Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 883 Accesses

Abstract

Restenosis, usually seen after percutaneous transluminal coronary angioplasty (PTCA), stent placement (in-stent restenosis), or other percutaneous coronary interventions, is a perturbation of the wound healing process that narrows the vessel lumen by more than 50% (1). The benefits of PTCA in patients with coronary artery disease are well established (2), and more than 800,000 procedures are performed yearly in the United States (3). Since the introduction of PTCA, significant advances have been made in interventional cardiology, especially with the use of stenting procedures; however, restenosis is still a major clinical problem that causes significant morbidity and mortality. Up to 20% of all patients undergoing percutaneous interventions require repeated interventional procedures for restenosis (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach R, Jung F, Kohsiek I, et al. Factors affecting the restenosis rate after percutaneous transluminal coronary angioplasty. ThrombRes 1994;74(Suppl 1):S55–S67.

    Google Scholar 

  2. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978;1:263.

    Article  PubMed  CAS  Google Scholar 

  3. Topol EJ. Coronary-artery stents—gauging, gorging, and gouging. N Engl J Med 1998;339:1702–1704.

    Article  PubMed  CAS  Google Scholar 

  4. Ross R. Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. Am J Pathol 1993;143:987–1002.

    PubMed  CAS  Google Scholar 

  5. Garratt KN, Edwards WD, Kaufmann UP, Vlietstra RE, Holmes DR Jr. Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J Am Coll Cardiol 1991; 17:442–448.

    PubMed  CAS  Google Scholar 

  6. Van Belle E, Bauters C, Hubert E, et al. Restenosis rates in diabetic patients: a comparison of coronary stenting and balloon angioplasty in native coronary vessels. Circulation 1997;96:1454–1460.

    PubMed  Google Scholar 

  7. Goel PK, Shahi M, Agarwal AK, Srivastava S, Seth PK. Platelet aggregability and occurrence of restenosis following coronary angioplasty. Int J Cardiol 1997;60:227–231.

    Article  PubMed  CAS  Google Scholar 

  8. Morita H, Kurihara H, Kuwaki T, et al. Homocysteine as a risk factor for restenosis after coronary angioplasty. Thromb Haemost 2000;84:27–31.

    PubMed  CAS  Google Scholar 

  9. Morita H, Kurihara H, Yoshida S, et al. Diet-induced hyperhomocysteinemia exacerbates neointima formation in rat carotid arteries after balloon injury. Circulation 2001;103:133–139.

    PubMed  CAS  Google Scholar 

  10. Blum A, Giladi M, Weinberg M, et al. High anti-cytomegalovirus (CMV) IgG antibody titer is associated with coronary artery disease and may predict post-coronary balloon angioplasty restenosis. Am J Cardiol 1998;81:866–868.

    Article  PubMed  CAS  Google Scholar 

  11. Manegold C, Alwazzeh M, Jablonowski H, et al. Prior cytomegalovirus infection and the risk of restenosis after percutaneous transluminal coronary balloon angioplasty. Circulation 1999;99:1290–1294.

    PubMed  CAS  Google Scholar 

  12. Speir E, Yu ZX, Takeda K, Ferrans VJ, Cannon RO 3rd. Antioxidant effect of estrogen on cytomegalovirus-induced gene expression in coronary artery smooth muscle cells. Circulation 2000;102:2990–2996.

    PubMed  CAS  Google Scholar 

  13. Zhou YF, Leon MB, Waclawiw MA, et al. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 1996;335:624–630.

    Article  PubMed  CAS  Google Scholar 

  14. Kastrati A, Elezi S, Dirschinger J, Hadamitzky M, Neumann FJ, Schomig A. Influence of lesion length on restenosis after coronary stent placement. Am J Cardiol 1999;83:1617–1622.

    Article  PubMed  CAS  Google Scholar 

  15. Bresee SJ, Jacobs AK, Garber GR, et al. Prior restenosis predicts restenosis after coronary angioplasty of a new significant narrowing. Am J Cardiol 1991;68:1158–1162.

    Article  PubMed  CAS  Google Scholar 

  16. Reis GJ, Kuntz RE, Silverman DI, Pasternak RC. Effects of serum lipid levels on restenosis after coronary angioplasty. Am J Cardiol 1991;68:1431–1435.

    Article  PubMed  CAS  Google Scholar 

  17. Gurlek A, Dagalp Z, Oral D, et al. Restenosis after transluminal coronary angioplasty: a risk factor analysis. J Cardiovasc Risk 1995;2:51–55.

    Article  PubMed  CAS  Google Scholar 

  18. Amant C, Bauters C, Bodart JC, et al. D allele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997;96:56–60.

    PubMed  CAS  Google Scholar 

  19. Beohar N, Damaraju S, Prather A, et al. Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease. J Investig Med 1995;43:275–280.

    PubMed  CAS  Google Scholar 

  20. Ohishi M, Fujii K, Minamino T, et al. A potent genetic risk factor for restenosis. Nat Genet 1993;5:324–325.

    Article  PubMed  CAS  Google Scholar 

  21. Ribichini F, Steffenino G, Dellavalle A, et al. Plasma activity and insertion/deletion polymorphism of angiotensin I-converting enzyme: a major risk factor and a marker of risk for coronary stent restenosis. Circulation 1998;97:147–154.

    PubMed  CAS  Google Scholar 

  22. Zee RY, Fernandez-Ortiz A, Macaya C, Pintor E, Lindpaintner K, Fernandez-Cruz A. Ace D/I polymorphism and incidence of post-PTCA restenosis: a prospective, angiography-based evaluation. Hypertension 2001;37:851–855.

    PubMed  CAS  Google Scholar 

  23. Murphy JG, Schwartz RS, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR Jr. Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents. Circulation 1992;86:1596–1604.

    PubMed  CAS  Google Scholar 

  24. Block PC. Restenosis after percutaneous transluminal coronary angioplasty—anatomic and pathophysiological mechanisms. Strategies for prevention. Circulation 1990;81:IV2–IV4.

    PubMed  CAS  Google Scholar 

  25. Groves PH, Banning AP, Penny WJ, Lewis MJ, Cheadle HA, Newby AC. Kinetics of smooth muscle cell proliferation and intimal thickening in a pig carotid model of balloon injury. Atherosclerosis 1995;117:83–96.

    Article  PubMed  CAS  Google Scholar 

  26. LeBreton H, Topol E, Plow EF. Evidence for a pivotal role of platelets in vascular reocclusion and restenosis. Cardiovasc Res 1996;31:235–236.

    Article  PubMed  CAS  Google Scholar 

  27. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest 1983;49:327–333.

    PubMed  CAS  Google Scholar 

  28. Violaris AG, Melkert R, Herrman JP, Serruys PW. Role of angiographically identifiable thrombus on long-term luminal renarrowing after coronary angioplasty: a quantitative angio-graphic analysis. Circulation 1996;93:889–897.

    PubMed  CAS  Google Scholar 

  29. Friedman RJ, Stemerman MB, Wenz B, et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J Clin Invest 1977;60:1191–1201.

    PubMed  CAS  Google Scholar 

  30. Smyth SS, Reis ED, Zhang W, Fallon JT, Gordon RE, Coller BS. Beta(3)-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury: correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation 2001;103:2501–2507.

    PubMed  CAS  Google Scholar 

  31. Nabel EG, Shum L, Pompili VJ, et al. Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA 1993;90:10759–10763.

    Article  PubMed  CAS  Google Scholar 

  32. Pakala R, Willerson JT, Benedict CR. Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation 1997;96:2280–2286.

    PubMed  CAS  Google Scholar 

  33. McNamara CA, Sarembock IJ, Gimple LW, Fenton JW 2nd, Coughlin SR, Owens GK. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 1993;91:94–98.

    PubMed  CAS  Google Scholar 

  34. Perlman H, Maillard L, Krasinski K, Walsh K. Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 1997;95:981–987.

    PubMed  CAS  Google Scholar 

  35. Pollman MJ, Hall JL, Gibbons GH. Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury. Influence of redox state and cell phenotype. Circ Res 1999;84:113–121.

    PubMed  CAS  Google Scholar 

  36. Yoshida Y, Mitsumata M, Ling G, Jiang J, Shu Q. Migration of medial smooth muscle cells to the intima after balloon injury. Ann N Y Acad Sci 1997;811:459–470.

    Article  PubMed  CAS  Google Scholar 

  37. Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 1975;78:71–100.

    PubMed  CAS  Google Scholar 

  38. Rogers C, Welt FG, Karnovsky MJ, Edelman ER. Monocyte recruitment and neointimal hyperplasia in rabbits. Coupled inhibitory effects of heparin. Arterioscler Thromb Vase Biol 1996;16:1312–1318.

    CAS  Google Scholar 

  39. Tanaka H, Sukhova GK, Swanson SJ, et al. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation 1993;88:1788–1803.

    PubMed  CAS  Google Scholar 

  40. Barron MK, Lake RS, Buda AJ, Tenaglia AN. Intimal hyperplasia after balloon injury is attenuated by blocking selectins. Circulation 1997;96:3587–3592.

    PubMed  CAS  Google Scholar 

  41. Rogers C, Edelman ER, Simon DI. A mAb to the beta2-leuko-cyteintegrin Mac-1 (CDlib/CD 18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc Natl Acad Sci USA 1998;95:10134–10139.

    Article  PubMed  CAS  Google Scholar 

  42. Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD. Complement receptor type three (CDllb/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 1988;85:7734–7738.

    Article  PubMed  CAS  Google Scholar 

  43. Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol 1996;28:345–353.

    Article  PubMed  CAS  Google Scholar 

  44. Neumann FJ, Ott I, Gawaz M, Puchner G, Schomig A. Neutrophil and platelet activation at balloon-injured coronary artery plaque in patients undergoing angioplasty. J Am Coll Cardiol 1996;27:819–824.

    Article  PubMed  CAS  Google Scholar 

  45. Simon DI, Dhen Z, Seifert P, Edelman ER, Ballantyne CM, Rogers C. Decreased neointimal formation in Mac-1(-/-) mice reveals a role for inflammation in vascular repair after angioplasty. J Clin Invest 2000; 105:293–300.

    PubMed  CAS  Google Scholar 

  46. van Beusekom HM, van der Giessen WJ, van Suylen R, Bos E, Bosman FT, Serruys PW. Histology after stenting of human saphenous vein bypass grafts: observations from surgically excised grafts 3 to 320 days after stent implantation. J Am Coll Cardiol 1993;21:45–54.

    PubMed  Google Scholar 

  47. Moreno PR, Bernardi VH, Lopez-Cuellar J, et al. Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. Circulation 1996;94:3098–3102.

    PubMed  CAS  Google Scholar 

  48. Pietersma A, Kofflard M, de Wit LE, et al. Late lumen loss after coronary angioplasty is associated with the activation status of circulating phagocytes before treatment. Circulation 1995;91:1320–1325.

    PubMed  CAS  Google Scholar 

  49. Assoian RK, Grotendorst GR, Miller DM, Sporn MB. Celular transformation by co-ordinated action of three peptide growth factors from human platelets. Nature 1984;309:804–806.

    Article  PubMed  CAS  Google Scholar 

  50. Lindner V, Giachelli CM, Schwartz SM, Reidy MA. A subpopulation of smooth muscle cells in injured rat arteries expresses platelet-derived growth factor-B chain mRNA. Circ Res 1995;76:951–957.

    PubMed  CAS  Google Scholar 

  51. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991;253:1129–1132.

    Article  PubMed  CAS  Google Scholar 

  52. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross R. Insulin-like growth factor-1 and platelet derived growth factor-BB induce direct migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest 1994;93:1266–1274.

    PubMed  CAS  Google Scholar 

  53. Uchida K, Sasahara M, Morigami N, Hazama F, Kinoshita M. Expression of platelet-derived growth factor B-chain in neointimal smooth muscle cells of balloon injured rabbit femoral arteries. Atherosclerosis 1996;124:9–23.

    Article  PubMed  CAS  Google Scholar 

  54. Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 1992;89:507–511.

    PubMed  CAS  Google Scholar 

  55. Grant MB, Wargovich TJ, Ellis EA, Caballero S, Mansour M, Pepine CJ. Localization of insulin-like growth factor I and inhibition of coronary smooth muscle cell growth by somatostatin analogues in human coronary smooth muscle cells. A potential treatment for restenosis? Circulation 1994;89:1511–1517.

    PubMed  CAS  Google Scholar 

  56. Griendling KK, Ushio-Fukai M. NADH/NADPH oxidase and vascular function. Trends Cardiovasc Med 1997;7:301–307.

    Article  CAS  Google Scholar 

  57. Suzuki YJ, Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 1999;31:345–353.

    Article  PubMed  CAS  Google Scholar 

  58. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 1997;94:14483–14488.

    Article  PubMed  CAS  Google Scholar 

  59. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97:1916–1923.

    PubMed  CAS  Google Scholar 

  60. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 1996; 93:11848–11852.

    Article  PubMed  CAS  Google Scholar 

  61. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992;70:593–599.

    PubMed  CAS  Google Scholar 

  62. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270:296–299.

    Article  PubMed  CAS  Google Scholar 

  63. Zafari AM, Ushio-Fukai M, Akers M, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–495.

    PubMed  CAS  Google Scholar 

  64. Nishio E, Watanabe Y. The involvement of reactive oxygen species and arachidonic acid in alpha 1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br J Pharmacol 1997;121:665–670.

    Article  PubMed  CAS  Google Scholar 

  65. Patterson C, Ruef J, Madamanchi NR, et al. Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 1999;274:19814–19822.

    Article  PubMed  CAS  Google Scholar 

  66. Alexander RW Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995; 25:155–161.

    PubMed  CAS  Google Scholar 

  67. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273:15022–15029.

    Article  PubMed  CAS  Google Scholar 

  68. Speir E, Modali R, Huang ES, et al. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 1994;265:391–394.

    Article  PubMed  CAS  Google Scholar 

  69. Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and 02-in vascular smooth muscle cells. Circ Res 1995;77:29–36.

    PubMed  CAS  Google Scholar 

  70. Li PF, Dietz R, von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation 1997;96: 3602–3609.

    PubMed  CAS  Google Scholar 

  71. Reis ED, Roque M, Dansky H, et al. Sulindac inhibits neointimal formation after arterial injury in wild-type and apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 2000;97:12764–12769.

    Article  PubMed  CAS  Google Scholar 

  72. Popma JJ, Califf RM, Topol EJ. Clinical trials of restenosis after coronary angioplasty. Circulation 1991;84:1426–1436.

    PubMed  CAS  Google Scholar 

  73. Cooke T, Sheahan R, Foley D, et al. Lipoprotein(a) in restenosis after percutaneous transluminal coronary angioplasty and coronary artery disease. Circulation 1994;89:1593–1598.

    PubMed  CAS  Google Scholar 

  74. Nordt TK, Peter K, Ruef J, Kubler W, Bode C. Plasminogen activator inhibitor type-1 (PAI-1) and its role in cardiovascular disease. Thromb Haemost 1999;82(Suppl 1):14–18.

    PubMed  Google Scholar 

  75. Fless GM, Rolih CA, Scanu AM. Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins. J Biol Chem 1984;259:11470–11478.

    PubMed  CAS  Google Scholar 

  76. Gaubatz JW, Heideman C, Gotto AM Jr, Morrisett JD, Dahlen GH. Human plasma lipoprotein [a]. Structural properties. J Biol Chem 1983;258:4582–4589.

    PubMed  CAS  Google Scholar 

  77. Eaton DL, Fless GM, Kohr WJ, et al. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proc Natl Acad Sci USA 1987;84:3224–3228.

    Article  PubMed  CAS  Google Scholar 

  78. Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis 1990;10:240–245.

    PubMed  CAS  Google Scholar 

  79. Hajjar KA, Gavish D, Breslow JL, Nachman RL. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 1989; 339:303–305.

    Article  PubMed  CAS  Google Scholar 

  80. Edelberg JM, Pizzo SV. Lipoprotein(a) inhibits plasminogen activation in a template-dependent manner. Blood Coagul Fibrinolysis 1991;2:759–764.

    Article  PubMed  CAS  Google Scholar 

  81. Miles LA, Fless GM, Levin EG, Scanu AM, Plow EF. A potential basis for the thrombotic risks associated with lipoprotein(a). Nature 1989;339:301–303.

    Article  PubMed  CAS  Google Scholar 

  82. Horie H, Takahashi M, Izumi M, et al. Association of an acute reduction in lipoprotein(a) with coronary artery restenosis after percutaneous transluminal coronary angioplasty. Circulation 1997;96:166–173.

    PubMed  CAS  Google Scholar 

  83. Soifer SJ, Peters KG, O’Keefe J, Coughlin SR. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am J Pathol 1994; 144:60–69.

    PubMed  CAS  Google Scholar 

  84. Hattori R, Hamilton KK, Fugate RD, McEver RP, Sims PJ. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem 1989;264:7768–7771.

    PubMed  CAS  Google Scholar 

  85. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol 1994;267:L223–L241.

    PubMed  CAS  Google Scholar 

  86. Barry WL, Gimple LW, Humphries JE, et al. Arterial thrombin activity after angioplasty in an atherosclerotic rabbit model: time course and effect of hirudin. Circulation 1996;94:88–93.

    PubMed  CAS  Google Scholar 

  87. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991;64:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  88. Wilcox JN, Rodriguez J, Subramanian R, et al. Characterization of thrombin receptor expression during vascular lesion formation. Circ Res 1994;75:1029–1038.

    PubMed  CAS  Google Scholar 

  89. Noda-Heiny H, Sobel BE. Vascular smooth muscle cell migration mediated by thrombin and urokinase receptor. Am J Physiol 1995;268:C1195–C1201.

    PubMed  CAS  Google Scholar 

  90. Dabbagh K, Laurent GJ, McAnulty RJ, Chambers RC. Thrombin stimulates smooth muscle cell procollagen synthesis and mRNA levels via a PAR-1 mediated mechanism. Thromb Haemost 1998;79:405–409.

    PubMed  CAS  Google Scholar 

  91. Bar-Shavit R, Kahn A, Wilner GD, Fenton JW 2nd. Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science 1983;220:728–731.

    Article  PubMed  CAS  Google Scholar 

  92. Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci USA 1986;83:976–980.

    Article  PubMed  CAS  Google Scholar 

  93. van Meijer M, Smilde A, Tans G, Nesheim ME, Pannekoek H, Horrevoets AJ. The suicide substrate reaction between plasminogen activator inhibitor 1 and thrombin is regulated by the cofactors vitronectin and heparin. Blood 1997;90:1874–1882.

    PubMed  Google Scholar 

  94. Carmeliet P, Moons L, Lijnen R, et al. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 1997;96:3180–3191.

    PubMed  CAS  Google Scholar 

  95. Gerdes C, Faber-Steinfeld V, Yalkinoglu O, Wohlfeil S. Comparison of the effects of the thrombin inhibitor r-hirudin in four animal models of neointima formation after arterial injury. Arterioscler Thromb Vase Biol 1996;16:1306–1311.

    CAS  Google Scholar 

  96. Rade JJ, Schulick AH, Virmani R, Dichek DA. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med 1996;2:293–298.

    Article  PubMed  CAS  Google Scholar 

  97. Andrade-Gordon P, Derian CK, Maryanoff BE, et al. Administration of a potent antagonist of protease-activated receptor-1 (PAR-1) attenuates vascular restenosis following balloon angioplasty in rats. J Pharmacol Exp Ther 2001;298:34–42.

    PubMed  CAS  Google Scholar 

  98. Pasterkamp G, Borst C, Gussenhoven EJ, et al. Remodeling of De Novo atherosclerotic lesions in femoral arteries: impact on mechanism of balloon angioplasty. J Am Coll Cardiol 1995;26:422–428.

    Article  PubMed  CAS  Google Scholar 

  99. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  100. Kimura T, Kaburagi S, Tamura T, et al. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 1997;96:475–483.

    PubMed  CAS  Google Scholar 

  101. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996;94:35–43.

    PubMed  CAS  Google Scholar 

  102. de Smet BJ, van der Zande J, van der Helm YJ, Kuntz RE, Borst C, Post MJ. The atherosclerotic Yucatan animal model to study the arterial response after balloon angioplasty: the natural history of remodeling. Cardiovasc Res 1998;39:224–232.

    Article  PubMed  Google Scholar 

  103. Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisolm GM. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with con-strictive remodeling. Circ Res 1995;76:996–1002.

    PubMed  CAS  Google Scholar 

  104. Fischman DL, Leon MB, Bairn DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994;331:496–501.

    Article  PubMed  CAS  Google Scholar 

  105. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994;331:489–495.

    Article  PubMed  CAS  Google Scholar 

  106. Faxon D, Wiliams D, Yeh W, Mehra A, Holubkov R, Detre K. Improved inhospital outcome with expanded use of coronary stents: results from the NHLBI dynamic registry. J Am Coll Cardiol 1999;33(Suppl A):91A.

    Google Scholar 

  107. Al Suwaidi J, Berger PB, Holmes DR Jr. Coronary artery stents. JAMA 2000;284:1828–1836.

    Article  PubMed  Google Scholar 

  108. Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med 2001;344:250–256.

    Article  PubMed  CAS  Google Scholar 

  109. Mach F. Toward new therapeutic strategies against neointimal formation in restenosis. Arterioscler Thromb Vase Biol 2000;20:1699–1700.

    CAS  Google Scholar 

  110. Moreno PR, Palacios IF, Leon MN, Rhodes J, Fuster V, Fallon JT. Histopathologic comparison of human coronary instent and post-balloon angioplasty restenotic tissue. Am J Cardiol 1999;84:462–466, A9.

    Article  PubMed  CAS  Google Scholar 

  111. Kearney M, Pieczek A, Haley L, et al. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation 1997;95:1998–2002.

    PubMed  CAS  Google Scholar 

  112. Virmani R, Farb A. Pathology of in-stent restenosis. Curr Opin Lipidol 1999; 10:499–506.

    Article  PubMed  CAS  Google Scholar 

  113. Farb A, Sangiorgi G, Carter AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999;99:44–52.

    PubMed  CAS  Google Scholar 

  114. Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 1998;31:224–230.

    Article  PubMed  CAS  Google Scholar 

  115. Grewe PH, Deneke T, Machraoui A, Barmeyer J, Muller KM. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol 2000;35:157–163.

    Article  PubMed  CAS  Google Scholar 

  116. Schwartz RS, Topol EJ, Serruys PW, Sangiorgi G, Holmes DR Jr. Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol 1998;32:2087–2094.

    Article  PubMed  CAS  Google Scholar 

  117. Komatsu R, Ueda M, Naruko T, Kojima A, Becker AE. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. Circulation 1998;98:224–233.

    PubMed  CAS  Google Scholar 

  118. Kiemeneij F, Serruys PW, Macaya C, et al. Continued benefit of coronary stenting versus balloon angioplasty: five-year clinical follow-up of Benestent-I trial. J Am Coll Cardiol 2001;37:1598–1603.

    Article  PubMed  CAS  Google Scholar 

  119. Koning R, Eltchaninoff H, Commeau P, et al, for the BESMART (BeStent in Small Arteries) Trial Investigators. Stent placement compared with balloon angioplasty for small coronary arteries: in-hospital and 6-month clinical and angiographic results. Circulation 2001;104:1604–1608.

    Article  PubMed  CAS  Google Scholar 

  120. Reverter JC, Beguin S, Kessels H, Kumar R, Hemker HC, Coller BS. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J Clin Invest 1996;98:863–874.

    PubMed  CAS  Google Scholar 

  121. Topol EJ, Califf RM, Weisman HF, et al. Randomised trial of coronary intervention with antibody against platelet Ilb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet 1994;343:881–886.

    Article  PubMed  CAS  Google Scholar 

  122. The EPISTENT Investigators. Evaluation of Platelet IIb/IIIa Inhibitor for Stenting. Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade. Lancet 1998;352:87–92.

    Article  Google Scholar 

  123. Neumann FJ, Kastrati A, Schmitt C, et al. Effect of glycoprotein IIb/IIIa receptor blockade with abciximab on clinical and angiographic restenosis rate after the placement of coronary stents following acute myocardial infarction. J Am Coll Cardiol 2000;35:915–921.

    Article  PubMed  CAS  Google Scholar 

  124. Schwartz L, Bourassa MG, Lesperance J, et al. Aspirin and dipyridamole in the prevention of restenosis after percutaneous translu-minal coronary angioplasty. N Engl J Med 1988;318:1714–1719.

    Article  PubMed  CAS  Google Scholar 

  125. Kastrati A, Schuhlen H, Hausleiter J, et al. Restenosis after coronary stent placement and randomization to a 4-week combined antiplatelet or anticoagulant therapy: six-month angiographic follow-up of the Intracoronary Stenting and Antithrombotic Regimen (ISAR) Trial. Circulation 1997;96:462–467.

    PubMed  CAS  Google Scholar 

  126. Calver AL, Blows LJ, Harmer S, et al. Clopidogrel for prevention of major cardiac events after coronary stent implantation: 30-day and 6-month results in patients with smaller stents. Am Heart J 2000;140:483–491.

    Article  PubMed  CAS  Google Scholar 

  127. El-Beyrouty C, Spinier S. Cilostazol for prevention of thrombosis and restenosis after intracoronary stenting. Ann Pharmacother 2001;35:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  128. Blindt R, Bosserhoff AK, Zeiffer U, Krott N, Hanrath P, vom Dahl J. Abciximab inhibits the migration and invasion potential of human coronary artery smooth muscle cells. J Mol Cell Cardiol 2000;32:2195–2206.

    Article  PubMed  CAS  Google Scholar 

  129. Patterson C, Stouffer GA, Madamanchi N, Runge MS. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res 2001;88:987–997.

    Article  PubMed  CAS  Google Scholar 

  130. Clowes AW, Karnowsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 1977;265:625–626.

    Article  PubMed  CAS  Google Scholar 

  131. Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagu-lant heparin. Circ Res 1980;46:625–634.

    PubMed  CAS  Google Scholar 

  132. Pukac LA, Castellot JJ Jr, Wright TC Jr, Caleb BL, Karnovsky MJ. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Regul 1990;1:435–443.

    PubMed  CAS  Google Scholar 

  133. Ornitz DM, Herr AB, Nilsson M, Westman J, Svahn CM, Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di-and trisaccharides. Science 1995;268:432–436.

    Article  PubMed  CAS  Google Scholar 

  134. Snow AD, Bolender RP, Wight TN, Clowes AW. Heparin modulates the composition of the extracellular matrix domain surrounding arterial smooth muscle cells. Am J Pathol 1990;137:313–330.

    PubMed  CAS  Google Scholar 

  135. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab Invest 1985;52:611–616.

    PubMed  CAS  Google Scholar 

  136. Abendschein DR, Recchia D, Meng YY, Oltrona L, Wickline SA, Eisenberg PR. Inhibition of thrombin attenuates stenosis after arterial injury in minipigs. J Am Coll Cardiol 1996;28:1849–1855.

    Article  PubMed  CAS  Google Scholar 

  137. Sarembock IJ, Gertz SD, Gimple LW, Owen RM, Powers ER, Roberts WC. Effectiveness of recombinant desulphatohirudin in reducing restenosis after balloon angioplasty of atherosclerotic femoral arteries in rabbits. Circulation 1991;84:232–243.

    PubMed  CAS  Google Scholar 

  138. Gallo R, Padurean A, Toschi V, et al. Prolonged thrombin inhibition reduces restenosis after balloon angioplasty in porcine coronary arteries. Circulation 1998;97:581–588.

    PubMed  CAS  Google Scholar 

  139. Thome LM, Gimple LW, Bachhuber BG, et al. Early plus delayed hirudin reduces restenosis in the atherosclerotic rabbit more than early administration alone: potential implications for dosing of antithrombin agents. Circulation 1998;98:2301–2306.

    PubMed  CAS  Google Scholar 

  140. Brack MJ, Ray S, Chauhan A, et al. The Subcutaneous Heparin and Angioplasty Restenosis Prevention (SHARP) trial. Results of a multicenter randomized trial investigating the effects of high dose unfractionated heparin on angiographic restenosis and clinical outcome. J Am Coll Cardiol 1995;26:947–954.

    Article  PubMed  CAS  Google Scholar 

  141. Ellis SG, Roubin GS, Wilentz J, Douglas JS Jr, King SB 3rd. Effect of 18-to 24-hour heparin administration for prevention of restenosis after uncomplicated coronary angioplasty. Am Heart J 1989;117:777–782.

    Article  PubMed  CAS  Google Scholar 

  142. Faxon DP, Spiro TE, Minor S, et al. Low molecular weight heparin in prevention of restenosis after angioplasty. Results of Enoxaparin Restenosis (ERA) Trial. Circulation 1994;90:908–914.

    PubMed  CAS  Google Scholar 

  143. Karsch KR, Preisack MB, Baildon R, et al. Low molecular weight heparin (reviparin) in percutaneous transluminal coronary angioplasty. Results of a randomized, double-blind, unfractionated heparin and placebo-controlled, multicenter trial (REDUCE trial). Reduction of Restenosis After PTCA, Early Administration of Reviparin in a Double-Blind Unfractionated Heparin and Placebo-Controlled Evaluation. J Am Coll Cardiol 1996;28:1437–1443.

    Article  PubMed  CAS  Google Scholar 

  144. Kiesz RS, Buszman P, Martin JL, et al. Local delivery of enoxaparin to decrease restenosis after stenting: results of initial multicenter trial: Polish-American Local Lovenox NIR Assessment study (The POLONIA study). Circulation 2001;103:26–31.

    PubMed  CAS  Google Scholar 

  145. Bittl JA, Strony J, Blinker JA, et al. Treatment with bivalirudin (Hirulog) as compared with heparin during coronary angioplasty for unstable or postinfarction angina. Hirulog Angioplasty Study Investigators. N Engl J Med 1995;333:764–769.

    Article  PubMed  CAS  Google Scholar 

  146. Serruys PW, Herrman JP, Simon R, et al, for the Helvetica Investigators. A comparison of hirudin with heparin in the prevention of restenosis after coronary angioplasty. N Engl J Med 1995;333:757–763.

    Article  PubMed  CAS  Google Scholar 

  147. Wohrle J, Al-Khayer E, Grotzinger U, et al. Comparison of the heparin coated vs the uncoated Jostent—no influence on restenosis or clinical outcome. Eur Heart J 2001;22:1808–1816.

    Article  PubMed  CAS  Google Scholar 

  148. Cook JJ, Sitko GR, Bednar B, et al. An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African green monkey. Circulation 1995;91:2961–2971.

    PubMed  CAS  Google Scholar 

  149. Takada M, Tanaka H, Yamada T, et al. Antibody to thrombin receptor inhibits neointimal smooth muscle cell accumulation without causing inhibition of platelet aggregation or altering hemostatic parameters after angioplasty in rat. Circ Res 1998;82:980–987.

    PubMed  CAS  Google Scholar 

  150. Cheung WM, D’Andrea MR, Andrade-Gordon P, Damiano BP. Altered vascular injury responses in mice deficient in protease-activated receptor-1. Arterioscler Thromb Vase Biol 1999;19:3014–3024.

    CAS  Google Scholar 

  151. Azevedo LC, Pedro MA, Souza LC, et al. Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis. Cardiovasc Res 2000;47:436–445.

    Article  PubMed  CAS  Google Scholar 

  152. Iuliano L, Pratico D, Greco C, et al. Angioplasty increases coronary sinus F2-isoprostane formation: evidence for in vivo oxidative stress during PTCA. J Am Coll Cardiol 2001; 37:76–80.

    Article  PubMed  CAS  Google Scholar 

  153. Ruef J, Liu SQ, Bode C, Tocchi M, Srivastava S, Runge MS, Bhatnagar A. Involvement of aldose reductase in vascular smooth muscle cell growth and lesion formation after arterial injury. Arterioscler Thromb Vase Biol 2000;20:1745–1752.

    CAS  Google Scholar 

  154. Ferns GA, Forster L, Stewart-Lee A, Konneh M, Nourooz-Zadeh J, Anggard EE. Probucol inhibits neointimal thickening and macrophage accumulation after balloon injury in the cholesterol-fed rabbit. Proc Natl Acad Sci USA 1992;89:11312–11316.

    Article  PubMed  CAS  Google Scholar 

  155. Freyschuss A, Stiko-Rahm A, Swedenborg J, et al. Antioxidant treatment inhibits the development of intimal thickening after balloon injury of the aorta in hypercholesterolemic rabbits. J Clin Invest 1993;91:1282–1288.

    PubMed  CAS  Google Scholar 

  156. Nunes GL, Sgoutas DS, Redden RA, et al. Combination of vitamins C and E alters the response to coronary balloon injury in the pig. Arterioscler Thromb Vase Biol 1995;15:156–165.

    CAS  Google Scholar 

  157. Schneider JE, Berk BC, Gravanis MB, et al. Probucol decreases neointimal formation in a swine model of coronary artery balloon injury. A possible role for antioxidants in restenosis. Circulation 1993,88:628–637.

    PubMed  CAS  Google Scholar 

  158. DeMaio SJ, King SB 3rd, Lembo NJ, et al. Vitamin E supplementation, plasma lipids and incidence of restenosis after percutaneous transluminal coronary angioplasty (PTCA). J Am Coll Nutr 1992;11:68–73.

    PubMed  CAS  Google Scholar 

  159. Setsuda M, Inden M, Hiraoka N, et al. Probucol therapy in the prevention of restenosis after successful percutaneous transluminal coronary angioplasty. ClinTher 1993;15:374–382.

    CAS  Google Scholar 

  160. Watanabe K, Sekiya M, Ikeda S, Miyagawa M, Hashida K. Preventive effects of probucol on restenosis after percutaneous transluminal coronary angioplasty. Am Heart J 1996,132:23–29.

    Article  PubMed  CAS  Google Scholar 

  161. Tardif JC, Cote G, Lesperance J, et al, for the Multivitamins and Probucol Study Group. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. N Engl J Med 1997;337:365–372.

    Article  PubMed  CAS  Google Scholar 

  162. Daida H, Kuwabara Y, Yokoi H, et al. Effect of probucol on repeat revascularization rate after percutaneous transluminal coronary angioplasty (from the Probucol Angioplasty Restenosis Trial [PART]). Am J Cardiol 2000;86:550–552, A9.

    Article  PubMed  CAS  Google Scholar 

  163. Rodes J, Cote G, Lesperance J, et al. Prevention of restenosis after angioplasty in small coronary arteries with probucol. Circulation 1998;97:429–436.

    PubMed  CAS  Google Scholar 

  164. Yokoi H, Daida H, Kuwabara Y, et al. Effectiveness of an antioxidant in preventing restenosis after percutaneous transluminal coronary angioplasty: the Probucol Angioplasty Restenosis Trial. J Am Coll Cardiol 1997;30:855–862.

    Article  PubMed  CAS  Google Scholar 

  165. Serruys PW, Foley DP, Hofling B, et al. Carvedilol for prevention of restenosis after directional coronary atherectomy: final results of the European carvedilol atherectomy restenosis (EUROCARE) trial. Circulation 2000;101:1512–1518.

    PubMed  CAS  Google Scholar 

  166. Arora RR, Konrad K, Badhwar K, Hollman J. Restenosis after transluminal coronary angioplasty: a risk factor analysis. Cathet Cardiovasc Diagn 1990;19:17–22.

    Article  PubMed  CAS  Google Scholar 

  167. Jorgensen B, Simonsen S, Endresen K, et al. Luminal loss and restenosis after coronary angioplasty. The role of lipoproteins and lipids. Eur Heart J 1999;20:1407–1414.

    Article  PubMed  CAS  Google Scholar 

  168. Violaris AG, Melkert R, Serruys PW. Influence of serum cholesterol and cholesterol subfractions on restenosis after successful coronary angioplasty. A quantitative angiographic analysis of 3336 lesions. Circulation 1994;90:2267–2279.

    PubMed  CAS  Google Scholar 

  169. Nakamura Y, Yamaoka O, Uchida K, et al. Pravastatin reduces restenosis after coronary angioplasty of high grade stenotic lesions: results of SHIPS (SHIga Pravastatin Study). Cardiovasc Drugs Ther 1996;10:475–483.

    Article  PubMed  CAS  Google Scholar 

  170. Walter DH, Schachinger V, Eisner M, Mach S, Auch-Schwelk W, Zeiher AM. Effect of statin therapy on restenosis after coronary stent implantation. Am J Cardiol 2000;85:962–968.

    Article  PubMed  CAS  Google Scholar 

  171. Mulder HJ, Bal ET, Jukema JW, et al. Pravastatin reduces restenosis two years after percutaneous transluminal coronary angioplasty (REGRESS trial). Am J Cardiol 2000;86:742–746.

    Article  PubMed  CAS  Google Scholar 

  172. Bertrand ME, McFadden EP, Fruchart JC, et al. Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. The PREDICT Trial Investigators. Prevention of Restenosis by Elisor after Transluminal Coronary Angioplasty. J Am Coll Cardiol 1997;30:863–869.

    Article  PubMed  CAS  Google Scholar 

  173. Serruys PW, Foley DP, Jackson G, et al. A randomized placebo-controlled trial of fluvastatin for prevention of restenosis after successful coronary balloon angioplasty; final results of the fluvastatin angiographic restenosis (FLARE) trial. Eur Heart J 1999;20:58–69.

    Article  PubMed  CAS  Google Scholar 

  174. Serruys PW, Foley D, Pieper M, Kleijne J, de Feyter P, on behalf of the TRAPIST Investigators. The TRAPIST Study. A multicentre randomized placebo controlled clinical trial of trapidil for prevention of restenosis after coronary stenting, measured by 3-D intravascular ultrasound. Eur Heart J 2001;22:1938–1947.

    Article  PubMed  CAS  Google Scholar 

  175. Kusama H, Kikuchi S, Tazawa S, et al. Tranilast inhibits the proliferation of human coronary smooth muscle cell through the activation of p21wafl. Atherosclerosis 1999;143:307–313.

    Article  PubMed  CAS  Google Scholar 

  176. SoRelle R. Late-breaking clinical trials at the American Heart Association’s scientific sessions 2001. Circulation 2001;104:E9046–E9048.

    Article  PubMed  CAS  Google Scholar 

  177. Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 1999;99:2164–2170.

    PubMed  CAS  Google Scholar 

  178. Herdeg C, Oberhoff M, Baumbach A, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol 2000;35:1969–1976.

    Article  PubMed  CAS  Google Scholar 

  179. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 2001;104:473–479.

    Article  PubMed  CAS  Google Scholar 

  180. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 2001;104:1188–1193.

    Article  PubMed  CAS  Google Scholar 

  181. Marks AR. Cellular functions of immunophilins. Physiol Rev 1996;76:631–649.

    PubMed  CAS  Google Scholar 

  182. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905–909.

    Article  PubMed  CAS  Google Scholar 

  183. Sousa JE, Costa MA, Abizaid A, et al. Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study. Circulation 2001;103:192–195.

    PubMed  CAS  Google Scholar 

  184. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 2001;104:2007–2011.

    Article  PubMed  CAS  Google Scholar 

  185. Zhu NL, Wu L, Liu PX, et al. Downregulation of cyclin Gl expression by retrovirus-mediated antisense gene transfer inhibits vascular smooth muscle cell proliferation and neoin-tima formation. Circulation 1997;96:628–635.

    PubMed  CAS  Google Scholar 

  186. Macejak DG, Lin H, Webb S, et al. Adenovirus-mediated expression of a ribozyme to c-myb mRNA inhibits smooth muscle cell proliferation and neointima formation in vivo. J Virol 1999;73:7745–7751.

    PubMed  CAS  Google Scholar 

  187. Chen D, Krasinski K, Sylvester A, Chen J, Nisen PD, Andres V. Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIPl), an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 1997;99:2334–2341.

    Article  PubMed  CAS  Google Scholar 

  188. Yang ZY, Simari RD, Perkins ND, et al. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci USA 1996;93:7905–7910.

    Article  PubMed  CAS  Google Scholar 

  189. Yonemitsu Y, Kaneda Y, Tanaka S, et al. Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo. Circ Res 1998;82:147–156.

    PubMed  CAS  Google Scholar 

  190. McArthur JG, Qian H, Citron D, et al. p27-pl6 Chimera: a superior antiproliferative for the prevention of neointimal hyperplasia. Mol Ther 2001;3:8–13.

    Article  PubMed  CAS  Google Scholar 

  191. Maillard L, Van Belle E, Tio FO, et al. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther2000;7:1353–1361.

    Google Scholar 

  192. Waksman R, Rodriguez JC, Robinson KA, et al. Effect of intravascular irradiation on cell proliferation, apoptosis, and vascular remodeling after balloon overstretch injury of porcine coronary arteries. Circulation 1997;96:1944–1952.

    PubMed  CAS  Google Scholar 

  193. Fischell TA, Kharma BK, Fischell DR, et al. Low-dose, beta-particle emission from’ stent’ wire results in complete, localized inhibition of smooth muscle cell proliferation. Circulation 1994;90:2956–2963.

    PubMed  CAS  Google Scholar 

  194. Hehrlein C, Gollan C, Donges K, et al. Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 1995;92:1570–1575.

    PubMed  CAS  Google Scholar 

  195. Wiedermann JG, Marboe C, Amols H, Schwartz A, Weinberger J. Intracoronary irradiation markedly reduces restenosis after balloon angioplasty in a porcine model. J Am Coll Cardiol 1994;23:1491–1498.

    Article  PubMed  CAS  Google Scholar 

  196. Coussement PK, de Leon H, Ueno T, et al. Intracoronary beta-radiation exacerbates long-term neointima formation in balloon-injured pig coronary arteries. Circulation 2001;104:2459–2464.

    Article  PubMed  CAS  Google Scholar 

  197. King SB 3rd, Williams DO, Chougule P, et al. Endovascular beta-radiation to reduce restenosis after coronary balloon angioplasty: results of the beta energy restenosis trial (BERT). Circulation 1998;97:2025–2030.

    PubMed  Google Scholar 

  198. Teirstein PS, Massullo V, Jani S, et al. Three-year clinical and angiographic follow-up after intracoronary radiation: results of a randomized clinical trial. Circulation 2000;101:360–365.

    PubMed  CAS  Google Scholar 

  199. Costa MA, Sabat M, van der Giessen WJ, et al. Late coronary occlusion after intracoronary brachytherapy. Circulation 1999;100:789–792.

    PubMed  CAS  Google Scholar 

  200. Waksman R, Ajani AE, White RL, et al. Prolonged antiplatelet therapy to prevent late thrombosis after intracoronary gamma-radiation in patients with in-stent restenosis: Washington Radiation for In-Stent Restenosis Trial plus 6 months of clopidogrel (WRIST PLUS). Circulation 2001;103:2332–2335.

    PubMed  CAS  Google Scholar 

  201. Albiero R, Nishida T, Adamian M, et al. Edge restenosis after implantation of high activity (32)P radioactive beta-emitting stents. Circulation 2000;101:2454–2457.

    PubMed  CAS  Google Scholar 

  202. Teirstein PS, Kuntz RE. New frontiers in interventional cardiology: intravascular radiation to prevent restenosis. Circulation 2001;104:2620–2626.

    Article  PubMed  CAS  Google Scholar 

  203. Rogers C, Parikh S, Seifert P, Edelman ER. Endogenous cell seeding. Remnant endothelium after stenting enhances vascular repair. Circulation 1996;94:2909–2914.

    PubMed  CAS  Google Scholar 

  204. Asahara T, Chen D, Tsurumi Y, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation 1996;94:3291–3302.

    PubMed  CAS  Google Scholar 

  205. Van Belle E, Tio FO, Chen D, Maillard L, Chen D, Kearney M, Isner JM. Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J Am Coll Cardiol 1997;29:1371–1379.

    Article  PubMed  Google Scholar 

  206. van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 1996;94:1690–1697.

    PubMed  Google Scholar 

  207. Teirstein PS. Living the dream of no restenosis. Circulation 2001;104:1996–1998.

    Article  PubMed  CAS  Google Scholar 

  208. Ye YW, Landau C, Willard JE, et al. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann Biomed Eng 1998;26:398–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Aitsebaomo, J., Moser, M., Smyth, S., Patterson, C. (2005). Coronary Restenosis. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics