Skip to main content

Genetic Underpinnings of Cardiogenesis and Congenital Heart Disease

  • Chapter
Principles of Molecular Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 896 Accesses

Abstract

Congenital heart disease (CHD), the leading noninfec-tious cause of death in infants, occurs in nearly 1% of live births and causes 10% of spontaneous abortions (1). Diagnosis and treatment of CHD have improved, and surgical palliation for many defects has resulted in an increasing population of adults surviving with complex CHD. Some forms of adult-onset heart disease originate in cardiac developmental defects. The most notable of these defects, aortic valve stenosis, is usually associated with a congenital bicuspid aortic valve and is seen in 1% of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman JI. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 1995;16:155–165.

    Article  PubMed  CAS  Google Scholar 

  2. Schultheiss TM, Xydas S, Lassar AB. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995;121:4203–4214.

    PubMed  CAS  Google Scholar 

  3. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997;11:451–462.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 2001;15:304–315.

    Article  PubMed  CAS  Google Scholar 

  5. Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 2001;15:316–327.

    Article  PubMed  CAS  Google Scholar 

  6. Srivastava D, Cserjesi P, Olson EN. A subclass of bHLH proteins required for cardiac morphogenesis. Science 1995;270:1995–1999.

    Article  PubMed  CAS  Google Scholar 

  7. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 1997;16:154–160.

    Article  PubMed  CAS  Google Scholar 

  8. Yamagishi H, Olson EN, Srivastava D. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 2000;105:261–270.

    PubMed  CAS  Google Scholar 

  9. Nguyen HT, Bodmer R, Abmayr SM, McDermott JC, Spoerel NA. D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proc Natl Acad Sci USA 1994;91:7520–7524.

    Article  PubMed  CAS  Google Scholar 

  10. Lilly B, Zhao B, Ranganayakulu G, Paterson BM, Schulz RA, Olson EN. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 1995;267:688–693.

    Article  PubMed  CAS  Google Scholar 

  11. Black BL, Olson EN. Transcriptional control of muscle development bymyocyte enhancer factor-2 (MEF2) proteins. Ann Rev Cell Dev Biol 1998;14:167–196.

    Article  CAS  Google Scholar 

  12. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997;276:1404–1407.

    Article  PubMed  CAS  Google Scholar 

  13. Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH. A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev Biol 1997;186:58–72.

    PubMed  CAS  Google Scholar 

  14. Camenisch TD, Spicer AP, Brehm-Gibson T, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000;106:349–360.

    PubMed  CAS  Google Scholar 

  15. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998;281:108–111.

    Article  PubMed  CAS  Google Scholar 

  16. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999;104:1567–1573.

    PubMed  CAS  Google Scholar 

  17. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 1993;118:719–729.

    PubMed  CAS  Google Scholar 

  18. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 1999;126:1269–1280.

    PubMed  CAS  Google Scholar 

  19. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995;9:1654–1666.

    Article  PubMed  CAS  Google Scholar 

  20. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 2000;87:888–895.

    PubMed  CAS  Google Scholar 

  21. Kasahara H, Lee B, Schott JJ, et al. Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest 2000;106:299–308.

    PubMed  CAS  Google Scholar 

  22. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human Tbx5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997;15:30–35.

    Article  PubMed  CAS  Google Scholar 

  23. Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 1999;211:100–108.

    Article  PubMed  CAS  Google Scholar 

  24. Bruneau BG, et al. A murine model of Holt-Oram syndrome defines roles of the T-Box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001;106:709–721.

    Article  PubMed  CAS  Google Scholar 

  25. Fyler DC. Trends. In: Fyler DC, ed. Nadas’ Pediatric Cardiology. Philadelphia: Hanley & Belfus;1992:273–280.

    Google Scholar 

  26. Scambler PJ. The 22qll deletion syndromes. Hum Mol Genet 2000;9:2421–2426.

    Article  PubMed  CAS  Google Scholar 

  27. Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22qll deletions: a European collaborative study. J Med Genet 1997;34:798–804.

    Article  PubMed  CAS  Google Scholar 

  28. DiGeorge AM. Discussion on a new concept of the cellular basis of immunology. J Pediatr 1965;67:907.

    Article  Google Scholar 

  29. Shprintzen RJ, Goldberg RB, Lewin ML, et al. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: Velo-cardio-facial syndrome. Cleft Palate J 1978;15:56–62.

    PubMed  CAS  Google Scholar 

  30. Kinouchi A, Mori K, Ando M, Takao A. Facial appearance of patients with conotruncal anomalies. Pediatrics (Japan) 1976;17:84.

    Google Scholar 

  31. Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992;50:924–933.

    PubMed  CAS  Google Scholar 

  32. Puech A, Saint-Jore B, Merscher S, et al. Normal cardiovascular development in mice deficient for 16 genes in 550 kb of the velocardiofacial/DiGeorge syndrome region. Proc Natl Acad Sci USA 2000;97:10090–10095.

    Article  PubMed  CAS  Google Scholar 

  33. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999;401:379–383.

    PubMed  CAS  Google Scholar 

  34. Merscher S, Funke B, Epstein JA, et al. Tbxl is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104:619–629.

    Article  PubMed  CAS  Google Scholar 

  35. Chapman DL, Garvey N, Hancock S, et al. Expression of the T-box family genes, Tbxl-Tbx5, during early mouse development. Dev Dyn 1996;206:379–390.

    Article  PubMed  CAS  Google Scholar 

  36. Lindsay EA, Vitelli F, Su H, et al. Tbxl haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.

    Article  PubMed  CAS  Google Scholar 

  37. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbxl. Nat Genet 2001;27:286–291.

    Article  PubMed  CAS  Google Scholar 

  38. Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbxl, a DiGeorge syndrome candidate gene, is regulated by Sonic Hedgehog during pharyngeal arch development. Dev Biol 2001;235:62–73.

    Article  PubMed  CAS  Google Scholar 

  39. Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999;283:1158–1161.

    Article  PubMed  CAS  Google Scholar 

  40. Yoshida K, Kuo F, George EL, Sharpe AH, Dutta A. Requirement of CDC45 for postimplantation mouse development. Mol Cell Biol 2001;21:4598–4603.

    Article  PubMed  CAS  Google Scholar 

  41. Guris LD, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human 22ql 1.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001;27:238–40.

    Article  CAS  Google Scholar 

  42. Kurihara Y, Kurihara H, Oda H, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 1995;96:293–300.

    Article  PubMed  CAS  Google Scholar 

  43. Clouthier DE, Hosoda K, Richardson JA, et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 1998;125:813–824.

    PubMed  CAS  Google Scholar 

  44. Thomas T, Kurihara H, Yamagishi H, et al. A signaling cascade involving endothelin-1, dHAND and msxl regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998;125:3005–3014.

    PubMed  CAS  Google Scholar 

  45. Charité J, McFadden DG, Merlo G, et al. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes & Dev 2001 15:3039–3049.

    Article  Google Scholar 

  46. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999;126:4895–4902.

    PubMed  CAS  Google Scholar 

  47. Feiner L, Webber AL, Brown CB, et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 2001;128:3061–3070.

    PubMed  CAS  Google Scholar 

  48. Epstein DJ, Vogan KJ, Trasler DG, Gros P. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc Natl Acad Sci USA 1993;90:532–536.

    Article  PubMed  CAS  Google Scholar 

  49. Iida K, Koseki H, Kakinuma H, et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 1997;124:4627–4638.

    PubMed  CAS  Google Scholar 

  50. Zhong TP, Rosenberg M, Mohideen MPK, Weinstein B, Fishman MC. Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 2000;287:1820–1824.

    Article  PubMed  CAS  Google Scholar 

  51. Nakagawa O, Nakagawa M, Richardson J, Olson EN, Srivastava D. HRT1, HRT2, and HRT3: A new subclass of bHLH transcription factors marking specific cardiac, somatic, and branchial arch segments. Dev Biol 1999;216:72–84.

    Article  PubMed  CAS  Google Scholar 

  52. Nakagawa ON, McFadden DG, Nakagawa M, et al. Members of the HRT family of bHLH proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 2000;97:13655–13660.

    Article  PubMed  CAS  Google Scholar 

  53. Zhong TP, Childs S, Leu JP, Fishman MC. Gridlock signalling pathway fashions the first embryonic artery. Nature 2001;414:216–220.

    Article  PubMed  CAS  Google Scholar 

  54. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jaggedl, which encodes a ligand for Notchl. Nat Genet 1997;16:243–251.

    Article  PubMed  CAS  Google Scholar 

  55. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jaggedl gene are responsible for Alagille syndrome. Nat Genet 1997;16:235–242.

    Article  PubMed  CAS  Google Scholar 

  56. Krantz ID, Smith R, Colliton RP, et al. Jaggedl mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet 1999;84:56–60.

    Article  PubMed  CAS  Google Scholar 

  57. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 2000;25:42–46.

    Article  PubMed  CAS  Google Scholar 

  58. Cox DR, Smith SA, Epstein LB, Epstein CJ. Mouse trisomy 16 as an animal model of human trisomy 21 (Down syndrome): production of viable trisomy 16 diploid mouse chimeras. Dev Biol 1984;101:416–424.

    Article  PubMed  CAS  Google Scholar 

  59. Ranger AM, Grusby MJ, Hodge MR, et al. The transcription factor NFATc is essential for cardiac valve formation. Nature 1998;392:186–190.

    Article  PubMed  CAS  Google Scholar 

  60. de la Pompa JL, Timmerman LA, Takimoto H, et al. Role of the NFATc transcription factor in morphogenesis of cardiac valves and septum. Nature 1998;392:182–186.

    Article  PubMed  Google Scholar 

  61. Chen B, Bronson RT, Klaman LD, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet 2000;24:296–299.

    Article  PubMed  CAS  Google Scholar 

  62. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001;29:465 68.

    Article  CAS  Google Scholar 

  63. Galvin KM, Donovan MJ, Lynch CA, et al. A role for Smad6 in development and homeostasis of the cardiovascular system. Nat Genet 2000;24:171–174.

    Article  PubMed  CAS  Google Scholar 

  64. Svensson EC, Huggins GS, Lin H, et al. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 2000;25:353–356.

    Article  PubMed  CAS  Google Scholar 

  65. Tevosian SG, Deconinck AE, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000;101:729–739.

    Article  PubMed  CAS  Google Scholar 

  66. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995;82:803–814.

    Article  PubMed  CAS  Google Scholar 

  67. Isaac A, Sargent MG, Cooke J. Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science 1997;275:1301–1304.

    Article  PubMed  CAS  Google Scholar 

  68. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998;94:319–324.

    Article  PubMed  CAS  Google Scholar 

  69. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95:829–837.

    Article  PubMed  CAS  Google Scholar 

  70. Brueckner M, D’Eustachio P, Horwich AL. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci USA 1998;86:5035–5038.

    Article  Google Scholar 

  71. Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997:389:963–966.

    Article  PubMed  CAS  Google Scholar 

  72. Supp DM, Brueckner M, Kuehn MR, et al. Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 1999;126:5495–5504.

    PubMed  CAS  Google Scholar 

  73. Kathiriya IS, Srivastava D. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. Am J Med Genet 2001;97:271–279.

    Article  Google Scholar 

  74. Harvey RP. NK-2 homeobox genes and heart development. Dev Biol 1996;178:203–216.

    Article  PubMed  CAS  Google Scholar 

  75. Ranganayakulu G, Elliott D, Harvey R, Olson E. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 1998;125:3037–3048.

    PubMed  CAS  Google Scholar 

  76. Park M, Lewis C, Turbay D, et al. Differential rescue of visceral and cardiac defects in Drosophila by vertebrate tinman-related genes. Proc Natl Acad Sci USA 1998;95:9366–9371.

    Article  PubMed  CAS  Google Scholar 

  77. Fu Y, Yan W, Mohun TJ, Evans SM. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998;125:4439–4449.

    PubMed  CAS  Google Scholar 

  78. Grow MW, Kreig PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNks2-3 and XNkx2-5. Dev Biol 1998;204:87–196.

    Article  Google Scholar 

  79. Wang D-Z, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 2001;105:851–862.

    Article  PubMed  CAS  Google Scholar 

  80. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature 2000;407:221–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Garg, V., Srivastava, D. (2005). Genetic Underpinnings of Cardiogenesis and Congenital Heart Disease. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics