Skip to main content

Statistical Analysis Plans for ECG Data

Controlling the Intrinsic and Extrinsic Variability in QT Data

  • Chapter
Cardiac Safety of Noncardiac Drugs

Abstract

The safety and regulatory needs to detect small drug-induced changes in the QT interval have created many challenges for the design and analysis of “thorough” QT studies. The measurement techniques available, the correlation between the RR interval and the QT interval, and the high variability in the QT interval have made the detection of changes in the QT interval difficult, and the verification of a lack of an effect on the QT interval even more difficult. The purpose of this chapter is to provide statistical and empirical rationales for key elements of study design, and statistical analysis that will control for sources of QT variability and will enhance study sensitivity. We will identify study design and statistical techniques to reduce QT variability, discuss the assumptions inherent in many of the choices available in study design, and recommend study designs based on these principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morganroth J, Brozovich FV, McDonald JT, Jacobs RA. Variability of the QT measurement in healthy men, with implications for selection of an abnormal QT value to predict drug toxicity and proarrhythmia. Am J Cardiol 1991;67:774–776.

    Article  PubMed  CAS  Google Scholar 

  2. Molnar J, Zhang F, Weiss J, Ehlert FA, Rosenthal JE. Diurnal pattern of QTc interval: How long is prolonged? J Am Coll Cardiol 1996;27:76–83.

    Article  PubMed  CAS  Google Scholar 

  3. Widerlov E, Jostell KG, Claesson L, Odlind B, Keisu M, Freyschuss U. Influence of food intake on electrocardiograms of healthy male volunteers. Eur J Clin Pharmacol 1999;55:619–624.

    Article  PubMed  CAS  Google Scholar 

  4. Browne KF, Prystowsky E, Heger JJ, Chilson DA, Zipes DP. Prolongation of the Q-T interval in man during sleep. Am J Cardiol 1983;52:55–59.

    Article  PubMed  CAS  Google Scholar 

  5. Vrancianu R, Filcescu V, Ionescu V, Groza P, Persson J, Kadefors R, Petersen I. The influence of day and night work on the circadian variations of cardiovascular performance. Eur J Appl Physiol 1982;48:11–23.

    Article  CAS  Google Scholar 

  6. Lande G, Funck-Brentano C, Ghadanfar M, Escande D. Steady-state versus non-steady-state QT-RR relationships in 24-hour Holter recordings. PACE 2000;23:293–302.

    PubMed  CAS  Google Scholar 

  7. Extramiana F, Maison-Blanche P, Badilini F, Pinoteau J, Deseo T, Coumel P. Circadian modulation of QT rate dependence in healthy volunteers. Gender and age differences. J Electrocardiol 1999;32:33–43.

    Article  PubMed  CAS  Google Scholar 

  8. Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson BS, Prineas R, Davignon A. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 1992;8:690–695.

    PubMed  CAS  Google Scholar 

  9. Ahnve S, Vallin H. Influence of heart rate and inhibition of autonomic tone on the QT interval. Circulation 1982;65:435–439.

    PubMed  CAS  Google Scholar 

  10. Roden DM. Drug-induced prolongation of the QT interval. New Engl J Med 2004;350:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  11. Camm AJ, Janse MJ, Roden DM, Rosen MR, Cinca J, Cobbe SM. Congenital and acquired long QT syndrome. Eur Heart J 2000;21:1232–1237.

    Article  PubMed  CAS  Google Scholar 

  12. Sun H, Chen P, Kenna L, Lee P. The chaotic QT interval variabilities on risk assessment trial designs. Clin Pharm Ther 2004;75:P55.

    Google Scholar 

  13. Lee SH, Sun H, Chen P, Doddapaneni S, Hunt J, Malinowski H. Sensitivity/reliability of the timematched baseline subtraction method in assessment of QTc interval prolongation. Clin Pharm Ther 2004;75:P56.

    Google Scholar 

  14. Summary Basis of Approval, moxifloxacin hydrochloride, April 21, 2001. FDA document.

    Google Scholar 

  15. Hnatkova K, Malik M. “Optimum” formulae for heart rate correction of the QT interval. PACE 1999;1683-1687.

    Google Scholar 

  16. Malik M, Farbom P, Batchvarov V, Hnatkova K, Camm AJ. Relation between QT and RR intervals is highly individual among healthy subjects: Implications for heart rate correction of the QT interval. Heart 2002;87:220–228.

    Article  PubMed  CAS  Google Scholar 

  17. Batchvarov VN, Ghuran A, Smetana P, Hnatkova K, Harries M, Dilaveris P, Camm AJ, Malik M. QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability. Am J Physiol 2002;282:H2356–H2363.

    CAS  Google Scholar 

  18. Dmitrienko A, Smith B. Repeated-measures models in the analysis of QT interval. Pharmaceut Statist 2003;2:175–190.

    Article  Google Scholar 

  19. The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs: Preliminary Concept Paper, November 15, 2003. http://cdernet.cder.fda.gov/QTWG/QT%20Workshop/qt4jam.pdf.

  20. Badilini F, Maison-Blanche P, Childers R, Coumel P. QT interval analysis on ambulatory electrocardiographic recordings: A selective beat averaging approach. Med Biol Eng Comput 1999;37:71–79.

    Article  PubMed  CAS  Google Scholar 

  21. Hollander M, Wolfe DA. Non-parametric Statistical Methods, Wiley Series, 1999, pp. 125–133.

    Google Scholar 

  22. Kenna LA, Parekh A, Jarugula V, Chatterjee DJ, Sun H, Kim MJ, Ortiz S, Hunt JP, Malinowski H. Experience evaluating QT prolongation data. Clin Pharm Ther 2004;75:P7.

    Google Scholar 

  23. Ahn C, Jung S-H. Efficiency of general estimating equations estimators of slopes in repeated measurements: Adding subjects or adding measurements? Drug Info J 2003;37:309–316.

    Google Scholar 

  24. Points to Consider: The Assessment of the Potential for QT Interval Prolongation by Non-Cardiovascular Medicinal Products. Committee for Proprietary Medicinal Products, EMEA, December 17, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hollister, A.S., Montague, T.H. (2005). Statistical Analysis Plans for ECG Data. In: Morganroth, J., Gussak, I. (eds) Cardiac Safety of Noncardiac Drugs. Humana Press. https://doi.org/10.1007/978-1-59259-884-7_14

Download citation

Publish with us

Policies and ethics