190. London B, Wang DW, Hill JA, Bennett PB. The transient outward current in mice lacking the potassium channel gene Kv1.4. J Physiol 1998; 509( Pt 1):171–182.

    PubMed  CAS  Google Scholar 

  191. Goldstein SA, Miller C. Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron 1991; 7:403–408.

    PubMed  CAS  Google Scholar 

  192. Takumi T, Ohkubo H, Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 1988; 242:1042–1045.

    PubMed  CAS  Google Scholar 

  193. Wang KW, Tai KK, Goldstein SA. MinK residues line a potassium channel pore. Neuron 1996; 16:571–577.

    PubMed  CAS  Google Scholar 

  194. Tai KK, Goldstein SA. The conduction pore of a cardiac potassium channel. Nature 1998; 391:605–608.

    PubMed  CAS  Google Scholar 

  195. Takahashi N, Morishige K, Jahangir A, Findlay I, Koyama H, Kurachi Y. Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. J Biol Chem 1994; 269:23274–23279.

    PubMed  CAS  Google Scholar 

  196. Liu GX, Derst C, Schlichthorl G, Heinen S, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig-Muller R. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 2001; 532:115–126.

    PubMed  CAS  Google Scholar 

  197. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 2000; 87:160–166.

    PubMed  CAS  Google Scholar 

  198. Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K+ current (IK1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 2001; 533:697–710.

    PubMed  CAS  Google Scholar 

  199. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 1996; 15:1004–1011.

    PubMed  CAS  Google Scholar 

  200. Lesage F, Lazdunski M. Potassium channels with two P domains. In: Jan LY, ed. Current topics in membranes. Vol. 46. San Diego: Academic Press, 1999:199–222.

    Google Scholar 

  201. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2001; 2:175–184.

    PubMed  CAS  Google Scholar 

  202. Backx PH, Marban E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res 1993; 72:890–900.

    PubMed  CAS  Google Scholar 

  203. Clancy CE, Rudy Y. Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 2002; 105:1208–1213.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Nerbonne, J.M., Kass, R.S. (2005). Molecular Physiology of Ion Channels That Control Cardiac Repolarization. In: Morganroth, J., Gussak, I. (eds) Cardiac Safety of Noncardiac Drugs. Humana Press. https://doi.org/10.1007/978-1-59259-884-7_2

Download citation

Publish with us

Policies and ethics