Skip to main content

Role of Glycine in Schizophrenia

  • Chapter
  • 1429 Accesses

Abstract

The glutamate (GLU) hypothesis of schizophrenia was first published in 1980 and was based on reduced Glu levels in the cerebrospinal fluid (CSF) of schizophrenic patients (1). Although it took a while, this negative correlation between Glu levels and schizophrenic symptoms has recently been confirmed (2). Further evidences are also in concert with a hypoactive glutamatergic system as one but not solely underlying mechanism in schizophrenia (see Chapter 7 by Bleich and Kornhuber) and one of these major findings is going back to the late 1950s when schizophrenia-like symptoms were described after administration of phencyclidine (PCP) in humans (3). However, a link between PCP-induced effects and the glutamatergic system was drawn not earlier than 20 years later when an interaction of PCP with the GluR and more specifically with the N-methyl-d-aspartate (NMDA) receptor was shown (46). Further antagonists that block the NMDA receptor in a competitive or noncompetitive manner induce schizophrenialike symptoms as well when they are given to humans and also to animals (711). More support for the GLU hypothesis derived from postmortem studies showing an increase of NMDA receptor density in several brain areas (1213) most probable as a consequence of lowered GLU release in these regions although differences regarding the NMDA subunits can be seen (1415). Adaptation in the density of other GluRs as α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), kainate-, and metabotropic receptors has also been described, but the findings are less concise and depend on the respective subunit of the receptor and on the anatomical structures (14,1617).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20:379–382.

    Article  CAS  PubMed  Google Scholar 

  2. Faustman WO, Bardgett M, Faull KF, Pfefferbaum A, Csernansky JG. Cerebrospinal fluid glutamate inversely correlates with positive symptom severity in unmedicated male schizophrenic/schizoaffective patients. Biol Psychiatry 1999; 45:68–75.

    Article  CAS  PubMed  Google Scholar 

  3. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. Study of a new schizophrenomimetic drug: Sernyl. Arch Neurol Psychiatry 1959; 81:363–369.

    CAS  Google Scholar 

  4. Lodge D, Anis NA. Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat. Eur J Pharmacol 1982; 77:203–204.

    Article  CAS  PubMed  Google Scholar 

  5. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methylaspartate. Br J Pharmacol 1983; 79:565–575.

    CAS  PubMed  Google Scholar 

  6. Lodge D, Aram JA, Church J, et al. Excitatory amino acids and phencyclidine-like drugs. In: Hicks TP, Lodge D, McLennan H, eds. Excitatory Amino Acid Transmission. New York: Alan R. Liss Inc, 1987:83–90.

    Google Scholar 

  7. Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999; 33:523–533.

    Article  CAS  PubMed  Google Scholar 

  8. Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 1994; 51:199–214.

    CAS  PubMed  Google Scholar 

  9. Lahti AC, Weiler MA, Michaelidis T, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001; 25:455–467.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt WJ, Kretschmer BD. Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 1997; 21:381–392.

    Article  CAS  PubMed  Google Scholar 

  11. Newcomer JW, Farber NB, Jetovic-Todorovic V, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999; 20:106–118.

    Article  CAS  PubMed  Google Scholar 

  12. Ishimaru M, Kurumaji A, Toru M. Increase in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 1994; 35:84–95.

    Article  CAS  PubMed  Google Scholar 

  13. Grimwood S, Slater P, Deakin JFW, Hutson PH. NR2B-containing NMDA receptors are upregulated in temporal cortex in schizophrenia. Neuroreport 1999; 10:461–465.

    Article  CAS  PubMed  Google Scholar 

  14. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Rev 2000; 31:288–294.

    Article  CAS  PubMed  Google Scholar 

  15. Dracheva S, Marras SA, Elhakem SL, Kramer FR, Davis KL, Haroutunian V. N-methyl-d-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 2001; 158:1400–1410.

    Article  CAS  PubMed  Google Scholar 

  16. Noga JT, Hyde TM, Bachus SE, Herman MM, Kleinman JE. AMPA receptor binding in the dorsolateral prefrontal cortex of schizophrenics and controls. Schizophr Res 2001; 48:361–363.

    Article  CAS  PubMed  Google Scholar 

  17. Meador-Woodruff JH, Hogg AJ, Smith RE. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 2001; 55:631–640.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325:529–531.

    Article  CAS  PubMed  Google Scholar 

  19. Bonhaus DW, Burge BC, McNamara JO. Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel. Eur J Pharmacol 1987; 142:489–490.

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds IJ, Murphy SN, Miller RJ. 3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci USA 1987; 84:7744–7748.

    Article  CAS  PubMed  Google Scholar 

  21. Wong EHF, Knight AR, Ransom R. Glycine modulates [3H] MK-801 binding to the NMDA receptor in rat brain. Eur J Pharmacol 1987; 142:487–488.

    Article  CAS  PubMed  Google Scholar 

  22. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241:835–837.

    Article  CAS  PubMed  Google Scholar 

  23. Danysz W, Parsons AC. Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998; 50:597–664.

    CAS  PubMed  Google Scholar 

  24. Poyatos I, Ponce J, Aragon C, Gimenez C, Zafra F. The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Brain Res Mol Brain Res 1997; 49:63–70.

    Article  CAS  PubMed  Google Scholar 

  25. Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat. CNS Eur J Neurosci 1995; 7:1342–1352.

    Article  CAS  Google Scholar 

  26. Moreau JL, Le Pen G, Alberati D, Borroni E, Lave T, Heitz MP. Glycine reversal of prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal lesioned rats. Int J Neuropsychopharmacol 2002; 5:S63.

    Google Scholar 

  27. Bristow LJ, Hutson PH, Thorn L, Tricklebank MD. The glycine/NMDA receptor antagonist, R-(+)-HA-966, blocks activation of the mesolimbic dopamine system induced by phencyclidine and dizocilpine (MK-801) in rodents. Br J Pharmacol 1993; 108:1156–1163.

    CAS  PubMed  Google Scholar 

  28. Bristow LJ, Hutson PH, Kulagowski JJ, et al. Anticonvulsant and behavioral profile of L-701,324, a potent, orally active antagonist at the glycine modulatory site on the N-methyl-d-aspartate receptor complex. J Pharmacol Exp Thera 1996; 279:492–501.

    CAS  Google Scholar 

  29. Danysz W, Essman U, Bresink I, Wilke R. Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav 1994; 48:111–118.

    Article  CAS  PubMed  Google Scholar 

  30. Kretschmer BD, Kratzer U, Breithecker K, Koch M. ACEA1021, a glycine site antagonist with minor psychotomimetic and amnestic effects in rats. Eur J Pharmacol 1997; 331:109–116.

    Article  CAS  PubMed  Google Scholar 

  31. Kretschmer BD. Ligands of the NMDA receptor-associated glycine recognition site and motor behavior. Amino Acids 1998; 14:227–234.

    Article  CAS  PubMed  Google Scholar 

  32. Karcz-Kubicha M, Wedzony K, Zajaczkowski W, Danysz W. NMDA receptor antagonists acting at the glycineB site in rat models for antipsychotic-like activity. J Neural Transm 1999; 106:1189–1204.

    Article  CAS  PubMed  Google Scholar 

  33. Hutson PH, Bristow LJ, Thorn L, Tricklebank MD. R-(+)-HA-966, a glycine/NMDA receptor antagonist, selectively blocks the activation of the mesolimbic dopamine system by amphetamine. Br J Pharmacol 1991; 103:2037–2044.

    CAS  PubMed  Google Scholar 

  34. Tricklebank MD, Saywell K. Behavioural properties of antagonists acting at the glycine modulatory site on the NMDA receptor/ion channel complex. Soc Neurosci Abstr 1990; 16:200.

    Google Scholar 

  35. Tricklebank MD, Bristow LJ, Hutson PH, Leeson PD, Rowley M, Saywell K, Singh L, Tattersall FT, Williams BJ. The anticonvulsant and behavioural profile of L-687,414, a partial agonist acting at the glycine modulatory site on the N-methyl-d-aspartate (NMDA) receptor complex. Br J Pharmacol 1994; 113:729–736.

    CAS  PubMed  Google Scholar 

  36. Witkin JM, Steele TD, Sharpe LG. Effects of strychnine-insensitive glycine receptor ligands in rats discriminating dizocilpine or phencyclidine from saline. J Pharmacol Exp Ther 1997; 280:46–52.

    CAS  PubMed  Google Scholar 

  37. Beardsley PM, Ratti E, Balster RL, Willetts J, Trist D. The selective glycine antagonist gavestinel lacks phencyclidine-like behavioral effects. Behav Pharmacol 2002; 13:583–592.

    CAS  PubMed  Google Scholar 

  38. Koek W, Colpaert FC. Selective blockade of N-methyl-d-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencyclidine-like behavioral effects. J Pharmacol Exp Ther 1990; 252:349–357.

    CAS  PubMed  Google Scholar 

  39. Kretschmer BD, Bubser M, Schmidt WJ. Behavioral and neurochemical actions of the strychnine-insensitive glycine receptor antagonist 7-chlorokynurenate in rats. Eur J Pharmacol 1995; 28:37–45.

    Article  Google Scholar 

  40. Kretschmer BD, Schmidt WJ. Behavioral effects mediated by the modulatory glycine site of the NMDA receptor in the anterodorsal striatum and nucleus accumbens. J Neurosci 1996; 16:1561–1569.

    CAS  PubMed  Google Scholar 

  41. Kretschmer BD. unpublished observations.

    Google Scholar 

  42. Kretschmer BD, Zadow B, Volz TL, Volz L, Schmidt WJ. The contribution of the different binding sites of the N-methyl-d-aspartate (NMDA) receptor to the expression of behavior. J Neural Transm 1992; 87:23–35.

    Article  CAS  Google Scholar 

  43. Herberg LJ, Rose IC. The effect of MK-801 and other antagonists of NMDA-type glutamate receptors on brain-stimulation reward. Psychopharmacology 1989; 99:87–90.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Amin HA, Weickert CS, Weinberger DR, Lipska BK. Delayed onset on enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol Psychiatry 2001; 49:528–539.

    Article  CAS  PubMed  Google Scholar 

  45. Kato K, Shishido T, Ono M, Shishido K, Kobayashi M, Suzuki H, et al. Effects of phencyclidine on behavior and extracellular levels of dopamine and its metabolites in neonatal ventral hippocampal damaged rats. Psychopharmacology 2000; 150:163–169.

    Article  CAS  PubMed  Google Scholar 

  46. Kato K, Shishido T, Ono M, Shishido K, Kobayashi M, Niwa S. Glycine reduces novelty-and methamphetamine-induced locomotor activity in neonatal ventral hippocampal damaged rats. Neuropsychopharmacology 2001; 24:330–332.

    Article  CAS  PubMed  Google Scholar 

  47. Becker a, Grecksch G, Bernstein HG, Hollt V, Bogerts B. Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology 1999; 144:333–338.

    Article  CAS  PubMed  Google Scholar 

  48. Lipska BK, Weinberger DR. Hippocampal damage in the neonatal rat as a model of some aspects of schizophrenia. In: Kato N, ed. The Hippocampus: Functions and Clinical Relevance. Amsterdam: Elsevier, 1996:465–475.

    Google Scholar 

  49. Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 1993; 9:67–75.

    CAS  PubMed  Google Scholar 

  50. Javitt DC, Frusciante M. Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology 1997; 129:96–98.

    Article  CAS  PubMed  Google Scholar 

  51. Javitt DC, Balla A, Sershen H, Lajtha A. A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors Biol Psychiatry 1999; 45:668–679.

    Article  CAS  PubMed  Google Scholar 

  52. Harsing LG, Gacsalyi I, Szabo GSE, et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 2003; 74:811–825.

    Article  CAS  PubMed  Google Scholar 

  53. Toth E, Lajtha A. Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 1986; 11:393–400.

    Article  CAS  PubMed  Google Scholar 

  54. Contreras PC. d-serine antagonized phencyclidine-and MK-801-induced stereotyped behavior and ataxia. Neuropharmacology 1990; 29:291–293.

    Article  CAS  PubMed  Google Scholar 

  55. Tanii Y, Nishikawa T, Hashimoto A, Takahashi K. Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Ther 1994; 269:1040–1048.

    CAS  PubMed  Google Scholar 

  56. Andine P, Widermark N, Axelsson R, et al. Characterization of MK-801-induced behavior as a putative rat model of psychosis. J Pharmacol Exp Ther 1999; 290:1393.

    CAS  PubMed  Google Scholar 

  57. Rao TS, Kim HS, Lehmann J, Martin LL, Wood PL. Interactions of phencyclidine receptor agonist MK-801 with dopaminergic system: regional studies in the rat. J Neurochem 1990; 54:1157–1162.

    Article  CAS  PubMed  Google Scholar 

  58. Tiedtke PI, Bischoff C, Schmidt WJ. MK-801-induced stereotypy and its antagonism by neuroleptic drugs. J Neural Transm 1990; 81:173–182.

    Article  CAS  Google Scholar 

  59. Albers GW, Atkinso RP, Kelly RE, Rosenbaum DM. Safety, tolerability, and pharmacokinetics of the N-methyl-d-aspartate antagonist dextrorphan in patients with acute stroke. Stroke 1995; 26:254–258.

    CAS  PubMed  Google Scholar 

  60. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325:529–531.

    Article  CAS  PubMed  Google Scholar 

  61. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 2001; 156:117–154.

    Article  CAS  PubMed  Google Scholar 

  62. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001; 156:234–258.

    Article  CAS  PubMed  Google Scholar 

  63. Cadenhead KS, Swerdlow NR, Shafer KM, Diaz M, Braff DL. Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatry 2000; 157:1660–1668.

    Article  CAS  PubMed  Google Scholar 

  64. Dawson ME, Hazlett EA, Filion DL, Nuechterlein KH, Schell AM. Attention and schizophrenia: impaired modulation of the startle reflex. J Abnorm Psychol 1993; 102:633–641.

    Article  CAS  PubMed  Google Scholar 

  65. Ford JM, Roth WR, Menon V, Pfefferbaum A. Failures of automatic and strategic processing in schizophrenia: comparisons of event-related brain potential and startle blink modification. Schizophr Res 1999; 37:149–163.

    Article  CAS  PubMed  Google Scholar 

  66. Parwani A, Duncan EJ, Barlett E, et al. Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry 2000; 47:662–669.

    Article  CAS  PubMed  Google Scholar 

  67. Mansbach RS, Geyer MA. Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 1989; 2:299–308.

    Article  CAS  PubMed  Google Scholar 

  68. Furuya Y, Kagaya T, Nishizawa Y, Ogura H. Differential effects of the strychnine-insensitive glycine site antagonist (+)-HA-966 on the hyperactivity and the disruption of prepulse inhibition induced by phencyclidine in rats. Brain Res 1998; 781:227–235.

    Article  CAS  PubMed  Google Scholar 

  69. Bristow LJ, Landon L, Saywell KL, Tricklebank MD. The glycine/NMDA receptor antagonist, L-701,324 reverses isolation-induced deficits in prepulse inhibition in the rat. Psychopharmacology 1995; 118:230–232.

    Article  CAS  PubMed  Google Scholar 

  70. Depoortere R, Perrault G, Sanger DJ. Prepulse inhibition of the startle reflex in rats: effects of compounds acting at various sites on the NMDA receptor complex. Behav Pharmacol 1999; 10:51–62.

    Article  CAS  PubMed  Google Scholar 

  71. Baron BM, Harrison BL, Kehne JH, et al. Pharmacological characterization of MDL 105,519, an NMDA receptor glycine site antagonist. Eur J Pharmacol 1997; 323:181–192.

    Article  CAS  PubMed  Google Scholar 

  72. Balster RL, Mansbach RS, Shelton KL, et al. Behavioural pharmacology of two novel substituted quinoxalidone glutamate antagonists. Behav Pharmacol 1995; 6:577–590.

    CAS  PubMed  Google Scholar 

  73. Furuya Y, Ogura H. Competitive NMDA and strychnine-insensitive glycine-site antagonists disrupt prepulse inhibition. Pharmacol Biochem Behav 1997; 57:909–913.

    Article  CAS  PubMed  Google Scholar 

  74. Kretschmer BD, Koch M. Role of the strychnine-insensitive glycine binding site in the nucleus accumbens and anterodorsal striatum in sensorimotor gating: a behavioral and microdialysis study. Psychopharmacology 1997; 130:131–138.

    Article  CAS  PubMed  Google Scholar 

  75. Kretschmer BD, Koch M. The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Res 1998; 798:204–210.

    Article  CAS  PubMed  Google Scholar 

  76. Le Pen G, Moreau JL. Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropharmacology 2002; 27:1–11.

    Google Scholar 

  77. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23:437–458.

    CAS  PubMed  Google Scholar 

  78. Malhotra AK, Pinals DA, Weingartner H, et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14:301–307.

    Article  CAS  PubMed  Google Scholar 

  79. Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13:9–19.

    Article  CAS  PubMed  Google Scholar 

  80. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 1995; 6:869–872.

    Article  CAS  PubMed  Google Scholar 

  81. Malhotra AK, Pinals DA, Adler CM, et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997; 17:141–150.

    Article  CAS  PubMed  Google Scholar 

  82. Levy R, Goldman-Rakic PS. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res 2000; 133:23–32.

    Article  CAS  PubMed  Google Scholar 

  83. Doyle KM, Feerick S, Kirkby DL, Eddleston A, Higgins GA. Comparison of various N-methyl-d-aspartate receptor antagonists in a model of short-term memory and on overt behaviour. Behav Pharmacol 1998; 9:679–681.

    Article  Google Scholar 

  84. Clissold DB, Karbon EW, Ferkany JW, Hartman T, Pontecorvo MJ. Effects of strychnineinsensitive glycine receptor antagonists and sigma agents on working memory performance: comparison with dizocilpine and scopolamine. Behav Pharmacol 1992; 3:393–402.

    Article  CAS  PubMed  Google Scholar 

  85. Willmore CB, LaVeccia KL, Wiley JL. NMDA antagonists produce site-selective impairment of accuracy in a delayed nonmatch-to-sample task in rats. Neuropharmacology 2001; 41:916–927.

    Article  CAS  PubMed  Google Scholar 

  86. Tsai GE, Falk WE, Gunther J, Coyle JT. Improved cognition in Alzheimer’s disease with short-term d-cycloserine treatment. Am J Psychiatry 1999; 156:467–469.

    CAS  PubMed  Google Scholar 

  87. Schuster GM, Schmidt WJ. d-cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task. Eur J Pharmacol 1992; 224:97–98.

    Article  CAS  PubMed  Google Scholar 

  88. Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate antagonist, AP5. Nature 1986; 319:774–776.

    Article  CAS  PubMed  Google Scholar 

  89. Tsien JT, Huerta T, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1997; 87:1327–1338.

    Article  Google Scholar 

  90. Gainetdinov RR, Mohn AR, Caron MG. Genetic animal models: focus on schizophrenia. Trends Neurosci 2001; 24:527–533.

    Article  CAS  PubMed  Google Scholar 

  91. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 2001; 21:750–757.

    CAS  PubMed  Google Scholar 

  92. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98:427–436.

    Article  CAS  PubMed  Google Scholar 

  93. Kew JN, Koester A, Moreau JL, et al. Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 2000; 20:4037–4049.

    CAS  PubMed  Google Scholar 

  94. Ballard TM, Pauly-Evers M, Higgins GA, et al. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 2002; 22:6713–6723.

    CAS  PubMed  Google Scholar 

  95. Davies BM, Beech HR. The effects of 1-arylcyclohexylamine (sernyl) on tweleve normal volunteers. J Ment Sci 1960; 106:912–924.

    CAS  PubMed  Google Scholar 

  96. Bakker CB, Amini FB. Observations on psychotomimetic effects of sernyl. Compr Psychiatry 1961; 2:198–201.

    Article  Google Scholar 

  97. Domino EF, Chodoff P, Corsson G. Pharmacological effects of CI-581, a new dissociative anesthetic in man. Clin Pharmacol Ther 1965; 6:279–291.

    CAS  PubMed  Google Scholar 

  98. Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanism and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990; 42:223–285.

    CAS  PubMed  Google Scholar 

  99. Kristensen JD, Svensson B, Gordh T. The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain 1992; 51:249–253.

    Article  CAS  PubMed  Google Scholar 

  100. Albers GW, Clark WM, Atkinson RP, Madden K, Data JL, Whitehouse MJ. Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 1999; 30:508–513.

    CAS  PubMed  Google Scholar 

  101. Danysz W, Parsons CG, Karcz-Kubicha M, et al. Glycine B antagonists as potential therapeutic agents. Amino Acids 1998; 14:235–240.

    Article  CAS  PubMed  Google Scholar 

  102. The North American Glycine Antagonist in Neuroprotection (GAIN) investigators. Phase II studies of the glycine antagonist GV 150526 in acute stroke. Stroke 2000; 31:358–365.

    Google Scholar 

  103. Sacco RL, DeRosa JT, Haley EC, et al. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA 2001; 285: 1719–1728.

    Article  CAS  PubMed  Google Scholar 

  104. Dyker AG, Lees KR. Safety and tolerability of GV150526 (a glycine site antagonist at the N-methyl-D-aspartate receptor) in patients with acute stroke. Stroke 1999; 30:986–992.

    CAS  PubMed  Google Scholar 

  105. Waziri R. Glycine therapy of schizophrenia. Biol Psychiatry 1988; 23:209–214.

    Article  Google Scholar 

  106. Rosse RB, Theut SK, Banay-Schwartz M, et al. Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label pilot study. Clin Neuropharmacol 1989; 12:416–424.

    Article  CAS  PubMed  Google Scholar 

  107. Costa J, Khaled E, Sramek J, Bunney W, Potkin SG. An open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory schizophrenics. J Clin Psychopharmacol 1990; 10:71–72.

    Article  CAS  PubMed  Google Scholar 

  108. Potkin SG, Costa J, Roy S, Sramek J, Jin Y, Gulasekaram B. Glycine in the treatment of schizophrenia—Theory and preliminary results. In: Meltzer, HY, ed. Novel Antipsychotic Drugs. New York: Raven Press Ltd., 1992:179–188.

    Google Scholar 

  109. Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP. Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 1994; 151:1234–1236.

    CAS  PubMed  Google Scholar 

  110. Goff DC, Tsai G, Monoach DS, Coyle JT. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 1995;152:1213–1215.

    CAS  PubMed  Google Scholar 

  111. Goff DC, Evins AE. Negative symptoms in schizophrenia: neurobiological models and treatment response. Harvard Rev Psychiatry 1998; 6:59–77.

    Article  CAS  Google Scholar 

  112. Goff DC, Tsai G, Levitt J, et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56:21–27.

    Article  CAS  PubMed  Google Scholar 

  113. van Berckel BN, Hijman R, van der Linden JA, Westenberg HG, van Ree JM, Kahn RS. Efficacy and tolerance of D-cycloserine in drug-free schizophrenic patients. Biol Psychiatry 1996; 40:1298–1300.

    Article  PubMed  Google Scholar 

  114. Heresco-Levy U, Javitt DC, Ermilov M, Maordel C, Horowitz A, Kelly D. Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 1996; 169:610–617.

    Article  CAS  PubMed  Google Scholar 

  115. Heresco-Levy U, Javitt DC, Ermilov M, Silipo G, Shimoni J. Double-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmacol 1998; 1:131–135.

    Article  PubMed  Google Scholar 

  116. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia Arch Gen Psychiatry 1999; 56:29–36.

    Article  CAS  PubMed  Google Scholar 

  117. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 2002; 159:480–482.

    Article  PubMed  Google Scholar 

  118. Tsai G, Yang P, Chung LC, Lange N, Coyle JT. d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44:1081–1089.

    Article  CAS  PubMed  Google Scholar 

  119. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT. d-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 1999; 156:1822–1825.

    CAS  PubMed  Google Scholar 

  120. Potkin SG, Jin Y, Bunney BG, Costa J, Gulasekaram B. Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry 1999; 156:145–147.

    CAS  PubMed  Google Scholar 

  121. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 2000; 157:826–828.

    Article  CAS  PubMed  Google Scholar 

  122. Javitt DC, Silipo G, Cienfuegos A, et al. Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 2001; 4:385–391.

    Article  CAS  PubMed  Google Scholar 

  123. Goff DC, Tsai CB, Manoach DS, Flood J, Darby DG, Coyle JT. d-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 1996; 153:1628–1630.

    CAS  PubMed  Google Scholar 

  124. Evins AE, Amino E, Posever TA, Toker R, Goff DC. d-cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res 2002; 56:19–23.

    Article  PubMed  Google Scholar 

  125. Goff DC, Henderson DC, Evins AE, Amino E. A placebo-controlled crossover trial of Dcycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 1999; 45:512–514.

    Article  CAS  PubMed  Google Scholar 

  126. Evins AE, Amico ET, Shih V, Goff DC. Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm 1997; 104:761–766.

    Article  CAS  PubMed  Google Scholar 

  127. Jardemark KE, Ai J, Ninan I, Wang RY. Biphasic modulation of NMDA-induced responses in pyramidal cells of the medial prefrontal cortex by Y-931, a potential atypical antipsychotic drug. Synapse 2001; 41:294–300.

    Article  CAS  PubMed  Google Scholar 

  128. D’Souza DC, Gil R, Cassello K, et al. IV glycine and oral d-cycloserine effects on plasma and CSF amino acids in healthy humans. Biol Psychiatry 2000; 47:450–462.

    Article  PubMed  Google Scholar 

  129. Shoham S, Javitt DC, Heresco-Levy U. Chronic high-dose glycine nutrition: effects on rat brain cell morphology. Biol Psychiatry 201; 49:876–885.

    Google Scholar 

  130. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 2003; 54:515–528.

    Article  PubMed  Google Scholar 

  131. Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 200; 31:330–341.

    Google Scholar 

  132. Sawa A, Snyder SH. Schizophrenia: neural mechanisms for novel therapies. Mol Med 2003; 9:3–9.

    PubMed  Google Scholar 

  133. Waterworth DM, Bassett AS, Brzustowicz LM. Recent advances in the genetics of schizophrenia. Cell Mol Life Sci 2002; 59:331–348.

    Article  CAS  Google Scholar 

  134. Wong AH, van Tol HHM. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 2003; 27:269–306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kretschmer, B.D. (2005). Role of Glycine in Schizophrenia. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics