Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 892 Accesses

Abstract

The term risk factor is defined as any clinically measurable characteristic that may be used to predict clinical events. In this chapter, we will focus on lipid-related risk factors associated with clinical events resulting from arteriosclerosis involving the major arteries. The anatomical distribution of the arteries and the function of the organs they feed define the clinical syndromes resulting from arteriosclerosis. Epidemiological and clinical trial data that have been used to define risk factors therefore relate differently to the different arterial systems of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Expert Panel. Executive summary of the 3rd report of the NCEP expert panel on detection, evaluation and treatment of high blood cholesterol in adults (ATP-III). JAMA 2001;285:2486–2497.

    Article  Google Scholar 

  2. Dietschy JM, Wilson JD. Regulation of cholesterol metabolism. N Engl J Med 1970;282:1128–1138.

    Article  PubMed  CAS  Google Scholar 

  3. Kesaniemi YA, Miettinen TA. Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur J Clin Invest 1987;17:391–395.

    PubMed  CAS  Google Scholar 

  4. Patel SB, Salen G, Hidaka H, et al. Mapping a gene involved in regulating dietary cholesterol absorption: The sitos-terolemia locus is found at chromosome 2p21. J Clin Invest 1998;102:1041–1044.

    PubMed  CAS  Google Scholar 

  5. Gottesman MM, Ambudkar SV. Overview: ABC transporters and human disease. J Bioenerg Biomemb 2001;33:453–458.

    Article  CAS  Google Scholar 

  6. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000;290:1771–1775.

    Article  PubMed  CAS  Google Scholar 

  7. Lee MH, Lu K, Patel SB. Genetic basis of sitosterolemia. Curr Opinion Lipidol 2001;12:141–149.

    Article  CAS  Google Scholar 

  8. Datta S, Luo CC, Li WH, et al. Human hepatic lipase. Cloned cDNA sequence, restriction fragment length polymorphisms, chromosome localization, and evolutionary relationships with lipoprotein lipase and pancreatic lipase. J Biol Chem 1998;263:1107–1110.

    Google Scholar 

  9. Waite M, Thuren T, Wilcox R, et al. Purification and substrate specificity of rat hepatic lipase. Meth Enzymol 1991;197:331–339.

    PubMed  CAS  Google Scholar 

  10. Sanan DA, Fan J, Bensadoun A, Taylor JM. Hepatic lipase is abundant on both hepatocyte and endothelial surfaces in the liver. J Lipid Res 1997;38:1002–1013.

    PubMed  CAS  Google Scholar 

  11. Zilversmit DB. A proposal linking atherogenesis to the interaction of endothelial lipase with TG-rich lipoproteins. Circ Res 1973;33:633–638.

    PubMed  CAS  Google Scholar 

  12. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979;60:473–485.

    PubMed  CAS  Google Scholar 

  13. Groot PHE, van Stiphout AHJ, Krauss XH, et al. Postprandial lipoprotein metabolism in normolipidemic man with and without coronary artery disease. Arterioscl Thromb 1991;11:653–662.

    PubMed  CAS  Google Scholar 

  14. Brown DF, Heslin AS, Doyle JT. Postprandial lipemia in health and in ischemic heart disease. New Engl J Med 1961;264:733–737.

    Article  CAS  Google Scholar 

  15. Sharrett AR, Chambless LE, Heiss G, Paton CC, Patsch W. Association of postprandial triglyceride and retinyl palmitate responses with asymptomatic carotid artery atherosclerosis in middle-aged men and women. Arterioscl Thromb Vase Biol 1995;15:2122–2129.

    CAS  Google Scholar 

  16. Lagrost L, Gandjini H, Athias A, et al. Influence of plasma CETP activity on the LDL and HDL distribution profiles in normolipidemic subjects. Arterioscl Thromb 1993;13:815–825.

    PubMed  CAS  Google Scholar 

  17. Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res 1993;34:1255–1274.

    PubMed  CAS  Google Scholar 

  18. Goldstein JL, Brown MS. Familial hypercholesterolemia. In the Metabolic Basis of Inherited Diseases. CR Scriver, AL Beaudet, WS Sly, and D Valle, editors. 1989. 1215–1253.

    Google Scholar 

  19. Berg K. A new serum type system in man-the Lp system. Acta Pathol Microbiol Scand 1963;59:369–375.

    PubMed  CAS  Google Scholar 

  20. Berg K, Dahlen G, Borresen AL. Lp(a) phenotypes, other lipoprotein parameters, and a family of coronary heart disease in middle-aged males. Clin Genet 2003;16:347–358.

    Article  Google Scholar 

  21. Brunner C, Kraft HG, Utermann G, Muller HJ. Cys4057 of apolipoprotein(a) is essential for Lipoprotein(a) assembly. Proc Natl Acad Sci USA 1993;90:11643–11647.

    Article  PubMed  CAS  Google Scholar 

  22. Perombelon YFN, Soutar AK, Knight BL. Variation in Lp(a) concentration associated with different apo(a) alleles. J Clin Invest 1994;93:1481–1492.

    PubMed  CAS  Google Scholar 

  23. Rader DJ, Cain W, Zech L, Usher D, Brewer HB. Variation in Lp(a) nconcentrations among individuals with the same apo(a) isoform is determined by the rate of Lp(a) production. J Clin Invest 1993;91:443–447.

    PubMed  CAS  Google Scholar 

  24. Dahlen G, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto AM, Jr. Association of levels of Lp(a), plasma lipids and other lipoproteins with coronary artery disease documented by angiograpgy. Circulation 1986;74:758–765.

    PubMed  CAS  Google Scholar 

  25. Rhoads GG, Dahlen G, Berg K, et al. Lp(a) lipoprotein as a risk factor for myocardial infarction. JAMA 1986;256:2540–2544.

    Article  PubMed  CAS  Google Scholar 

  26. Kronenberg F, Kronenberg MF, Kiechl S, et al. Role of Lp(a) and apo(a) phenotype in atherogenesis. Prospective results from the Bruneck Study. Circulation 1999;100:1154–1160.

    PubMed  CAS  Google Scholar 

  27. Etingin OR, Hajjar DP, Hajjar KA, Harpel PC, Nachman RL. Lp(a) regulates plasminogen activator inhibitor-1 expression in endothelial cells: A potential mechanism in thrombogenesis. J Biol Chem 1991;266:2459–2465.

    PubMed  CAS  Google Scholar 

  28. Barrett-Connor E, Suarez L, Khaw K, Criqui MH, Wingard DL. Ischemic heart disease risk factors after age 50. J Chronic Dis 1984;37:903–908.

    Article  PubMed  CAS  Google Scholar 

  29. Shekelle RB, Shryock AM, Paul O, et al. Diet, serum cholesterol and death from coronary heart disease. The Western Electric Study. N Engl J Med 1981;304:65–70.

    Article  PubMed  CAS  Google Scholar 

  30. Tyroler HA, Heyen S, Bartel A, et al. Blood pressure and cholesterol as coronary heart disease risk factors. Arch Inter Med 1971;128:907–914.

    Article  CAS  Google Scholar 

  31. Stamler J, Wentworth D, Neaton JD. Is the relationship between serum cholesterol and risk of premature death from coronary heart disease continuous or graded? Findings in 356,222 primary screenees of the MRFIT. JAMA 1986;256:2823–2828.

    Article  PubMed  CAS  Google Scholar 

  32. Marmot MG, Mann JI. In Ischaemic Heart Disease. Fox KM, editor. MTP Press, Lancaster, UK. 1987. 1–31.

    Google Scholar 

  33. Tyroler HA. Review of lipid-lowering clinical trials in relation to observational epidemiologic studies. Circulation 1987;76:525–522.

    Google Scholar 

  34. Holme I. An analysis of randomized trials evaluating the effect of cholesterol reduction on total mortality and coronary heart disease incidence. Circulation 1990;82:1916–1924.

    PubMed  CAS  Google Scholar 

  35. Dayton S, Pearce ML, Goldman H, et al. Controlled trial of a diet high in unsaturated fat for prevention of atherosclerotic complications. Lancet 1968;2:1060–1062.

    Article  PubMed  CAS  Google Scholar 

  36. Turpeinen O, Karvonen MJ, Pekkarinen M, Miettinen M, Elosuo R, Paavilainen E. Dietray prevention of coronary heart disease: the Finnish Mental Hospital Study. Intern J Epidemiol 1979;8:99–118.

    Article  CAS  Google Scholar 

  37. Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesteroliemia. Report of POSCH. N Engl J Med 1990;323:946–955.

    Article  PubMed  CAS  Google Scholar 

  38. Buchwald H, Stoller DK, Campos CT, Matts JP, Varco RL. Partial ileal bypass for hypercholesterolemia. 20-to 26-year follow-up of he first 57 consecutive cases. Ann Surgery 1990;212:318–329.

    Article  CAS  Google Scholar 

  39. LRC-CPPT Writing Group. The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 1984;251:351–364.

    Article  Google Scholar 

  40. LRC-CPPT Writing Group. The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of CHD to cholesterol lowering. JAMA 1984;251:365–374.

    Article  Google Scholar 

  41. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of CHD. N Engl J Med 1987;317:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  42. Shepherd J, Cobbe SM, Ford L, et al. Prevention of CHD with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  43. Kwiterovich PO. State-of-the-art update and review: Clinical trials of lipid-lowering agents. Am J Cardiol 1998;82:3U–17U.

    Article  PubMed  CAS  Google Scholar 

  44. National Center for Health Statistics. National Health & Nutrition Examination Survey III, 1988–1994. Washington, DC: US Dept of Health and Human Services; 1994.

    Google Scholar 

  45. Brown MS, Goldstein JL, Krieger M, et al. Reversible accumulation of cholesteryl ester in macrophages incubated with acetylated lipoproteins. J Biol Chem 1979;82:597–613.

    CAS  Google Scholar 

  46. Steinberg D, Parthasarathy S, Carew TE, Khoo JD, Witztum JL. Beyond cholesterol: modifications of LDL that increase its atherogenecity. N Engl J Med 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  47. Steinbrecher UP, Parthasarathy S, Leake DS. Modification of LDL by endothelial cells involves lipid peroxidation and degradation of LDL phospholipids. Proc Natl Acad Sci USA 1984;81:3883–3887.

    Article  PubMed  CAS  Google Scholar 

  48. Fogelman AM, Schechter I, Seager J. Malondialdehyde alteration of LDL leads to cholesteryl ester accumulation in human monocyte macrophages. Proc Natl Acad Sci USA 1980;77:2214–2218.

    Article  PubMed  CAS  Google Scholar 

  49. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter LDL in vitro by free radical oxidation. Arteriosclerosis 1984;4:357–364.

    PubMed  CAS  Google Scholar 

  50. Cathcart MK, McNally AK, Morel DW, DiCorleto PE, Chisolm GM. Superoxide anion participation in human monocyte-mediated oxidation of LDL and conversion of LDL to a cytotoxin. J Immunol 1989;142:1963–1969.

    PubMed  CAS  Google Scholar 

  51. Sparrow CP, Olszewski J. Cellular oxidation of LDL is caused by thiol production in media containing transition metal ions. J Lipid Res 1993;34:1219–1228.

    PubMed  CAS  Google Scholar 

  52. Albrink MJ, Man EB. Serum triglycerides in coronary artery disease. Arch Inter Med 1959;103:4–8.

    CAS  Google Scholar 

  53. Criqui MH, Heiss G, Cohn R, et al. Plasma triglyceride level and mortality from coronary heart disease. New Engl J Med 1993;328:1220–1225.

    Article  PubMed  CAS  Google Scholar 

  54. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Triglyceride concentration and ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Circulation 1998;97:1029–1036.

    PubMed  CAS  Google Scholar 

  55. Miller M, Seidler A, Moalemi A, Pearson TA. Normal TG levels and CAD events: The Baltimore Coronary Observational Long-Term Study. J Am Coll Cardiol 1998;31:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  56. Hokanson JE, Austin MA. Plasma TG level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996;3:213–219.

    Article  PubMed  CAS  Google Scholar 

  57. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma in atherosclerosis and related conditions. Am J Med 1951;11:480–493.

    Article  PubMed  CAS  Google Scholar 

  58. Miller NE, Forde OH, Thelle DS, Mjos OD. The Tromso Heart Study: HDL and CAD a prospective case-control study. Lancet 1977;1:965–967.

    Article  PubMed  CAS  Google Scholar 

  59. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. HDL as a protective factor against CHD. Am J Med 1977;62:707–714.

    Article  PubMed  CAS  Google Scholar 

  60. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. New Engl J Med 1999;341:410–418.

    Article  PubMed  CAS  Google Scholar 

  61. Assmann G, von Eckardstein A, Brewer HB. Familial HDL deficiency. Tangier disease. In The metabolic and molecular bases of of inherited disease. Scriver CRT, Beaudet AL, Sly WS, editors. McGraw-Hill, NYC. 1995. 2053–2072.

    Google Scholar 

  62. Francis GA, Knopp RH, Oram JF. Defective removal of cellular cholesterol and phospholipids by apoA-I in Tangier Disease. J Clin Invest 1995;96:78–87.

    PubMed  CAS  Google Scholar 

  63. Rogler G, Trumbach B, Klima B, Lackner KJ, Schmitz G. HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. Arterioscl Thromb Vase Biol 1995;15:683–690.

    CAS  Google Scholar 

  64. Felts JM, Hiroshige I, Crane RT. The mechanism of assimilation of constituents of chylomicrons, VLDL and remnants-A new theory. Biochem Biophys Res Commun 1975;66:1467–1474.

    Article  PubMed  CAS  Google Scholar 

  65. Le NA, Gibson JC, Ginsberg HN. Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins. J Lipid Res 1988;29:669–677.

    PubMed  CAS  Google Scholar 

  66. Le NA, Ginsberg HN Heterogeneity of apoA-I turnover in subjects with reduced concentrations of plasma HDL cholesterol. Metabolism 1988;37:614–617.

    Article  PubMed  CAS  Google Scholar 

  67. Kotite L, Bergeron N, Havel RJ. Quantification of apolipoproteins B-100, B48 and E in human triglyceride-rich lipoproteins. J Lipid Res 1995;36:890–900.

    PubMed  CAS  Google Scholar 

  68. Simons LA, Dwyer T, Simons J, et al. Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study. Atherosclerosis 1987;65:181–189.

    Article  PubMed  CAS  Google Scholar 

  69. Marcel YL, Hogue M, Theolis R, Milne RW. Mapping of antigenic determinants of human apoB using monoclonal antibodies against LDL. J Biol Chem 1982;257:13165–13168.

    PubMed  CAS  Google Scholar 

  70. Hazzard WR Bierman EL. Delayed clearance of chylomicron remnants following vitamin-A-containing oral fat loads in broad-beta disease (type III hyperlipoproteinemia. Metabolism 1976;25:777–801.

    Article  PubMed  CAS  Google Scholar 

  71. Le NA, Cortner JA, Breslow JL. Metabolism of intestinal lipoproteins during the postprandial state. In Diabetes. H Rifkin, Colwell JA, Taylor SI, editors. Elsevier Science Publishers, 1991. 601–608.

    Google Scholar 

  72. Le NA, Coates PM, Gallagher PR, Cortner JA. Kinetics of retinyl esters during postprandial lipemia in man: A compart-mental model. Metabolism 1997;46:584–594.

    Article  PubMed  CAS  Google Scholar 

  73. Cortner JA, Coates PM, Le NA, Cryer DR, Ragni MC, Faulkner A, Langer T. Chylomicron remnant clearance studies in normal and hypertriglyceridemic subjects. J Lipid Res 1987;28:195–206.

    PubMed  CAS  Google Scholar 

  74. Cortner JA, Le NA, Coates PM, Bennett MJ, Cryer DJ. Determinants of fasting plasma triglyceride levels: metabolism of hepatic and intestinal lipoproteins. Eur J Clin Invest 1992;22:158–165.

    PubMed  CAS  Google Scholar 

  75. Nakajima K, Okazaki M, Tanaka A, et al. Separation and determination of remnant-like particels in human serum using monoclonal antibodies to apoB-100 and apoA-I. Clin Ligand Assay 1997;19:177–183.

    Google Scholar 

  76. Masuaka H, Ishikura K, Kamei S, et al. Predictive value of remnant-like aprticles cholesterol/high-density lipoprotien cholesterol ratio as a new indicator of coronary artery disease. Am Heart J 1998;136:226–230.

    Article  Google Scholar 

  77. Havel RJ. Remnant lipoproteins as therapeutic agents. Current Opinion In Lipidology 2000;11:615–620.

    Article  PubMed  CAS  Google Scholar 

  78. Chan L, Boerwinkle E, Li W-H. Molecular Genetics of the Plasma Lipoproteins. In Molecular Biology of the Cardiovascular System. Shu Chien, editor. Lea & Febiger; Malvern, PA. 1990. 183–219.

    Google Scholar 

  79. Durrington PN, Hunt L, Ishola M, Kane J, Stephens WP. Serum apoA-I and apoB in middle-aged men with and without previous myocardial infacrtion. Br Heart J 1986;56:506–512.

    Article  Google Scholar 

  80. Kwiterovich PO, Coresh J, Smith HH, et al. Comparison of the plasma levels of apoB and apoA-I, and other risk factors in men and women with premature coronary artery disease. Am J Cardiol 1992;69:1015–1021.

    Article  PubMed  Google Scholar 

  81. Tornvall P, Baveholm P, Landou C, deFaire U, Hamsten A. Relation of plasma levels and composition of apoB containing lipoproteins to angiographically defined CAD in young patients with MI. Circulation 1993;88:180–189.

    Google Scholar 

  82. Lamarche B, Tchernof A, Mauriege P, et al. Fasting insulin and apoB levels and LDL particle size as risk factors for ischemic heart disease. JAMA 1998;279:1955–1961.

    Article  PubMed  CAS  Google Scholar 

  83. Stampfer MJ, Sacks FM, Salvani S, et al. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 1991;325:378–381.

    Google Scholar 

  84. Sigurdsson G, Baldursdottir A, Sigvaldason H, et al. Predictive value of apolipoproteins in a prospective survey of CAD in men. Am J Cardiol 1992;69:1251–1254.

    Article  PubMed  CAS  Google Scholar 

  85. Talmud PJ, Boerwinkle E, Xu CF, et al. Dietary intake and gene variation influence the response of plasma lipids to dietary intervention. Genetic Epidemiology 1992;9:249–260.

    Article  PubMed  CAS  Google Scholar 

  86. Myant NB. Familial defective apoB: A review, including some comparisons with familial hypercholesterolemia. Atherosclerosis 1993;104:1–19.

    Article  PubMed  CAS  Google Scholar 

  87. Maciejko JJ, Holmes DR, Kottke BA, Zinmeister AR, DInh DM, Mao SJ. ApoA-I as a marker of angiographically assessed CAD. N Engl J Med 1983;309:385–389.

    Article  PubMed  CAS  Google Scholar 

  88. Ginsberg HN, Le NA, Goldberg IJ, et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CM and Al. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 1986;78:1287–1295.

    PubMed  CAS  Google Scholar 

  89. Carlson LA. Fish eye disease: A new familial condition with massive corneal opacities and dyslipoproteinemia. Eur J Clin Invest 1981;12:41–53.

    Google Scholar 

  90. Norum KR. Familial LCAT deficiency. In Clinical and Metabolic Aspects of HDL. Miller NE and Miller GJ, editors. Elsevier, Amsterdam. 1984. 397–432.

    Google Scholar 

  91. Franceschini G, Sirtori CR, Capruso A, et al. ApoA-Imilano apoprotein: decreased HDL cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Intalian family. J Clin Invest 1980;66:892–900.

    PubMed  CAS  Google Scholar 

  92. Cushing GL, Gaubatz JW, Nava ML, et al. Quantitation and localization of apo(a) and apoB in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis 1988;9:593–603.

    Google Scholar 

  93. McLean JW, Tomlinson JE, Kuang W-J, et al. cDNA sequence of human apo(a) is homologous to plasminogen. Nature 1987;330:132–137.

    Article  PubMed  CAS  Google Scholar 

  94. Brown MS, Goldstein JL. Teaching old dogmas new tricks. Nature 1987;330:113–114.

    Article  PubMed  CAS  Google Scholar 

  95. Scanu AM. Lp(a): a potential bridge between the fields of atherosclerosis and thrombosis. Arch Pathol Lab Med 1988;112:1045–1047.

    PubMed  CAS  Google Scholar 

  96. Gavish D, Azrolan N, Breslow JL. Plasma Lp(a) concentration is inversely correlated with the ratio of kringle IV/kringle V encoding domains in the apo(a) gene. J Clin Invest 1989;84:2021–2027.

    PubMed  CAS  Google Scholar 

  97. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH. Molecular basis of apo(a) isoform size heterogeneity as revealed by pulse-field gel electrophoresis. J Clin Invest 1991;87:2153–2161.

    PubMed  CAS  Google Scholar 

  98. Marcovina SM, Hobbs HH, Albers JJ. Relation between number of apo(a) kringle 4 repeats and mobility in agarose gel: basis for a standardized isoform nomenclature. Clinical Chemistry 1996;42:436–439.

    PubMed  CAS  Google Scholar 

  99. Seed M, Hoppichler F, Reaveley D, et al. Relation of serum Lp(a) concentration and apo(a) phenotype to CHD in familial hypercholesterolemia. N Engl J Med 1990;322:1494–1499.

    Article  PubMed  CAS  Google Scholar 

  100. Guyton JR, Dahlen GH, Patsch W, Kautz JA, Gotto AM, Jr. Relationship of plasma Lp(a) levels to race and apoB. Arteriosclerosis 1985;5:265–272.

    PubMed  CAS  Google Scholar 

  101. Trieu VN, Olsson U, McConathy WJ. The apoB3304-3317 peptide as an inhibitor of apo(a):apoB containing lipoprotein interaction. Biochem J 1995;307:17–22.

    PubMed  CAS  Google Scholar 

  102. Koschinsky ML, Cote GP, Gabel B, van der Hoek YY. Identification of the cysteine residue in apo(a) which mediates extracellular coupling with apoB. J Biol Chem 1993;268:19819–19825.

    PubMed  CAS  Google Scholar 

  103. Chiesa G, Hobbs HH, Koschinsky ML, Lawn RM, Maika SD, Hammer RE. Reconstitution of Lp(a) by infusion of human LDL into transgenic mice expressing human apo(a). J Biol Chem 1992;267:24369–24374.

    PubMed  CAS  Google Scholar 

  104. Hofmann SL, Eaton DL, Brown MS, McConathy WJ, Goldstein JL, Hammer RE. Overexpression of human LDL receptors leads to accelerated catabolism of Lp(a) in transgenic mice. J Clin Invest 1990;85:1542–1547.

    PubMed  CAS  Google Scholar 

  105. Vessby B, Kostner G, Lithell H, Thomis J. Diverging effects of cholesyramine on apoB and Lp(a). Atherosclerosis 1982;44:61–71.

    Article  PubMed  CAS  Google Scholar 

  106. Kostner G, Gavish D, Leopold B, Bolzano K, Weintraub WS, Breslow JL. HMG CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation 1989;80:1313–1319.

    PubMed  CAS  Google Scholar 

  107. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 2002;8:1–21.

    Google Scholar 

  108. Davignon J, Gregg RE, Singh CF. ApoE polymorphism and actherosclerosis. Arteriosclerosis 1988;8:1–21.

    PubMed  CAS  Google Scholar 

  109. Wilson PWF, Myers RH, Larson MG, et al. ApoE alleles, dys-lipidemia, and coronary heart disease: The Framingham Offspring Study. JAMA 1994;272:1666–1671.

    Article  PubMed  CAS  Google Scholar 

  110. Eichner JE, Kuller LH, Orchard TJ, et al. Relation of apoE phenotype to myocardial infarction and mortality from CAD. Am J Cardiol 1993;7:160–165.

    Article  Google Scholar 

  111. Scuteri A, Bos AJG, Zonderman AB, Brant LJ, Lakatta AG, Fleg JL. Is the apoE4 allele an independent predictor of coronary events. Am J Med 2001;110:28–32.

    Article  PubMed  CAS  Google Scholar 

  112. Chen M, Breslow JL, Li W, Leff T. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res 1994;35:1918–1924.

    PubMed  CAS  Google Scholar 

  113. Dallinga-Thie GM, Groenendijk M, Blom N, de Bruin TW, de Kant E. Genetic heterogeneity in the apoC-III promoter and effects of insulin. J Lipid Res 2001;42:1450–1456.

    PubMed  CAS  Google Scholar 

  114. Groenendijk M, Cantor RM, Blom N, Rotter J, de Bruin TW, Dallinga-Thie GM. Association of plasma lipids and apolipoproteins with the insulin response element in the apoC-III promoter region in familial combined hyperlipi-demia. J Lipid Res 1999;40:1036–1044.

    PubMed  CAS  Google Scholar 

  115. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1996;1302:93–109.

    PubMed  CAS  Google Scholar 

  116. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. J Biol Chem 1995;270:13470–13475.

    PubMed  CAS  Google Scholar 

  117. Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995; 95:705–712.

    PubMed  CAS  Google Scholar 

  118. Gruber PJ, Torres-Rosado A, Wolak ML, Leff T. Apo CIII gene transcription is regulated by a cytokine inducible NF-kappa B element. Nucleic Acids Res 1994;22:2417–2422.

    Article  PubMed  CAS  Google Scholar 

  119. Leff T, Reue K, Melian A, Culver H, Breslow JL. A regulatory element in the ApoCIII promoter that directs hepatic specific transcription binds to proteins in expressing and nonexpressing cell types. J Biol Chem 1989;264:16132–16137.

    PubMed  CAS  Google Scholar 

  120. Kardassis D, Tzameli I, Hadzopoulou-Cladaras M, Talianidis I, Zannis V. Distal apolipoprotein C-III regulatory elements F to J act as a general modular enhancer for proximal promoters that contain hormone response elements. Synergism between hepatic nuclear factor-4 molecules bound to the proximal promoter and distal enhancer sites. Arterioscl Thromb Vase Biol 1997;17:222–232.

    CAS  Google Scholar 

  121. Krauss RM, Herbert PN, Levy RI, Fredrickson DS. Further observations on the activation and inhibition of LPL by apolipoproteins. Circ Res 1973;33:403–411.

    PubMed  CAS  Google Scholar 

  122. Brown WV, Baginsky ML. Inhibition of lipoprotein lipase by an apoprotein of very-low density lipoproteins. Biochem Biophys Res Commun 1972;46:375–382.

    Article  PubMed  CAS  Google Scholar 

  123. Tornoci L, Scheraldi CA, Li X, Ide H, Goldberg IJ, Le NA. Abnormal activation of lipoprotein lipase by non-equilibrating apoC-II: further evidence for the presence of non-equilibrating pools of apolipoproteins C-II and C-III in plasma lipoproteins. J Lipid Res 1993;34:1793–1803.

    PubMed  CAS  Google Scholar 

  124. McConathy WJ, Gesquiere JC, Bass H, Tartar A, Fruchart JC, Wang CS. Inhibition of lipoprotein lipase activity by synthetic peptides of apolipoprotein C-III. J Lipid Res 1992;33:995–1003.

    PubMed  CAS  Google Scholar 

  125. Wang C-S, McConathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase by apolipoproteins: Effect of apoC-III. J Clin Invest 1985;75:384–390.

    PubMed  CAS  Google Scholar 

  126. Aalto-Setala K, Fisher EA, Chen X, et al. Mechanism of hyper-triglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional cata-bolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 1992;90:1889–1900.

    PubMed  CAS  Google Scholar 

  127. de Silva HV, Lauer SJ, Wang J, et al. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 1994;269:2324–2335.

    PubMed  Google Scholar 

  128. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 1994;269:23610–23616.

    PubMed  CAS  Google Scholar 

  129. Norum RA, Forte TM, Alaupovic P, Ginsberg HN. Clinical syndrome and lipid metabolism in hereditary deficiency of apolipoproteins A-I and C-III, variant 1. Adv Exp Med Biol 1986;201:137–149.

    PubMed  CAS  Google Scholar 

  130. Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL. Opposing effects of apolipoprotein E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 1990;265:10771–10779.

    PubMed  CAS  Google Scholar 

  131. Shelbume F, Hanks J, Meyers W, Quarfordt S. Effect of apoproteins on hepatic uptake of triglyceride emulsions in the rat. J Clin Invest 1980;65:652–658.

    Google Scholar 

  132. Windier E, Havel RJ. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res 1985;26:556–565.

    Google Scholar 

  133. de Silva HV, Lauer SJ, Mahley RW, Weisgraber KH, Taylor JM. Apolipoproteins E and C-III have opposing roles in the clearance of lipoprotein remnants in transgenic mice. Biochem Soc Trans 1993;21:483–487.

    PubMed  Google Scholar 

  134. Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC. Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apoC-I, C-II, C-III and E. Arterioscl Thromb Vase Biol 1995;15:963–971.

    CAS  Google Scholar 

  135. Jansen H, Waterworth DM, Nicaud V, Ehnholm C, Talmud PJ. Interaction of the common apolipoprotein C-III (apoC3-482C≫T) and hepatic lipase (LIPC-514C>T) promoter variants affects glucose tolerance in young adults. European Atherosclerosis Research Study II. Am Hum Genet 2001;65:237–243.

    Article  CAS  Google Scholar 

  136. Hunter SJ, Klein RL, Le NA, et al. ApoC-III protein concentrations and gene polymorphisms in Type 1 diabetes: Effects on lipids, lipoproteins, and microvascular disease complications in the DCCT/EDIC cohort. (In press).

    Google Scholar 

  137. Salas J, Jansen S, Lopez-Miranda J, et al. The Sst-I polymorphism of the apoC-III gene determines the insulin response to an oral glucose tolerance test after consumption of a diet rich in saturated fats. Am J Clin Nutr 1998;68:396–401.

    PubMed  CAS  Google Scholar 

  138. Marcais C, Bernard S, Merlin M, et al. Severe hypertriglyceridemia in type II diabetes: involvement of the apoC-III Sst-I polymorphism, LPL mutations and apoE3 deficiency. Diabetologia 2000;43:1346–1352.

    Article  PubMed  CAS  Google Scholar 

  139. Dammerman M, Sandkuijl LA, Halaas JL, Chung W, Breslow JL. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3′ untranslated region polymorphisms. Proc Natl Acad Sci USA 1993;90:4562–4566.

    Article  PubMed  CAS  Google Scholar 

  140. Ribalta J, La Ville AE, Valle JC, Humphries S, Turner PR, Masana L. A variation in the apolipoprotein C-III gene is associated with an increased number of circulating VLDL and IDL particles in familial combined hyperlipidemia. J Lipid Res 1997;38:1061–1069.

    PubMed  CAS  Google Scholar 

  141. Blankenhorn DH, Alaupovic P, Wickham E, et al. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts: lipid and nonlipid factors. Circulation 1990;81:470–476.

    PubMed  CAS  Google Scholar 

  142. Hodis HN, Mack WJ, Azen SP, et al. Triglyceride and cholesterol-rich lipoproteins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 1994;90:42–49.

    PubMed  CAS  Google Scholar 

  143. Sacks FM, Alaupovic P, Moye LE, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent events in the Cholesterol and Recurrent Events (CARE) Trial. Circulation 2000;102:1886–1892.

    PubMed  CAS  Google Scholar 

  144. Festa A, D’Agostino R, Jr., Mykkanen L, et al. LDL particle size in relation to insulin, proinsulin, and insulin sensitivity: The Insulin Resistance Atherosclerosis Study. Diabetes Care 1999;22:1688–1693.

    Article  PubMed  CAS  Google Scholar 

  145. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small dense LDL particles. J Clin Invest 1993;92:141–146.

    PubMed  CAS  Google Scholar 

  146. Grundy SM, Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation 1997;95:1–4.

    PubMed  CAS  Google Scholar 

  147. Fisher WR, Hammond MG, Warmke GL. Measurements of the molecular weight variability of plasma LDL among normals and subjects with hyper-B-lipoproteinemia. Biochem J 1972;11:519–525.

    Article  CAS  Google Scholar 

  148. Sniderman A, Shapiro S, Marpole D, Skinner B, Teng B, Kwiterovich PO. Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low-density (beta) lipoproteins]. Proc Natl Acad Sci USA 1980;77:604–608.

    Article  PubMed  CAS  Google Scholar 

  149. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma LDL in normal humans. J Lipid Res 1982;23:97–104.

    PubMed  CAS  Google Scholar 

  150. Le NA. Small, dense low-density lipoprotein: Risk or myth. Curr Atheroscler Rev 2003;5:22–28.

    Article  Google Scholar 

  151. Austin MA, King MC, Vranizan KM, Newman B, Krauss RM. Inheritance of LDL subclass patterns: Results of complex segregation analysis. Am Hum Genet 1988;43:838–846.

    CAS  Google Scholar 

  152. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. LDL subclass patterns and risk of myocardial infarction. JAMA 1988;260:1917–1921.

    Article  PubMed  CAS  Google Scholar 

  153. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense LDL particles as a prodictor of the risk of ischemic heart disease in me: Prospective results from the Quebec Cardiovascular Study. Circulation 1997;95:69–75.

    PubMed  CAS  Google Scholar 

  154. Campos H, Genest JJ, Blijlevens E, et al. LDL particle size and coronary artery disease. Arterioscl Thromb 1992;12:187–195.

    PubMed  CAS  Google Scholar 

  155. Tornvall P, Karpe F, Carlson LA, Hamsten A. Relationships of LDL subfractions to angiographically defined coronary artery disease in young survivors of myocardial infarction. Atherosclerosis 1991;90:67–80.

    Article  PubMed  CAS  Google Scholar 

  156. Gardner CD, Fortmann SP, Krauss RM. Association of small LDL particles with the incidence of CAD in men and women. JAMA 1996;276:875–881.

    Article  PubMed  CAS  Google Scholar 

  157. Miller BD, Alderman EL, Haskell WL, Fair JM, Krauss RM. Predominance of dense LDL particles predicts angiographic benefit of therapy in the Stanford Coronary Risk Intervention Project. Circulation 1996;94:2146–2153.

    PubMed  CAS  Google Scholar 

  158. Zambon A, Hokanson JE, Brown BG, Brunzell JD. Evidence for a new pathophysiological mechanism for CAD regression: Hepatic lipase-mediated changes in LDL density. Circulation 1999;99:1959–1964.

    PubMed  CAS  Google Scholar 

  159. Sniderman AD, Scantlebury T, Cianflone K. Hypertriglyceridemic hyperapoB: The unappreciated atherogenic dyslipoproteinemia in type 2 Diabetes Mellitus. Ann Int Med 2001;135:447–459.

    PubMed  CAS  Google Scholar 

  160. Davidson NO, Shelness GS. Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Ann Rev Nutr 2000;20:169–193.

    Article  CAS  Google Scholar 

  161. Dreon DM, Fernstrom HA, Miller B, Krauss RM. LDL subclass patterns and lipoprotein response to a reduced-fat diet in men. FASEB J 1994;8:121–126.

    PubMed  CAS  Google Scholar 

  162. Dreon DM, Fernstrom HA, Campos H, Blanche P, Williams PT, Krauss RM. Change in dietary saturated fat intake is correlated with change in mass of large LDL particles in men. Am J Clin Nutr 1998;67:828–836.

    PubMed  CAS  Google Scholar 

  163. Dreon DM, Fernstrom HA, Williams PT, Krauss RM. A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large LDL. Am J Clin Nutr 1999;69:411–418.

    PubMed  CAS  Google Scholar 

  164. Lundahl B, Leren TP, Ose L, Hamsten A, Karpe F. A functional polymorphism in the promoter region of the microsomal triglyceride transfer protein (MTP-493G/T) influences lipoprotein phenotype in familial hypercholesterolemia. Arterioscl Thromb Vase Biol 2002;20:1784–1788.

    Google Scholar 

  165. Juo SH, Han Z, Smith JD, Colangelo L, Liu K. Common polymorphism in promoter of MTP gene influences cholesterol, apoB and TG levels in young African American men: Results from CARDIA study. Arterioscl Thromb Vase Biol 2000;20:1316–1322.

    CAS  Google Scholar 

  166. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P. Phospholipase A2 in vascular disease. Circ Res 2001;89:298–304.

    Article  PubMed  CAS  Google Scholar 

  167. Hurt-Camejo E, Camejo G, Sartipy P. Phospholipase A2 and small, dense LDL. Current Opinion In Lipidology 2000;11:465–471.

    Article  PubMed  CAS  Google Scholar 

  168. Carr MC, Ayyobi AF, Murdoch SJ, Deeb SS, Brunzell JD. Contribution of hepatic lipase, lipoprotein liapse, and cholesteryl ester transfer protein to LDL and HDL heterogeneity in healthy women. Arterioscl Thromb Vase Biol 2002;22:667–673.

    Article  CAS  Google Scholar 

  169. Talmud P, Edwards KL, Turner C, et al. Linkage of the CETP gene to LDL particle size: Use of a novel tetranucleotide repeat within the CETP promoter. Circulation 1999; 101:2461–2466.

    Google Scholar 

  170. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 2002;340:115–126.

    Article  Google Scholar 

  171. Libby P, Ridker PM, Maseri A. Inflammation and Atherosclerosis. Circulation 2002;105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  172. Blake GJ, Ridker PM. Inflammatory bio-markers and cardiovascular risk prediction. J Internal Med 2002;252:283–294.

    Article  PubMed  CAS  Google Scholar 

  173. Sakai A, Kume N, Nishi E, Tanoue K, Mivasaka M, Kita T. P-selectin and vascular cell adhesion molecule-1 are focally expressed in aortas of hypercholesterolemic rabbits before intimal accumulation of macrophages and T lymphocytes. Arterioscl Thromb Vase Biol 1997;17:310–316.

    CAS  Google Scholar 

  174. Rifai N, Ridker PM. Inflammatory markers and coronary heart disease. Curr Opinion Lipidol 2002;13:383–389.

    Article  CAS  Google Scholar 

  175. Tracy R. Inflammation markers and coronary heart disease. Curr Opinion Lipidol 1999;10:435–441.

    Article  CAS  Google Scholar 

  176. Folsom AR, Pankow JS, Tracy R, Arnett DK, Peacock JM, Hong Y, et al. Association of C-reactive protein with markers of prevalent atherosclerotic disease. Am J Cardiol 2001;88:112–117.

    Article  PubMed  CAS  Google Scholar 

  177. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001;103:1813–1818.

    PubMed  CAS  Google Scholar 

  178. Ridker PM, Hennekens CH, Buring JE. C reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836–843.

    Article  PubMed  CAS  Google Scholar 

  179. Ridker PM, Cushman M, Stampfer MJ. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997;336:973–979.

    Article  PubMed  CAS  Google Scholar 

  180. Albert MA, Danielson E, Rifai N, Ridker PM. Effect of statin therapy on C-reactive protein levels: the Pravastatin Inflammation/CRP Evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001;286:64–70.

    Article  PubMed  CAS  Google Scholar 

  181. Plenge JK, Hernandez TL, Weil KM, et al. Simvastatin lowers C-reactive protein within 14 days: An effect independent of LDL-cholesterol reduction. Circulation 2002;106:1447–1452.

    Article  PubMed  CAS  Google Scholar 

  182. Kinlay S, Timms T, Clark M, Karam C, Bilodeau T. Comparison of effect of intensive lipid lowering with atorvas-tatin to less intensive lowering with lovastatin on C-reactive protein in patients with stable angina pectoris and inducible myocardial ischemia. Am J Cardiol 2002;89:1205–1207.

    Article  PubMed  CAS  Google Scholar 

  183. McCully KS, Wilson RB. Homocysteine theory of atherosclerosis. Atherosclerosis 2003;22:215–227.

    Article  Google Scholar 

  184. Kraus JP. Biochemistry and molecular genetics of cystathionine beta-synthase deficiency. Eur J Pediatr 1998;157:S50–S53.

    Article  PubMed  CAS  Google Scholar 

  185. Ueland PM. Homocysteine species as components of plasma redox thiol status. Clin Chem 1995;41:340–342.

    PubMed  CAS  Google Scholar 

  186. Frantzen F, Faaren FL, Alfheim I, Nordhei AK. Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem 1998;44:311–316.

    PubMed  CAS  Google Scholar 

  187. Bostom AG, Jacques PF, Nadeau MR, Williams RR, Ellison RC, Selhub J. Post-methionine load hyperhomocysteinemia in persons with normal fasting total homocysteine: initial results from the NHLBI Family Heart Study. Atherosclerosis 1995;116:147–151.

    Article  PubMed  CAS  Google Scholar 

  188. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ. The effect of blood sampling and food consumption on plasma total homocysteine levels. Clin Chim Acta 1992;207:119–128.

    Article  PubMed  CAS  Google Scholar 

  189. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995;274:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  190. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott JM. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Inter Med 1998;158:862–867.

    Article  CAS  Google Scholar 

  191. Eikelboom JW, Lonn E, Genest J, Hankey G, Yusuf S. Homocysteine and cardiovascular disease: A critical review of the epidemiologic evidence. Ann Int Med 1999;131:363–375.

    PubMed  CAS  Google Scholar 

  192. Anderson JL, Home BD, Carlquist JF, et al. Effect of implementation of folic acid fortification of food on homocysteine concentrations in subjects with coronary artery disease. Am J Cardiol 2002;90:536–539.

    Article  PubMed  CAS  Google Scholar 

  193. Navab M, Hama S, Hough GP, Hedrick CC, Sorenson R. High density lipoprotein associated enzymes: their role in vascular biology. Curr Opinion Lipidol 1998;9:449–456.

    Article  CAS  Google Scholar 

  194. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscl Thromb Vase Biol 2001;21:473–480.

    CAS  Google Scholar 

  195. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in LDL. FEBS Letters 1991;286:152–154.

    Article  PubMed  CAS  Google Scholar 

  196. Mackness MI, Arrol S, Abbott, Durrington PN. Protection of LDL against oxidative modification by HDL-associated paraoxonase. Atherosclerosis 1993;104:129–135.

    Article  PubMed  CAS  Google Scholar 

  197. Watson AD, Berliner JA, Hama SY, et al. Protective effect of HDL-associated paraoxonase: inhibition of the biological activity of minimally oxidised LDL. J Clin Invest 1995;96:2882–2891.

    PubMed  CAS  Google Scholar 

  198. Tward A, Xia YR, Wang XP, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 2002;106:484–490.

    Article  PubMed  CAS  Google Scholar 

  199. Shih DM, Gu L, Xia YR. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998;394:284–287.

    Article  PubMed  CAS  Google Scholar 

  200. Shih DM, Xia YR, Wang XP. Combined serum paraoxonase knockout/apoE knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 2000;275:17527–17535.

    Article  PubMed  CAS  Google Scholar 

  201. Adkins S, Gan KN, Mody M, LaDu BN. Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am J Hum Genet 1993;52:598–608.

    PubMed  CAS  Google Scholar 

  202. Blatter-Garin MC, James RW, Dussoix P, Blanche H, Ruiz J. Paraoxonase polymorphism Met-Leu54 is associated with modified concentrations of the enzyme. J Clin Invest 1997;99:62–66.

    Google Scholar 

  203. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN. Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by HDL against LDL oxidative modification. FEBS Letters 1998;423:57–60.

    Article  PubMed  CAS  Google Scholar 

  204. Aviram M, Hardak E, Vava J, et al. Human serum PON1 Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000;101:2510–2517.

    PubMed  CAS  Google Scholar 

  205. Shih DM, Gu L, Hama S, et al. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model. J Clin Invest 2003;97:1630–1639.

    Article  Google Scholar 

  206. Herdick CC, Hassan K, Hough GP, et al. Short-term feeding of atherogenic diet to mice results in reduction of HDL and paraoxonase that may be mediated by an immune mechanism. Arterioscl Thromb Vase Biol 2000;20:1946–1952.

    Google Scholar 

  207. Sutherland WHF, Walker RJ, de Jong SA, van Rij AM, Phillips V, Walker HL. Reduced postprandial serum paraoxonase activity after a meal rich in used cooking fat. Arterioscl Thromb Vase Biol 1999;19:1340–1347.

    CAS  Google Scholar 

  208. Paragh G, Balogh Z, Seres I, Harangi M, Boda J, Kovacs P. Effect of gemfibrozil on HDL-associated serum paraoxonase activity and lipoprotien profile in patients with hyperlipidemia. Clin Drug Invest 2000;19:277–282.

    Article  CAS  Google Scholar 

  209. Tomas M, Senti M, Garcia-Faria F, Vila J, Torrents A, Covas M, Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients. Arterioscl Thromb Vase Biol 2000;20:2113–2119.

    CAS  Google Scholar 

  210. Aviram M, Rosenblat M, Bisgaier CL, Newton RS. Atorvastatin and gemfibrozil metabolites, but not the parent drugs are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998;138:271–280.

    Article  PubMed  CAS  Google Scholar 

  211. Durrington PN, Mackness MI, Bhatnagar D, et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type lib hyperlipoproteinemia. Atherosclerosis 1998;138:217–225.

    Article  PubMed  CAS  Google Scholar 

  212. Cushing SD, Berliner JA, Valente AJ. Minimally modified LDL induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990;87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  213. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified lipoproteins. Nature 1990;344:160–162.

    Article  PubMed  CAS  Google Scholar 

  214. Avogaro P, Bittolo Bon G, Cazzolato G. Presence of a modified LDL in humans. Arteriosclerosis 1988;8:79–87.

    PubMed  CAS  Google Scholar 

  215. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of WHHL rabbits. Science 1988;241:215–218.

    Article  PubMed  CAS  Google Scholar 

  216. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. LDL undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989;86:1372–1376.

    Article  PubMed  CAS  Google Scholar 

  217. Holvoet P, Perez G, Zhao Z, et al. MDA-modified LDL in patients with atheroscleotic disease. J Clin Invest 1995;95:2611–2619.

    PubMed  CAS  Google Scholar 

  218. Itabe H, Yamamoto H, Imanaka T, et al. Sensitive detection of oxidatively modified LDL using a monoclonal antibody. J Lipid Res 1996;37:45–53.

    PubMed  CAS  Google Scholar 

  219. Palinski W, Horkko S, Miller E, et al. Cloning of MAb to epi-topes of oxidized lipoproteins from apoE-deficient mice. Demonstration of epitopes of oxidized LDL in human plasma. J Clin Invest 1996;98:800–814.

    PubMed  CAS  Google Scholar 

  220. Parthasarathy S, Wieland E, Steinberg D. A role of endothelial cell lipoxygenase in the oxidative modification of LDL. Proc Natl Acad Sci USA 1989;86:1046–1050.

    Article  PubMed  CAS  Google Scholar 

  221. Jessup W, Rankin SM, DeWhalley CV, et al. Alpha-tocopherol consumption during LDL oxidation. Biochem J 1990;265:390–405.

    Google Scholar 

  222. Esterbauer H, Gebicki J, Puhl H, Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biol Med 1992;13:341–390.

    Article  CAS  Google Scholar 

  223. Hoff HF, Gaubatz JW. Isolation, purification and characterization of a lipoprotein containing apoB from the human aorta. Atherosclerosis 1982;42:273–297.

    Article  PubMed  CAS  Google Scholar 

  224. Yla-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscl Thromb 1994;14:32–40.

    PubMed  CAS  Google Scholar 

  225. Tertov VV, Orkhov AN, Kacharava AG. LDL-containing circulating immune complexes and coronary atherosclerosis. Exp MolPathol 1990;52:300–308.

    Article  CAS  Google Scholar 

  226. Chumburidze T, Li X, Sung K, Le NA, Pitt B, Brown WV. Levels of autoantibodies against MDA-LDL are not increased in patients with documented CAD. J Invest Med 1997;45:216A.

    Google Scholar 

  227. van de Vijver LPL, Steyger R, van Poppel G, et al. Autoantibodies against MDA-LDL in subjects with severe and minor atherosclerosis and healthy population controls. Atherosclerosis 1996;122:245–253.

    Article  PubMed  Google Scholar 

  228. Salonen JT, Yla-Herttuala S, Yamamoto R. Autoantibody against LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.

    Article  PubMed  CAS  Google Scholar 

  229. Maggi E, Finardi G, Poli G. Specificity of autoantibodies against oxLDL predicting myocardial infarction. Cor Artery Dis 2001;4:1119–1122.

    Google Scholar 

  230. Palinski W, Miller E, Witztum JL. Immunization of LDL receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherosclerosis. Proc Natl Acad Sci USA 1995;92:821–825.

    Article  PubMed  CAS  Google Scholar 

  231. Ameli S, Hultgardh-Nilsson A, Rengstrom J, et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vase Biol 1996;16:1074–1079.

    CAS  Google Scholar 

  232. Babior BM. Oxygen-dependent microbial killing by phagocytes. N Engl J Med 1978;298:659–668.

    Article  PubMed  CAS  Google Scholar 

  233. Uhlinger DJ, Burnham DN, Mullins RE, Lambeth D, Merrill A. Functional differences in human neutrophils isolated pre-and post-prandially. FEBS Letters 1991;286:28–32.

    Article  PubMed  CAS  Google Scholar 

  234. Ji LL. Oxidative stress during exercise: implication of antioxi-dant nutrients. Free Rad Biol Med 1995;18:1079–1086.

    Article  PubMed  CAS  Google Scholar 

  235. Le NA, Li X, Kyung S, Brown WV. Evidence for the in vivo generation of oxidatively modified epitopes in patients with documented CAD. Metabolism 2000;49:1271–1277.

    Article  PubMed  CAS  Google Scholar 

  236. Gradek Q, Harris M, Yahia N, Davis WW, Le N-A, Brown WV. Polyunsaturated fatty acids acutely suppress antibodies to malondialdehyde-modified lipoproteins in patients with vascular disease Am J Cardiol 2004;93:881–885.

    Article  PubMed  CAS  Google Scholar 

  237. Wilson PWF, d’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–1847.

    PubMed  CAS  Google Scholar 

  238. Wilson PWF, Kannel WB, Silbershatz H, d’Agostino RB. Clustering of metabolic factors and coronary heart disease. Arch Inter Med 1999;159:1104–1109.

    Article  CAS  Google Scholar 

  239. Lakka H-M, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002;288:2709–2716.

    Article  PubMed  Google Scholar 

  240. Steinmetz A, Fenselau S, Schrezenmeir J. Treatment of dys-lipoproteinemia in the metabolic syndrome. Exp Clin Endocrinol Diabetes 2001;109:S548–S559.

    Article  PubMed  CAS  Google Scholar 

  241. Lichstenstein AH, Ausman LM, Jalpert SM, Schaefer EJ. Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 1999;340:1933–1940.

    Article  Google Scholar 

  242. Lichstenstein AH. Trans fatty acid and cardiovascular disease risk. Curr Opinion Lipidol 2000;11:37–42.

    Article  Google Scholar 

  243. Stone NJ. Fish consumption, fish oil, lipids, and coronary heart disease. Circulation 1996;94:2337–2340.

    PubMed  CAS  Google Scholar 

  244. Angere P, von Schacky C. n-3 polyunsaturated fatty acids and the cardiovascular system. Curr Opinion Lipidol 2000;11:57–63.

    Article  Google Scholar 

  245. Rimm EB, Klatsky A, Grobbee D, Stampfer MJ. Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine or spirits. Br Med J 1996;23:731.

    Google Scholar 

  246. Hjermann I, Holme I, Velve Byre K, Leren P. Effect of diet and smoking intervention on the incidence of coronary heart disease: Report from the Oslo Study group of a randomised trial in healthy men. Lancet 1981;2:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  247. de leogeril M, Salen P, Paillard F, Laporte F, Boucher F, de Leiris J. Mediterranean diet and the French paradox: two distinct biogeographoc concepts for one consolidated scientific theory on the role of nutrition in coronary heart disease. Cardiovasc Res 2002;54:503–515.

    Article  Google Scholar 

  248. Hallikainen MA, Uusitupa MI. The effect of two low-fat stanol ester-containing margerines on serum cholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects. Am J Clin Nutr 1999;69:403–410.

    PubMed  CAS  Google Scholar 

  249. Nguyen TT, Dale LC, von Bergmann K, Croghan IT. Cholesterol-lowering effect of stanol ester in a US population of mildly hypercholesterolemic men and women: A randomized controlled trial. Mayo Clin Proc 1999;74:1198–1206.

    Article  PubMed  CAS  Google Scholar 

  250. Schwartz GG, Olson AG, Eskowitz MD, et al. Effects of ator-vastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study. A randomized controlled trial. JAMA 2001;285:1711–1718.

    Article  PubMed  CAS  Google Scholar 

  251. Stamler J. The Coronary Drug Project: Findings with regard to estrogen, dextrothyroxine;clofibrate and niacin. Adv Exp Med Biol 1977;82:52–75.

    PubMed  CAS  Google Scholar 

  252. Canner PL, Berger KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986;8:1245–1255.

    PubMed  CAS  Google Scholar 

  253. Oliver MF, Heady JA, Morris JN, Cooper J. A cooperative trial in the primary prevention of ischaemic heart disease using clofibrtate: Report from the Committee of Principal Investigators. Br Heart J 1978;40:1069–1118.

    Article  Google Scholar 

  254. Manninen V, Elo O, Haapa K, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988;260:641–651.

    Article  PubMed  CAS  Google Scholar 

  255. Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988;223:405–418.

    Article  PubMed  CAS  Google Scholar 

  256. Kjekshus J, Pederson TR, for the 4S Group. Reducing the risk of coronary events: Evidence from the Scandinavian Simvastatin Survival Study (4S). Am J Cardiol 1995;76:64C–68C.

    Article  PubMed  CAS  Google Scholar 

  257. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravas-tatin on coronary events after myocardial infarction in patients with average cholesterol levels: Cholesterol and Recurrent Events. N Engl J Med 1996;335:1001–1009.

    Article  PubMed  CAS  Google Scholar 

  258. The Long-term Intervention with Pravastatin in Ischaemic Disease. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a borad range of initial cholesterol levels. N Engl J Med 1998;339:1349–1357.

    Google Scholar 

  259. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7–22.

    Article  Google Scholar 

  260. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of the AFCAPS/TexCAPS. JAMA 1998;279:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  261. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet 2002;360:1623–1630.

    Article  PubMed  CAS  Google Scholar 

  262. Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999;341:498–551.

    Article  PubMed  CAS  Google Scholar 

  263. Andrews TC, Ballantyne CM, Hsia JA, Kramer JH. Achieving and maintaining NCEP LDL-cholesterol goal with five statins. Am J Med 2001;111:185–191.

    Article  PubMed  CAS  Google Scholar 

  264. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMGCoA reductase. Science 2001;292:1160–1164.

    Article  PubMed  CAS  Google Scholar 

  265. Wang SL, Du EZ, Martin TD, Davis RA. Coordinate regulation of lipogenesis, the assembly and secretion of apoB-containing lipoproteins by SRBP-1. J Biol Chem 1997;272:19351–19358.

    Article  PubMed  CAS  Google Scholar 

  266. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998;97:1129–1135.

    PubMed  CAS  Google Scholar 

  267. Beaird SL. HMG-CoA reductase inhibitors: Assessing differences in drug interactions and safety profiles. J Am Pharm Assoc 2000;40:637–644.

    CAS  Google Scholar 

  268. Herman RJ. Drug interactions and the statins. Can Med Assoc J 1999;161:1281–1286.

    CAS  Google Scholar 

  269. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. PharmacolTher 1999;84:413–428.

    CAS  Google Scholar 

  270. Bottorff M, Hansten P. Long-term safety of hepatic HMG-CoA reductase inhibitors. Arch Inter Med 2000;160:2273–2280.

    Article  CAS  Google Scholar 

  271. Pasternak RC, Smith SC, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. Circulation 2002;106:1024–1028.

    Article  PubMed  Google Scholar 

  272. Grunden JW, Fisher KA. Lovastatin-induced rhabdomyolysis potentially associated with clarithromycin and azithromycin. Ann Pharmacother 1997;31:859–863.

    PubMed  CAS  Google Scholar 

  273. Maltz HC, Balog DL, Cheigh JS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. Ann Pharmacother 1999;33:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  274. Fears R, Brown R, Ferres H, Grenier F, Tyrell AW. Effect of novel bile salts on cholesterol metabolism in rats and guinea pigs. Biochem Pharmacol 1990;40:2029–2037.

    Article  PubMed  CAS  Google Scholar 

  275. Higaki J, Hara S, Takasu N, et al. Inhibition of ileal Na+/bile acid cotransporter by S-8921 reduces serum cholesterol and prevents atherosclerosis in rabbits. Arterioscl Thromb Vase Biol 1998;18:1304–1311.

    CAS  Google Scholar 

  276. Davidson MH, Dillon MA, Gordon B, et al. Colesevelam hydrochloride (Cholestagel): a new potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch Inter Med 1999;159:1893–1900.

    Article  CAS  Google Scholar 

  277. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cahin-Hemphill L. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 1987;257:3233–3240.

    Article  PubMed  CAS  Google Scholar 

  278. Brown G, Albers JJ, Fisher LD, et al. Regression of CAD as a result of intensive lipid-lowering therapy in men with high levels of apoB. N Engl J Med 1990;323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  279. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coroanry atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990;264:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  280. Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA 1990;264:3013–3017.

    Article  PubMed  CAS  Google Scholar 

  281. Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on cholesterol in man. Arch Biochem 1955;54:558–559.

    Article  PubMed  CAS  Google Scholar 

  282. Crouse JR. New developments in the use of niacin for treatment of hyperlipidemia: New considerations in the use of an old drug. Cor Artery Dis 1996;7:321–326.

    Article  Google Scholar 

  283. Guyton JR. Effect of niacin on atherosclerotic cardiovascular disease. Am J Cardiol 1998;82:18U–23U.

    Article  PubMed  CAS  Google Scholar 

  284. Grundy SM, Mok HYI, Zech L, Berman M. Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 1981;22:24–36.

    PubMed  CAS  Google Scholar 

  285. Carlson LA, Hamsten A, Asplund A. Pronounced lowering of serum level of Lp(a) in hyperlipidemic subjects treated with nicotinic acid. J Internal Med 1989;226:271–276.

    PubMed  CAS  Google Scholar 

  286. Morgan JM, Capuzzi DM, Guyton JR, et al. Treatment effect of Niaspan, a controlled-release niacin in patients with hypercholesterolemia: a placebo-controlled trial. J cardiovasc Pharmacol Therl996;1:195–202.

    Google Scholar 

  287. Morgan JM, Capuzzi DM, Guyton JR. A new extended-release niacin (Niaspan): Efficacy, tolerability, and safety in hypercholesterolemic patients. Am J Cardiol 1998;82:29U–34U.

    Article  PubMed  CAS  Google Scholar 

  288. Morrow JD, Parsons WG, Roberts LJ. Release of markedly increased quantities of prostaglandins D2in vivo in humans following the administration of nicotinic acid. Prostaglandins 1989;38:263–274.

    Article  PubMed  CAS  Google Scholar 

  289. Knopp RH. Clinical profiles of plain versus sustained-release niacin and the physiologic rationale for nighttime dosing. Am J Cardiol 1998;82:35U–38U.

    Article  Google Scholar 

  290. Jay RH, Dickson AC, Betterridge DJ. Effects of aspirin upon the flushing reaction induced by niceritrol. Br J Clin Pharm 1990;29:120–122.

    CAS  Google Scholar 

  291. Goldberg A, Alagona P, Capuzzi DM, et al. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia. Am J Cardiol 2000;85:1100–1105.

    Article  PubMed  CAS  Google Scholar 

  292. Brown WV. Niacin for lipid disorders. Postgrad Medicine 1995;98:185–196.

    CAS  Google Scholar 

  293. Grundy SM, Vega GL, McGovern ME, et al. Efficacy, safety and tolerability of once-daily niacin for the treatment of dys-lipidemia associated with type 2 diabetes: Results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch Inter Med 2002;162:1568–1576.

    Article  CAS  Google Scholar 

  294. Grundy SM, Gibbons LW, Gonzalez V, Gordon N. The prevalence of side-effects with regular and sustained-release nicotinic acid. Am J Med 1995;99:378–385.

    Article  PubMed  Google Scholar 

  295. Grundy SM, Ahrens EH, Salen G, Schreibman PH, Nestel PJ. Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res 1972;13:531–551.

    PubMed  CAS  Google Scholar 

  296. Brown WV. Fenofibrate: a third-generation fibric acid derivative. Am J Med 1987;83:1–89.

    Article  PubMed  CAS  Google Scholar 

  297. Grundy SM, Vega GL. Fibric acids: effects on lipids and lipoprotein metabolism. Am J Med 1987;83:9–20.

    Article  PubMed  CAS  Google Scholar 

  298. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98:2088–2093.

    PubMed  CAS  Google Scholar 

  299. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996;37:907–925.

    PubMed  CAS  Google Scholar 

  300. Gervois P, Chopin-Delannoy S, Fadel A, et al. Fibrates increase human REV-ERBalpha expresion in liver via a novel peroxisome proliferator-activated receptor response element. Mol Endocrinol 1999;13:400–409.

    Article  PubMed  CAS  Google Scholar 

  301. Staels B, Schoonjans K, Fruchart JC, Auwerx J. The effects of fibrates and thiazolidinediones on plasma triglyceride metabolism are mediated by distinct peroxisome proliferator activated receptors (PPARs). Biochimie 1997;79:95–99.

    Article  PubMed  CAS  Google Scholar 

  302. Haubenwallner S, Essenburg AD, Barnett BC, et al. Hypolipidemic activity of select fibrates correlates to changes in hepatic apolipoprotein C-III expression: a potential physiologic basis for their mode of action. J Lipid Res 1995;36:2541–2551.

    PubMed  CAS  Google Scholar 

  303. Goto D, Okimoto T, Ono M, et al. Upregulation of LDL receptor by gemfibrozil, a hypolipidemic agent, in human hepatoma cells through stabilization of mRNA transcripts. Arterioscl Thromb Vase Biol 1997;17:2707–2712.

    CAS  Google Scholar 

  304. Hunt MC, Yang Y-Z, Eggertsen G, et al. The PPAR alpha regulates bile acid synthesis. J Biol Chem 2000;275:28947–28953.

    Article  PubMed  CAS  Google Scholar 

  305. Post SM, Duez H, Gervois P, Staels B, Kuipers F, Princen HMG. Fibrates suppress bile acid synthesis via PPAR alpha mediated downregulation of cholesterol 7alpha-hydrolase and sterol 27-hydrolase expression. Arterioscl Thromb Vase Biol 2001;21:1840–1845.

    Article  CAS  Google Scholar 

  306. Plat J, Kerckhoffs DAJM, Mensink RP. Therapeutic potential of plant sterols and stanols. Curr Opinion Lipidol 2000; 11:571–576.

    Article  CAS  Google Scholar 

  307. Lees AM, Mok HYI, Lees RS, McCluskey MA, Grundy SM. Plant sterols as cholesterol-lowering agents: clinical trials in patients with hypercholesterolemia and studies of sterol balance. Atherosclerosis 1977;28:325–338.

    Article  PubMed  CAS  Google Scholar 

  308. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E. Serum cholesterol lowering by sitostanol ester margerine in a mildly hypercholesterolemic random population. N Engl J Med 1995;333:1308–1312.

    Article  PubMed  CAS  Google Scholar 

  309. Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xan-thomatosis. J Clin Invest 1974;53:1033–1043.

    PubMed  CAS  Google Scholar 

  310. Salen G, Shefer S, Nguyen L. Sitosterolemia. J Lipid Res 1992;33:945–955.

    PubMed  CAS  Google Scholar 

  311. van Heek M, France CF, Compton DS, et al. In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J Pharmacol ExpTher 1997;283:157–163.

    Google Scholar 

  312. van Heek M, Farley C, Compton D, Hoos L, Davis HR. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the absence and presence of exocirne pancreatic function. Br J Pharmacol 2001;134:409–417.

    Article  PubMed  Google Scholar 

  313. Dujovne CA, Ettinger MP, McNeer JF, et al. Efficacy and safety of a potent new cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol 2002;90:1092–1097.

    Article  PubMed  CAS  Google Scholar 

  314. van Heek M, Farley C, Compton D, et al. The potent cholesterol absorption inhibitor, ezetimibe, is glucurodinated in the intestine, localizes to the intestine, and circulates enterohepatically. Atherosclerosis 2000; 151:155 (Abstr).

    Article  Google Scholar 

  315. van Heek M, Farley C, Compton DS, et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor SCH58235, and its glucoronide, SCH60663. Br J Pharmacol 2000;129:1748–1754.

    Article  PubMed  Google Scholar 

  316. Gagne C, Bays HE, Weiss SR, et al. Efficacy and safety of ezetimibe added to ongoing statin therapy of patients with primary hypercholesterolemia. Am J Cardiol 2002;90:1084–1091.

    Article  PubMed  CAS  Google Scholar 

  317. Davidson MH, McGarry T, Bettis R, et al. Ezetimibe coadministered with simvastatin in patients with primary hypercholesterolemia. J Am Call Cardiol 2002;40:2125–2134.

    Article  CAS  Google Scholar 

  318. Cagne C, Gaudet D, Bruckert E, for the Ezetimibe Study Group. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 2002;105:2469–2475.

    Article  CAS  Google Scholar 

  319. Kosoglou T, Guillame M, Sun S, et al. Pharmacodynamic interactions betweeen fenofibrate and the cholesterol absorption inhibitor ezetimibe. Atherosclerosis 2001;2:38 (Abstract).

    Google Scholar 

  320. Reyderman, Kosoglou T, Statkevich P, et al. Assessment of a multiple dose drug interaction between ezetimibe and gemfibrozil. Drugs Affecting Lipid Metabolism XIV Symposium, Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001.

    Google Scholar 

  321. Yokohama S, Hayashi R, Satani M, Yamamoto A. Selective removal of LDL by plasmapheresis in familial hypercholesterolemia. Arteriosclerosis 1985;5:613–622.

    Google Scholar 

  322. Gordon BR, Stein E, Jones P, Illingworth DR. Indications for LDL apheresis. Am J Cardiol 1994;74:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  323. Gordon BR, Kelsey SF, Dau PC, Gotto AM, Liposorber Study Group. Long-term effects of LDL apheresis using an automated dextran sulfate cellulose adsorption system. Am J Cardiol 1998;81:407–411.

    Article  PubMed  CAS  Google Scholar 

  324. Kroon AA, Aengevaeren WRM, van der Werf T, et al. LDL Atherosclerosis Regression Study: Effect of aggressive versus conventional lipid lowering treatment on coronary atherosclerosis. Circulation 1996;93:1826–1835.

    PubMed  CAS  Google Scholar 

  325. Nishimura S, Sekiguchi M, Kano T, et al. Effects of intensive lipid-lowering by LDL apheresis on regression of coronary atherosclerosis in patients with familial hypercholesterolemia: Japan LDL-apheresis Coronary Atherosclerosis Prospective Study. Atherosclerosis 1998;144:409–417.

    Article  Google Scholar 

  326. Tatami R, Inoue N, Itoh H, et al. Regression of coronary atherosclerosis by combined LDL-apheresis and lipid-lowering drug therapy in patients with familial hypercholesterolemia: a multi-center study. Atherosclerosis 1992;95:1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Le, NA., Brown, W.V. (2005). Risk Factors. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics