Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 896 Accesses

Abstract

Atherosclerosis is a chronic inflammatory disease resulting from the interaction of multiple regulatory factors with cells. An important initiating event for atherosclerosis is the interaction of oxidized lipoproteins with the cellular constituents of the arterial wall. The inflammatory reactions and oxidation-mediated signals that follow this event perpetuate the formation of atherosclerotic lesions. Lesion formation begins with the development of fatty streaks in the arterial wall beneath the endothelial cells. The initial event in the development of the fatty streak may be the transport of low-density lipoproteins (LDL) into the arterial wall (1,2). Fatty streaks may develop in response to oxidized phos-pholipids present in the LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Navab M, Berliner JA, Watson AD, et al. The yin and yang of oxidation in the development of the fatty streak. Arterioscler Thromb Vase Biol 1996;16:831–842.

    CAS  Google Scholar 

  2. Young SG, Parthasarathy S. Why are low density lipoproteins atherogenic? West J Med 1994;160:153–164.

    PubMed  CAS  Google Scholar 

  3. Nievelstein PF, Fogelman AM, Mottino G, Frank JS. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low-density lipoprotein: a deep-etch and immunolocalization study of rapidly frozen tissue. Arterioscler Thromb 1991;11:1795–1805.

    PubMed  CAS  Google Scholar 

  4. Vora DK, Fang ZT, Liva SM, et al. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 1997;80:810–818.

    PubMed  CAS  Google Scholar 

  5. Cushing SD, Berliner JA, Valente AJ. Minimally modified LDL-induces monocyte chemotactic protein-1 in human endothelial and smooth muscle cells. Proc Natl Acad Sci USA 1990;87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  6. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage-colony stimulating factors by modified low density lipoproteins. Nature 1990;344:254–257.

    Article  PubMed  CAS  Google Scholar 

  7. McEver RP. Leukocyte-endothelial interactions. Curr Opin Cell Biol 1992;4:840–849.

    Article  PubMed  CAS  Google Scholar 

  8. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.

    Article  PubMed  CAS  Google Scholar 

  9. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Science 1969;223: 1159–1161.

    CAS  Google Scholar 

  10. Gimbrone MA Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol 1999;155:1–5.

    PubMed  Google Scholar 

  11. Thomas WA, Lee KT, Kim DN. Cell population kinetics in atherogenesis. Cell births and losses in intimal cell mass-derived lesions in the abdominal aorta of swine. Ann N Y Acad Sci 1985;454:305–315.

    Article  PubMed  CAS  Google Scholar 

  12. Ross R. Cellular and molecular studies of atherogenesis. Atherosclerosis 1997;131:S3–S4.

    Article  PubMed  CAS  Google Scholar 

  13. Fridovich I. The biology of oxygen radicals. Science 1978;201:875–880.

    Article  PubMed  CAS  Google Scholar 

  14. Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol 1990;39:399–405.

    Article  PubMed  CAS  Google Scholar 

  15. Steinbeck MJ, Khan AU, Kamovsky MJ. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9, 10-dipheylanthracene and perylene in a polystyrene film. J Biol Chem 1993;268:15649–15654.

    PubMed  CAS  Google Scholar 

  16. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000; 149:43–50.

    Article  PubMed  CAS  Google Scholar 

  17. Schraufstatter IU, Browne K, Harris A, et al. Mechanisms of hypochlorite injury of target cells. J Clin Invest 1990;85:554–562.

    PubMed  CAS  Google Scholar 

  18. Foote CS, Goyne TE, Lehrer RI. Assessment of chlorination by human neutrophils. Nature 1983;301:715–716.

    Article  PubMed  CAS  Google Scholar 

  19. Herdener M, Heigold S, Saran M, Bauer G. Target cell-derived superoxide anions cause efficiency and selectivity of intercellular induction of apoptosis. Free Radic Biol Med 2000;29:1260–1271.

    Article  PubMed  CAS  Google Scholar 

  20. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative disease of aging. Proc Natl Acad Sci USA 1993;90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  21. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.

    PubMed  CAS  Google Scholar 

  22. Clancey RM, Amin AR, Abramson SB. The role of nitric oxide in inflammation and immunity. Arthritis Rheum 1998;41:1141–1151.

    Article  Google Scholar 

  23. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993,329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  24. Murrant CL, Reid M. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 2001;55:236–248.

    Article  PubMed  CAS  Google Scholar 

  25. Hibbs JB, Taintor RR, Vavrin Z, et al. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA, eds. Nitric oxide from L-arginine: a bioregulatory system. Amsterdam: Elsevier; 1990:189–223.

    Google Scholar 

  26. Mazzetti I, Grigolo B, Pulsatelli L, et al. Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clin Sci 2001;101:593–599.

    Article  PubMed  CAS  Google Scholar 

  27. Kissner R, Nauser T, Bugnon P, Lye PG, Loppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 1997;10:1285–1292.

    Article  PubMed  CAS  Google Scholar 

  28. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996;271:C1424–C1437.

    PubMed  CAS  Google Scholar 

  29. Beckmann JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immuno-histochemistry. Biol Chem Hoppe Seyler 1994;375:81–88.

    PubMed  CAS  Google Scholar 

  30. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 1995;369: 131–135.

    Article  PubMed  CAS  Google Scholar 

  31. Babior BM, Curnutte JT, McMurrich BJ. The particulate super-oxide-forming system from human neutrophils. Properties of the system and evidence supporting its participation in the respiratory burst. J Clin Invest 1976,58:989–996.

    PubMed  CAS  Google Scholar 

  32. Smith RM, Curnutte JT. Molecular basis of chronic granulomatous disease. Blood 1991;77:673–686.

    PubMed  CAS  Google Scholar 

  33. Babior BM. NADPH oxidase: an update. Blood 1999;93:1464–1476.

    PubMed  CAS  Google Scholar 

  34. Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci USA 1998;95:7993–7998.

    Article  PubMed  CAS  Google Scholar 

  35. Segal AW, West I, Wientjes F, et al. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 1992;284:781–788.

    PubMed  CAS  Google Scholar 

  36. Someya A, Nagoka I, Nunoi H, Yamashita T. Translocation of guinea pig p40phox during activation of NADPH oxidase. Biochim Biophys Acta 1996;1277:217–225.

    Article  PubMed  CAS  Google Scholar 

  37. Wientjes FB, Panayotou G, Reeves E, Segal W. Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochem J 1996;317:919–924.

    PubMed  CAS  Google Scholar 

  38. Cross AR. p40phox participates in the activation of NADPH oxidase by increasing the affinity of p47phox for flavocytochrome b558. Biochem J 2000;349:113–117.

    Article  PubMed  CAS  Google Scholar 

  39. Lapouge K, Smith SJ, Groemping Y, Rittinger K. Architecture of the p40–p47–p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 2002;277:10121–10128.

    Article  PubMed  CAS  Google Scholar 

  40. Johnson JL, Park JW, Benna JE, Faust LP, Inanami O, Babior BM. Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. J Biol Chem 1998;273:35147–35152.

    Article  PubMed  CAS  Google Scholar 

  41. Bonizzi G, Piette J, Merville MP, Bours V. Cell-type specific role for reactive oxygen species in nuclear factor (B activation by interleukin-1. Biochem Pharmacol 2000;59:7–11.

    Article  PubMed  CAS  Google Scholar 

  42. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  43. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–1148.

    PubMed  CAS  Google Scholar 

  44. Patterson C, Ruef J, Madamanchi NR, et al. Stimulation of vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 1999;274:19814–19822.

    Article  PubMed  CAS  Google Scholar 

  45. Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in ras-transformed fibroblasts. Science 1997;275:1649–1652.

    Article  PubMed  CAS  Google Scholar 

  46. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumor necrosis factor-oc activates a p22phox-based NADH oxidase in vascular smooth muscle cells. Biochem J 1998;329:653–657.

    PubMed  Google Scholar 

  47. Yeh LH, Kinsey AM, Chatterjee S, Alevriadou BR. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J Vase Res 2001;38:551–559.

    Article  CAS  Google Scholar 

  48. Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 2000;87:26–32.

    PubMed  CAS  Google Scholar 

  49. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT. Expression of phagocyte NAD(P)H oxidase components in human endothelial cells. Am J Physiol 1996;271:H1626–H1634.

    PubMed  CAS  Google Scholar 

  50. Bayraktutan U, Draper N, Lang D, Shah AM. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 1998;38:256–262.

    Article  PubMed  CAS  Google Scholar 

  51. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad USA 1997;94:14483–14488.

    Article  CAS  Google Scholar 

  52. Sorescu D, Weiss MD, Lasségue B, et al. Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 2002;105:1429–1435.

    Article  PubMed  CAS  Google Scholar 

  53. Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 2001;276:1417–1423.

    Article  PubMed  CAS  Google Scholar 

  54. Suh Y, Arnold RS, Lassśegue B, et al. Cell transformation by the superoxide-generating oxidase moxl. Nature 1999;401:79–82.

    Article  PubMed  CAS  Google Scholar 

  55. Geiszt M, Kopp JB, Varnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000;97:8010–8014.

    Article  PubMed  CAS  Google Scholar 

  56. Dupuy C, Ohayon R, Valent A, Noel-Hudson MS, Déme D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J Biol Chem 1999;274:37265–37269.

    Article  PubMed  CAS  Google Scholar 

  57. Li JM, Mullen AM, Yun S, et al. Essential role of the NADPH oxidase subunit p47phox in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-α. Circ Res 2002;90:143–150.

    Article  PubMed  CAS  Google Scholar 

  58. Fukui T, Lasségue B, Kai H, Alexander RW, Griendling KK. cDNA cloning and mRNA expression of cytochrome b558 α-subunit in rat vascular smooth muscle cells. Biochim Biophys Acta 1995;1231:215–219.

    Article  PubMed  Google Scholar 

  59. Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001;108:1513–1522.

    Article  PubMed  CAS  Google Scholar 

  60. Pagano PJ, Chanock SJ, Siwik DA, Colucci WS, Clark JK. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 1998;32:331–337.

    PubMed  CAS  Google Scholar 

  61. Toyuz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries. Regulation by angiotensin II. Circ Res 2002;90:1205–1213.

    Article  CAS  Google Scholar 

  62. Sohn HY, Keller M, Gloe T, Morawietz H, Rueckschloss U, Pohl U. The small G-protein Rac mediates depolarization-induced superoxide formation in human endothelial cells. J Biol Chem 2000;275:18745–18750.

    Article  PubMed  CAS  Google Scholar 

  63. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vase Biol 2000;20:61–69.

    CAS  Google Scholar 

  64. Wung BS, Cheng JJ, Shyue SK, Wang DL. NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain. Arterioscler Thromb Vase Biol 2001;21:1941–1947.

    Article  CAS  Google Scholar 

  65. Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG, Dinauer MC. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 2002;99:2653–2661.

    Article  PubMed  CAS  Google Scholar 

  66. Ebisu K, Nagasawa T, Watanabe K, Kakinuma K, Miyano K, Tamura M. Fused p47phox and p67phox truncations efficiently reconstitute NADPH oxidase with higher activity and stability than the individual components. J Biol Chem 2001;276:24498–24505.

    Article  PubMed  CAS  Google Scholar 

  67. Lavigne MC, Malech HL, Holland SM, Leto TL. Genetic disruption of p47phox-dependent superoxide anion production in murine vascular smooth muscle cells. Circulation 2001;104:79–84.

    Article  PubMed  CAS  Google Scholar 

  68. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000;87:1195–11201.

    PubMed  CAS  Google Scholar 

  69. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996;271:23317–23321.

    Article  PubMed  CAS  Google Scholar 

  70. Ho YS, Magnenat JL, Gargano M, Cao J. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 1998;106:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  71. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95

    PubMed  Google Scholar 

  72. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2nd ed. Oxford, England: Clarendon; 1989.

    Google Scholar 

  73. Weisiger RA, Fridovich I. Superoxide dismutase: organelle specificity. J Biol Chem 1973;248:3582–3592.

    PubMed  CAS  Google Scholar 

  74. Marklund SL, Holme E, Hellner L. Superoxide dismutase in extracellular fluids. Clin Chim Acta 1982;126:41–51.

    Article  PubMed  CAS  Google Scholar 

  75. Stralin P, Karlsson K, Johansson BO, Marklund SL. The inter-stitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vase Biol 1995;15:2032–2036.

    CAS  Google Scholar 

  76. Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med 1996;20:957–965.

    Article  PubMed  CAS  Google Scholar 

  77. Visner GA, Dougall WC, Wilson JM, Burr IA, Nick HS. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem 1990;265:2856–2864.

    PubMed  CAS  Google Scholar 

  78. Poswig A, Wenk J, Brenneisen P, et al. Adaptive antioxidant response of manganese-superoxide dismutase following repetitive UVA irradiation. J Invest Dermatol 1999;112:13–18.

    Article  PubMed  CAS  Google Scholar 

  79. Fujii J, Taniguchi N. Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem 1991;266:23142–23146.

    PubMed  CAS  Google Scholar 

  80. Kumar S, Millis AJ, Baglioni C. Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc Natl Acad Sci USA 1992;89:4683–4687.

    Article  PubMed  CAS  Google Scholar 

  81. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11:376–381.

    Article  PubMed  CAS  Google Scholar 

  82. Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DJ. Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest 1998;101:2101–2111.

    PubMed  CAS  Google Scholar 

  83. Fennel JP, Brosnan MJ, Frater AJ, et al. Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 2002;9:110–117.

    Article  Google Scholar 

  84. Yim MB, Chock PB, Stadtman ER. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem 1993;268:4099–4105.

    PubMed  CAS  Google Scholar 

  85. Liochev SI, Fridovich I. Copper-and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase. J Biol Chem 2000;275:38482–38485.

    Article  PubMed  CAS  Google Scholar 

  86. Tribble DL, Gong EL, Leeuwenburgh C, et al. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Circ Res 1997;17:1734–1740.

    CAS  Google Scholar 

  87. Beck MA, Esworthy RS, Ho YS, Chu FF. Glutathione peroxidase protects mice from viral-induced myocarditis. FASEB J 1998;12:1143–1149.

    PubMed  CAS  Google Scholar 

  88. Kilvenyi P, Andreassen OA, Ferrante RJ, et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci 2000;20:1–7.

    Google Scholar 

  89. Winston GW. Physiological basis for free radical formation in cells: production and defenses. In: Alscher RG, Cumming JR, eds. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. New York: John Wiley & Sons; 1990:57–86.

    Google Scholar 

  90. Kang YJ, Chen Y, Epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 1996;271:12610–12616.

    Article  PubMed  CAS  Google Scholar 

  91. Guo Z, Van Remmen H, Yang H, et al. Changes in expression of antioxidant enzymes affect cell-mediated LDL oxidation and oxidized LDL-induced apoptosis in mouse aortic cells. Arterioscler Thromb Vase Biol 2001;21:1131–1138.

    Article  CAS  Google Scholar 

  92. Kang YJ, Sun X, Chen Y, Zhou Z. Inhibition of doxorubicin chronic toxicity in catalase-overexpressing transgenic mouse hearts. Chem Res Toxicol 2002;15:1–6.

    Article  PubMed  CAS  Google Scholar 

  93. Xu B, Moritz JT, Epstein P. Overexpression of catalase provides partial protection to transgenic mouse beta cells. Free Radic Biol Med 1999;27:830–837.

    Article  PubMed  CAS  Google Scholar 

  94. Li G, Chen Y, Saari JT, Kang YJ. Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 1997;273:H1090–H1095.

    PubMed  CAS  Google Scholar 

  95. Siow RC, Richards JP, Pedley KC, Leake DS, Mann GE. Ascorbate protects human vascular smooth muscle cells against apoptosis induced by moderately oxidized LDL containing high levels of lipid hydroperoxides. Arterioscler Thromb Vase Biol 1999;19:2387–2394.

    CAS  Google Scholar 

  96. Jenner AM, Ruiz JE, Dunster C, Halliwell B, Mann GE, Siow RC. Vitamin C protects against hypochlorous acid-induced glutathione depletion and DNA base and protein damage in human vascular smooth muscle cells. Arterioscler Thromb Vase Biol 2002;22:574–580.

    Article  CAS  Google Scholar 

  97. Romanchik J, Morel D, Harrison E. Distribution of carotenoids and ot-tocopherol among lipoproteins does not change when human plasma is incubated in vitro. J Nutr 1995;125:2610–2617.

    PubMed  CAS  Google Scholar 

  98. Dugas T, More DW, Harrison EH. Impact of LDL carotenoid and α-tocopherol content on LDL oxidation by endothelial cells in culture. J Lipid Res 1998;39:999–1007.

    PubMed  CAS  Google Scholar 

  99. Burton CW, Ingold KU. β-carotene: An unusual type of lipid antioxidant. Science 1984;224:569–573.

    Article  PubMed  CAS  Google Scholar 

  100. Carpenter KL, Hardwick SJ, Albarani V, Mitchinson MJ. Carotenoids inhibit DNA synthesis in human aortic smooth muscle cells. FEBS Lett 1999;447:17–20.

    Article  PubMed  CAS  Google Scholar 

  101. Stacker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc Natl Acad Sci USA 1991;88:1646–1650.

    Article  Google Scholar 

  102. Niki E, Saito T, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 1984;259:4177–4182.

    PubMed  CAS  Google Scholar 

  103. Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and atherosclerotic heart disease. N Engl J Med 1997;337:408–416.

    Article  PubMed  CAS  Google Scholar 

  104. Neuzil J, Thomas SR, Stacker R. Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic Biol Med 1997;22:57–71.

    Article  PubMed  CAS  Google Scholar 

  105. Terentis AC, Thomas SR, Burr JA, Liebler DC, Stacker R. Vitamin E oxidation in human atherosclerotic lesions. Circ Res 2002;90:333–339.

    Article  PubMed  CAS  Google Scholar 

  106. Bowry VW, Ingold KU, Stacker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J 1992;288:341–344.

    PubMed  CAS  Google Scholar 

  107. Suarna C, Dean RT, May J, Stacker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate. Arterioscler Thromb Vase Biol 1995;15:1616–1624.

    CAS  Google Scholar 

  108. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 1989;86:6377–6381.

    Article  PubMed  CAS  Google Scholar 

  109. Carr AC, Zhu BZ, Frei B. Potential antiatherogenic mechanisms of ascorbate (vitamin C) and α-tocopherol (vitamin E). Circ Res 2000;87:349–354.

    PubMed  CAS  Google Scholar 

  110. Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J Physiol Biochem 2001;57:43–56.

    Article  CAS  Google Scholar 

  111. Liebler DC, Kling DS, Reed DJ. Antioxidant protection of phospholipid bilayers by α-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem 1986;261:12114–12119.

    PubMed  CAS  Google Scholar 

  112. Hill KE, Burk RF. Influence of vitamin E and selenium on glutathione-dependent protection against microsomal lipid peroxidation. Biochem Pharmacol 1984;33:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  113. Halliwell B. Chloroplast Metabolism. Oxford, England: Clarendon Press; 1984.

    Google Scholar 

  114. Hardwick SJ, Carpenter KL, Allen EA, Mitchinson MJ. Glutathione (GSH) and the toxicity of oxidized low-density lipoprotein to human monocyte-macrophages. Free Radic Res 1999;30:11–19.

    Article  PubMed  CAS  Google Scholar 

  115. Cao Z, Li Y. Chemical induction of cellular antioxidants affords marked protection against oxidative injury in vascular smooth muscle cells. Biochem Biophys Res Commun 2002;22:50–57.

    Article  CAS  Google Scholar 

  116. Prasad A, Andrews NP, Padder FA, Husain M, Quyyumi AA. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol 1999;34:507–514.

    Article  PubMed  CAS  Google Scholar 

  117. Kirsch M, Groot HD. NAD(P)H, a directly operating antioxidant? FASEB J 2001;15:1569–1574.

    Article  PubMed  CAS  Google Scholar 

  118. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000;342:154–160.

    Article  PubMed  CAS  Google Scholar 

  119. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 1999;354:447–455.

    Article  Google Scholar 

  120. Rapola JM, Virtamo J, Ripatti S, et al. Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 1997:349:1715–1720.

    Article  PubMed  CAS  Google Scholar 

  121. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised control trial of vitamin E in patients with coronary artery disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–786.

    Article  PubMed  CAS  Google Scholar 

  122. Patterson C, Madamanchi NR, Runge MS. The oxidative paradox: another piece in the puzzle. Circ Res 2000:87:1074–1076.

    PubMed  CAS  Google Scholar 

  123. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholestrol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  124. Lonn E. Modifying the natural history of atherosclerosis: the SECURE trial. Int J Clin Pract Suppl 2001;117:13–18.

    PubMed  Google Scholar 

  125. Lonn E, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis. The Study to Evaluate Carotid Ultrasound changes in patients treated with Ramipril and vitamin E (SECURE). Circulation 2001;103:919–925.

    PubMed  CAS  Google Scholar 

  126. McQuillan BM, Hung J, Beilby JP, Nidorf M, Thompson PL. Antioxidant vitamins and the risk of carotid atherosclerosis. J Am Coll Cardiol 2001;38:1788–1794.

    Article  PubMed  CAS  Google Scholar 

  127. Salonen JT, Nyyssonen K, Salonen R, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med 2000;248:377–386.

    Article  PubMed  CAS  Google Scholar 

  128. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels: the Long-Term Intervention With Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998:339:1349–1357.

    Google Scholar 

  129. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels: Cholesterol and Recurrent Events Trial Investigators. N Eng J Med 1996;335:1001–1009.

    Article  CAS  Google Scholar 

  130. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West Of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  131. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS: Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998:279:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  132. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vase Biol 2001;21:1712–1719.

    Article  CAS  Google Scholar 

  133. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–844.

    PubMed  CAS  Google Scholar 

  134. Landmesser U, Hornig B, Drexler H. Endothelial dysfunction in hypercholestrolemia: mechanisms, pathophysiological importance, and therapeutic interventions. Semin Thromb Hemost 2000;26:529–537.

    Article  PubMed  CAS  Google Scholar 

  135. Rikitake Y, Kawashima S, Takeshita S, et al. Anti-oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 2001; 154:87–96.

    Article  PubMed  CAS  Google Scholar 

  136. Wassman S, Laufs U, Baumer AT, et al. Inhibition of geranyl-geranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells; involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 2001;59:646–654.

    Google Scholar 

  137. Prasad K. Homocysteine, a risk factor for cardiovascular disease. Int J Angiol 1999;8:76–86.

    Article  PubMed  Google Scholar 

  138. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999;85:753–766.

    PubMed  CAS  Google Scholar 

  139. Lange LA, Bowden DW, Langefeld CD, et al. Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke 2002;33:1876–1881.

    Article  PubMed  Google Scholar 

  140. Broeckel U, Hengstenberg C, Mayer B, et al. A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet 2002;30:210–214.

    Article  PubMed  CAS  Google Scholar 

  141. Patterson C. Things have changed: cell cycle dysregulation and smooth muscle cell dysfunction in atherogenesis. Aging Res Rev 2002;1:167–179.

    Article  CAS  Google Scholar 

  142. Glantz SA, Parmley WW. Even a little second hand smoke is dangerous. JAMA 2001;286:462–463.

    Article  PubMed  CAS  Google Scholar 

  143. Perticone F, Ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes 2001;50:159–165.

    Article  PubMed  CAS  Google Scholar 

  144. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–412.

    Article  PubMed  CAS  Google Scholar 

  145. Srivastava AK. High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes. Int J Mol Med 2002;9:85–89.

    PubMed  CAS  Google Scholar 

  146. Graier WF, Simecek S, Kukovetz WR, Kostner JM. High-D-glucose-induced change in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes 1996;45:1386–1395.

    Article  PubMed  CAS  Google Scholar 

  147. Sanchez-Margalet V, Valle M, Ruz FJ, Gascon F, Mateo J, Goberna R. Elevated plasma total homocysteine levels in hyper-insulinemic obese subjects. J Nutr Biochem 2002;13:75–79.

    Article  PubMed  CAS  Google Scholar 

  148. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–161.

    PubMed  CAS  Google Scholar 

  149. Olszewski AJ, McCully KS. Homocysteine metabolism and the oxidative modification of proteins and lipids. Free Radic Biol Med 1993;14:683–693.

    Article  PubMed  CAS  Google Scholar 

  150. Blundell G, Jones BG, Rose FA, Tudball N. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 1996;122:163–172.

    Article  PubMed  CAS  Google Scholar 

  151. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;91:10771–10778.

    Article  PubMed  CAS  Google Scholar 

  152. Spencer NF, Poynter ME, Im SY, Daynes RA. Constitutive activation of NF-kappa B in an animal model of aging. Int Immunol 1997;9:1581–1588.

    Article  PubMed  CAS  Google Scholar 

  153. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997;272:20313–20316.

    Article  PubMed  CAS  Google Scholar 

  154. Rao GN, Alexander RW, Runge MS. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-FOS, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells. J Clin Invest 1995 96:842–847.

    Article  PubMed  CAS  Google Scholar 

  155. Ruef J, Rao GN, Li F, et al. Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal. Circulation 1998;97:1071–1078.

    PubMed  CAS  Google Scholar 

  156. Madamanchi NR, Li S, Patterson C, Runge MS. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 2001;276:18915–18924.

    Article  PubMed  CAS  Google Scholar 

  157. Madamanchi NR, Li S, Patterson C, Runge MS. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vase Biol 2001;21:321–326.

    CAS  Google Scholar 

  158. Abe J, Berk BC. Fyn and JAK2 mediate ras activation by reactive oxygen species. J Biol Chem 1999;274:21003–21010.

    Article  PubMed  CAS  Google Scholar 

  159. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22:269–285.

    Article  PubMed  CAS  Google Scholar 

  160. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of HO for platelet-derived growth factor signal transduction. Science 1995;270:296–299.

    Article  PubMed  CAS  Google Scholar 

  161. Hirotani S, Otsu K, Nishida K, et al. Involvement of nuclear factor-kB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 2002;105:509–515.

    Article  PubMed  CAS  Google Scholar 

  162. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468–471.

    Article  PubMed  CAS  Google Scholar 

  163. Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK. Targeted disruption of the mouse SOD1 gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 2000;86:264–269.

    PubMed  CAS  Google Scholar 

  164. Williams MD, Remmen HV, Conrad CC, Huang TT, Epstein CJ, Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 1998;273: 28510–28515.

    Article  PubMed  CAS  Google Scholar 

  165. Ballinger SW, Patterson C, Yan CN, et al. Hydrogen peroxide-and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000;86:960–966.

    PubMed  CAS  Google Scholar 

  166. Ferrari R. The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 1996;28:S1–S10.

    PubMed  CAS  Google Scholar 

  167. Ide T, Tsutsui H, Kinugawa S, et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 2002;86:152–157.

    Google Scholar 

  168. Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002;106:544–549.

    Article  PubMed  CAS  Google Scholar 

  169. Moon SK, Thompson LJ, Madamanchi N, et al. Aging, oxidative responses, and proliferative capacity in cultured mouse aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2001;280:H2779–H2788.

    PubMed  CAS  Google Scholar 

  170. Newby AC, Zaltsman AB. Fibrous cap formation or destruction-the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 1999;41:345–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Madamanchi, N.R., Runge, M.S. (2005). Oxidative Stress. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics