Skip to main content

Abstract

l-Glutamate, one of the main neurotransmitters in the central nervous system (CNS), acts on two groups of receptors: (a) a group of ionotropic receptors that includes N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainate receptors, and (2) a group of metabotropic receptors (mGluRs). Ionotropic glutamate receptors, which are ligand-gated ion channels permeable for Ca2+, Na+, and K+, are responsible for fast and relatively large changes in membrane conductance (1,2) and are covered in Chapter 4._In contrast, stimulation of mGluRs evokes a complex cascade of intracellular events that indirectly modulates neuronal excitability and produces delayed and slow synaptic currents (1,2). Both groups of glutamate receptors are involved in several physiological and pathological functions including neuronal growth and plasticity, neurotoxicity, cognitive and motor behavior, depression, anxiety, drug abuse, epilepsy, and others. Some ligands of ionotropic receptors have already been introduced to clinical practice (e.g., amantadine, memantine, d-cycloserine), whereas mGluRs may be considered as an emerging target for the treatment of several diseases (e.g., Parkinson’s disease, depression, epilepsy and others; see also Chapters 10, 19, 21, and 22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harata N, Katayama J, Takeshita Y, Murai Y, Akaike N. Two components of metabotropic glutamate responses in acutely dissociated CA3 pyramidal neurons of the rat. Brain Res 1996; 711:223–233.

    CAS  PubMed  Google Scholar 

  2. Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999; 38:1431–1476.

    CAS  PubMed  Google Scholar 

  3. Bardsley ME, Roberts PJ. Stimulation of phospatidyloinositol turnover in rat brain by glutamate and aspartate. Brit J Pharmacol 1983; 79:401.

    Google Scholar 

  4. Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 1985; 317:717–709.

    CAS  PubMed  Google Scholar 

  5. Nicoletti F, Iadarola MJ, Wroblewski JT, Costa E. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. Proc Natl Acad Sci USA 1986; 83:1931–1935.

    CAS  PubMed  Google Scholar 

  6. Nicoletti F, Meek JL, Idarola MJ, Chuang DM, Roth BL, Costa E. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem 1986; 46:40–46.

    CAS  PubMed  Google Scholar 

  7. Nicoletti F, Wroblewski JT, Novelli A, Alho H, Guidotti A, Costa E. The activation of inositol phospholipid metabolism as a sign transducing system for excitatory amino acids in primary cultures of cerebral granule cells. J Neurosci 1986; 6:1905–1911.

    CAS  PubMed  Google Scholar 

  8. Sugiyama H, Ito I, Hirono C. Anew type of glutamate receptor linked to inositol phospholipid metabolism. Nature 1987; 325:531–533.

    CAS  PubMed  Google Scholar 

  9. De Blasi A, Conn PJ, Pin J-P, Nicoletti F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001; 22:114–120.

    PubMed  Google Scholar 

  10. Fagni L, Chavis P, Ango F, Bockaert J. Complex interactions between mGluRs intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 2000; 23:80–88.

    CAS  PubMed  Google Scholar 

  11. Pin J-P, Duvoisin R. Review: neurotransmiter receptors I. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 1995; 34:1–26.

    CAS  PubMed  Google Scholar 

  12. Malherbe P, Knoflach F, Broger C, et al. Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor. Mol Pharmacol 2001; 60:944–954.

    CAS  PubMed  Google Scholar 

  13. Yao Y, Pattabiraman N, Huang X-P, Hampson DR. Molecular pharmacology of the ligand binding pocket of mGlur3. Neurophamacology (Abstracts) 2002; 43:313.

    Google Scholar 

  14. Gasparini F, Floersheim P, Flor PJ, et al. Discovery and characterization of non-competitive antagonists of group I metabotropic glutamate receptors. Il Farmaco 2001; 56:95–99.

    CAS  PubMed  Google Scholar 

  15. Knoflach F, Mutel V, Jolidon S, et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA 2001; 98:13402–13407.

    CAS  PubMed  Google Scholar 

  16. Johnson BG, Wright RA, Valli MJ, Massey SM, Monn JA, Schoepp DD. Binding, functional, and behavioral effects of novel mGlu2/3 receptor agonists. Neurophamacology (Abstracts) 2002; 43:290–291.

    Google Scholar 

  17. Flor PJ, Maj M, Dragic Z, et al. Positive allosteric modulators of metabotropic glutamate receptor subtype 4: pharmacological and molecular characterization. Neurophamacology (Abstracts) 2002; 43:286.

    Google Scholar 

  18. Umemori H, Inoue G, Kume S, et al. Activation of G protein Gq/11 through tyrosine phosphorylation of the α subunit. Science 1997; 276:1878–1881.

    CAS  PubMed  Google Scholar 

  19. Heuss C, Scanziani M, Gahwiler BH, Geber U. G-protein independent signaling mediated by metabotropic glutamate receptors. Nature Neurosci 1999; 2:1070–1077.

    CAS  PubMed  Google Scholar 

  20. Nash MS, Young KW, Challis RAJ, Nahorski SR. Receptor-specific messenger oscillations. Nature 2001; 413:381–382.

    CAS  PubMed  Google Scholar 

  21. Sallese M, Salvatore L, D’Urbano E, et al. The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 2000; 14:2569–2580.

    CAS  PubMed  Google Scholar 

  22. Tu JC, Xiao B, Yuan JP, et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998; 21:717–726.

    CAS  PubMed  Google Scholar 

  23. Peavy RD, Sorensen SD, Conn JP. Differential regulation of metabotropic glutamate receptor 5-mediated phosphoinositide hydrolysis and extracellular signal-regulated kinase responses by protein kinase C in cultured astrocytes. J Neurochem 2002; 83:110–118.

    CAS  PubMed  Google Scholar 

  24. Thandi S, Blank JL, Challiss RAJ. Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. J Neurochem 2002; 83:1139–1153.

    CAS  PubMed  Google Scholar 

  25. Tozzi A, Guatteo E, Caputi L, Bernardi G, Mercuri NB. Group I mGluRs coupled to G proteins are regulated by tyrosine kinase in dopamine neurons of the rat midbrain. J Neurophysiol 2001; 85:2490–2497.

    CAS  PubMed  Google Scholar 

  26. Orlando LR, Dunah AW, Standaert DG, Young AB. Tyrosine phosphorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuropharmacology 2002; 43:161–173.

    CAS  PubMed  Google Scholar 

  27. Minakami R, Jinnai N, Sugiyamam H. Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J Biol Chem 1997; 272:20291–20298.

    CAS  PubMed  Google Scholar 

  28. Mundel SJ, Matharu A-L, Pula G, Roberts PJ, Kelly E. Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin-and dynamin-dependent. J Neurochem 2001; 78:546–551.

    Google Scholar 

  29. Poisik OV, Mannaioni G, Traynelis S, Smith Y, Conn JP. Distinct functional roles of metabotropic glutamate receptors 1 and 5 in the rat globus pallidus. J Neurosci 2003; 23:122–130.

    PubMed  Google Scholar 

  30. Schoepp DD. Unveiling the function of presynaptic metabotropic gluatamte receptors in the central nervous system. J Pharmacol Exp Ther 2001; 299:12–20.

    CAS  PubMed  Google Scholar 

  31. Schaffhauser H, Cai Z, Hubalek F, et al. cAMP-dependent protein kinase inhibits mGluR2 coupling to G-proteins by direct receptor phosphorylation. J Neurosci 2000; 20: 5663–5670.

    CAS  PubMed  Google Scholar 

  32. Schoepp DD, Johnson BG, Wright RA, Salhoff CR, Monn JA. Potent, stereoselective, and brain region selective modulation of second messengers in the rat brain by (+)LY354740, a novel group II metabotropic glutamate receptor agonist. Naunyn Schmiedeberg Arch Pharmacol 1998; 358:175–180.

    CAS  Google Scholar 

  33. Schoepp DD, Salhoff CR, Wright RA, et al. The novel metabotropic receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology 1996; 35:1661–1672.

    CAS  PubMed  Google Scholar 

  34. Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F. Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Pharmacol 1998; 10:3629–3641.

    CAS  Google Scholar 

  35. Perroy J, Prezeau L, De Ward M, Shigemoto R, Bockaert J, Fagni L. Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci 2000; 20:7896–7904.

    CAS  PubMed  Google Scholar 

  36. Nawy S, Jahr CE. Suppression by glutamate of cGMP-activatetd conductance in retinal bipolar cells. Nature 1990; 346:269–271.

    CAS  PubMed  Google Scholar 

  37. Schaffhauser H, Macek TA, Alagarsamy S, Conn PJ. Effects of PKC activation on mGluR2 phosphorylation and function. Neuropharmacology (Abstracts) 1999; 38:A40.

    Google Scholar 

  38. Kamiya H, Yamamoto C. Phorbol ester and forskolin suppress the presynaptic inhibitory action of group-II metabotropic glutamate receptor at rat hippocampal mossy fibre synapse. Neuroscience 1997; 80:89–94.

    CAS  PubMed  Google Scholar 

  39. Macek TA, Schaffhauser H, Conn JP. Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J Neurosci 1998; 18:6138–6146.

    CAS  PubMed  Google Scholar 

  40. Swartz KJ, Merritt A, Bean BP, Movinger DM. Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 1993; 361:165–168.

    CAS  PubMed  Google Scholar 

  41. Herrero L, Vasquez E, Miras-Portugal MT, Sanchez-Prieto J. Decrease in [Ca2+]c but not in cAMP mediates L-AP4 inhibition in glutamate release: PKC-mediated supression this inhibitory pathway. Eur J Neurosci 1996; 8:700–709.

    CAS  PubMed  Google Scholar 

  42. Nakajima Y, Yamamoto T, Nakayama T, Nakanishi S. A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J Biol Chem 1999; 274:27573–27577.

    CAS  PubMed  Google Scholar 

  43. Baude A, Nusser Z, Roberts JDB, Mulvihill E, McIlhinney RAJ, Somogyi P. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 1993; 11:771–787.

    CAS  PubMed  Google Scholar 

  44. Spooren WPJM, Gasparini F, Salt TE, Kuhn R. Novel allosteric antagonists shed light on mGlu5 receptors and CNS disorders. Trends Pharmacol Sci 2001; 22:331–337.

    CAS  PubMed  Google Scholar 

  45. Kerner JA, Standaert DG, Penney JB Jr., Young AB, Landwehrmeyer GB. Expression of group one metabotropic glutamate receptor subunit mRNA in neurochemically identified neurons in the rat neostriatum, neocortex and hippocampus. Mol Brain Res 1997; 48:259–269.

    CAS  PubMed  Google Scholar 

  46. Hubert GW, Paquet M, Smith Y. Differential subcellular localization of mGluR1 and mGluR5 in the rat and monkey substantia nigra. J Neurosci 2001; 21:1838–1847.

    CAS  PubMed  Google Scholar 

  47. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in rat hippocampus. Eur J Neurosci 1996; 8:1488–1500.

    CAS  PubMed  Google Scholar 

  48. Lujan R, Roberts DB, Shigemoto R, Ohishi H, Somogyi P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanatomy 1997; 3:219–241.

    Google Scholar 

  49. Fotuhi M, Sharp AH, Glatt CE, et al. Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-triphosphate receptor in rat brain. J Neurosci 1993; 13:2001–2012.

    CAS  PubMed  Google Scholar 

  50. Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol A, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 1995; 355:455–469.

    CAS  PubMed  Google Scholar 

  51. Van den Pol AN, Romano C, Ghosh P. Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J Comp Neurol 1995; 362:134–150.

    PubMed  Google Scholar 

  52. Neki A, Ohishi H, Kaneko T, Shigemoto R, Nakanishi S, Mizuno T. Pre-and postsynaptic localization of a metabotropic glutamate receptor, mGluR2, in the rat brain: an immunohistochemical study with a monoclonal antibody. Neurosci Lett 1996; 202:197–200.

    CAS  PubMed  Google Scholar 

  53. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ. The metabotropic glutamate receptors, mGluR2 and mGluR3 show unique postsynaptic, presynaptic and glial localizations. Neuroscience 1996; 71:949–976.

    CAS  PubMed  Google Scholar 

  54. Schaffhauser H, Richards JG, Cartmell J, et al. In vitro binding characteristics of a new selective group II metabotropic glutamate receptor radioligand, [3H]LY 354740, in rat brain. Mol Pharmacol 1998; 53:228–233.

    CAS  PubMed  Google Scholar 

  55. Wright RA, Arnold MA, Wheeler WJ, Ornstein PL, Shoepp DD. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. J Pharmacol Exp Ther 2001; 298:453–460.

    CAS  PubMed  Google Scholar 

  56. Shigemoto R, Kinoshita A, Wada E, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in rat hippocampus. J Neurosci 1997; 17:1503–1522.

    Google Scholar 

  57. Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 1998; 393:332–352.

    CAS  PubMed  Google Scholar 

  58. Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localization of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 2002; 110:403–420.

    CAS  PubMed  Google Scholar 

  59. Berthele A, Platzer S, Laurie DJ, et al. Expression of glutamate receptor subtype mRNA (mGluR1-8) in human cerebellum. Neuroreport 1999; 10:3861–3867.

    CAS  PubMed  Google Scholar 

  60. Dalezios Y, Lujan R, Shigemoto R, Roberts JDB, Somogyi P. Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals and on interneurons in the rat somatosensory cortex. Cereb Cortex 2002; 12:961–974.

    PubMed  Google Scholar 

  61. Bell MJ, Richardson PJ, Lee K. Functional and molecular characterization of metabotropic glutamate receptors expressed in striatal cholinergic interneurones. J Neurochem 2002; 81:142–149.

    CAS  PubMed  Google Scholar 

  62. Testa CM, Standaert DG, Young AB, Penney JB Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 1994; 14, 3005–3018.

    CAS  PubMed  Google Scholar 

  63. Congar P, Leinekugel X, Beb-Ari Y, Crepel V. A long-lasting calcium-activated non selective cationic current is generated by synaptic stimulation or exogenous acivation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 1997; 171: 566–1579.

    Google Scholar 

  64. Guatteo E, Mercuri NB, Berbardi G, Knopfel T. Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. J Neurophysiol 1999; 82:974–1981.

    Google Scholar 

  65. Katayama J, Akaike N, Nabekura J. Characterization of pre-and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 2003; 45:101–115.

    CAS  PubMed  Google Scholar 

  66. Lan J, Skeberdis VA, Jover T, Zheng X, Benett MVL, Zukin S. Activation of metabotropic glutamate receptor 1 accelerates NMDA receptor trafficking. J Neurosci 2001; 21:6058–6068.

    CAS  PubMed  Google Scholar 

  67. Pisani A, Bonsi P, Centoze D, Bernardi G, Calabresi P. Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons. Neuropharmacology 2001; 40:460–463.

    CAS  PubMed  Google Scholar 

  68. Zheng F, Hasuo H, Gallagher JP. 1S,3R-ACPD-preferring inward current in rat dorsolateral septal neurons is mediated by a novel excitatory amino acid receptor. Neuropharmacology 1995; 34:905–917.

    CAS  PubMed  Google Scholar 

  69. Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000; 20:7871–7879.

    CAS  PubMed  Google Scholar 

  70. Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 2001; 106:579–587.

    CAS  PubMed  Google Scholar 

  71. Guerineau N, Bossu J-L, Gahwiler BH, Gerber U. Activation of a nonselective cationic conductance by metabotropic glutamatergic conductance and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus. J Neurosci 1995; 15:4395–4407.

    CAS  PubMed  Google Scholar 

  72. Tempia F, Miniaci MC, Anchisi D, Strata P. Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J Neurophysiol 1998; 80:20–528.

    Google Scholar 

  73. Fiorillo CD, Wiliams JT. Glutamate mediate an inhibitory postsynaptic potential in dopamine neurons. Nature 1998; 294:19–21.

    Google Scholar 

  74. Moroni F, Cozzi A, Lombardi G, et al. Presynaptic mGlu1 type receptors potentiate transmitter output in the rat cortex. Eur J Pharmacol 1998; 347:189–195.

    CAS  PubMed  Google Scholar 

  75. Sistiaga A, Herrero I, Conquet F, Sanchez-Prieto J. The metabotropic glutamate receptor 1 is not involved in the facilitation of glutamate release in cerebrocortical nerve terminals. Neuropharmacology 1998; 37:1495–1492.

    Google Scholar 

  76. Thomas LS, Jane DE, Harris JR, Croucher MJ. Metabotropic glutamate autoreceptors of the mGlu5 subtype positively modulate neuronal glutamate release in the rat forebrain in vitro. Neuropharmacology 2000; 39:1554–1566.

    CAS  PubMed  Google Scholar 

  77. Grillner P, Mercuri NB. Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav Brain Res 2002; 130:149–169.

    CAS  PubMed  Google Scholar 

  78. Wittmann M, Hubert GW, Smith Y, Conn PJ. Activation of metabotropic glutamate receptor 1 inhibits glutamatergic transmission in the substantia nigra pars reticulata. Neuroscience 2001; 105:881–889.

    CAS  PubMed  Google Scholar 

  79. Awad-Granko H, Conn PJ. Activation of group I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neurophamacology 2001; 41:32–41.

    CAS  Google Scholar 

  80. Herrero I, Miras-Portugal MT, Sanchez-Prieto J. Functional swich from facilitation to inhibition in the control of glutamate release by metabotropic glutamate receptor. J Biol Chem 1998; 273,1951–1968.

    CAS  PubMed  Google Scholar 

  81. Dietrich D. Kral T. Clusmann H. Friedl M. Schreamm J. Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus. Neuropharmacology 2002; 42:297–305.

    CAS  PubMed  Google Scholar 

  82. Lovinger DM, McCool BA. Metabotropic glutamate-mediated presynaptic depression at corticostriatal synapses involves mGluR2 or 3. J Neurophysiol 1995; 73:1076–1083.

    CAS  PubMed  Google Scholar 

  83. Pisani A, Calabresi P, Centoze D, Bernardi G. Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 1997; 36:845–851.

    CAS  PubMed  Google Scholar 

  84. Battaglia G, Monn JA, Schoepp DD. In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 1997; 229:161–164.

    CAS  PubMed  Google Scholar 

  85. Cozzi A, Attucci S, Peruginelli F, et al. metabotropic (mGlu) glutamate receptors tonically inhibit transmitter release in cat caudate nucleus: in vivo studies with (2S,1′S,2′S,3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine, a new potent and selective antagonist. Eur J Neurosci 1997; 9:1350–1355.

    CAS  PubMed  Google Scholar 

  86. East SJ, Hill MP, Brotchie JM. Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from striatal synaptosomes. Eur J Pharmacol 1995; 277:117–121.

    CAS  PubMed  Google Scholar 

  87. Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 1996; 274:594–597.

    CAS  PubMed  Google Scholar 

  88. Lesage F, Terrenoire C, Romey G, Lazdunski M. Human TREK2, a 2P domain mechanosensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000; 5:28398–28405.

    Google Scholar 

  89. Sharon D, Vorobiov D, Dascal N. Positive and negative coupling of the metabotropic glutamate receptors toa G protein-activated K+ channel GIRK, in Xenopus oocytes. J Gen Physiol 1997; 109:477–490.

    CAS  PubMed  Google Scholar 

  90. Sorensen SD, Macek TA, Cai Z, Saugstad JA, Conn PJ. Dissociation of protein kinase-mediated regulation of metabotropic glutamate receptor 7 (mGluR7) interactions with calmodulin and regulation of mGluR7 function. Mol Pharmacol 2002; 61:1303–1312.

    CAS  PubMed  Google Scholar 

  91. O’Connor V, El Far O, Bofil-Cardona E, et al. Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. Science 1999; 286:1180–1184.

    PubMed  Google Scholar 

  92. Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA. Use-dependent increases in glutamate concentration activates presynaptic metabotropic glutamate receptors. Nature 1997; 385:1930–1934.

    Google Scholar 

  93. Aniksztejn L, Otani S, Ben-Ari Y. Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur J Neurosci 1992; 4:500–505.

    PubMed  Google Scholar 

  94. Attucci S, Carla V, Mannioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001; 132:799–806.

    CAS  PubMed  Google Scholar 

  95. Benquet P, Gee CE, Gerber U. Two distinct signaling patways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002; 22:9679–9686.

    CAS  PubMed  Google Scholar 

  96. Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL. Activation of group I mGluRs potentiates NMDA responses of rat hippocampal slices. Neurosci Lett 1996; 203:211–213.

    CAS  PubMed  Google Scholar 

  97. Harvey J, Collingridge GL. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br J Pharmacol 1993; 109:1085–1090.

    CAS  PubMed  Google Scholar 

  98. Kelso SR, Nelson TE, Leonard JP. Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J Physiol 1992; 449:705–718.

    CAS  PubMed  Google Scholar 

  99. Skeberdis VA, Lun J-Y, Opitz T, Zheng X, Bennett MVL, Zukin RS. MGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 2001; 40:856–865.

    CAS  PubMed  Google Scholar 

  100. Tu JC, Xiao B, Naisnitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins. Neuron 1999; 23:583–592.

    CAS  PubMed  Google Scholar 

  101. Heidinger W, Manzerra P, Wang XQ, et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 2002; 22:5452–5461.

    CAS  PubMed  Google Scholar 

  102. Pisani A, Calabresi P, Centoze D, Bernardi G. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 1997; 120:1007–1014.

    CAS  PubMed  Google Scholar 

  103. Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons. Neuropharmacology 1997; 36:1047–1055.

    CAS  PubMed  Google Scholar 

  104. Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 1999; 38:1569–1576.

    CAS  PubMed  Google Scholar 

  105. Kinney GA, Slater NT. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. J Neurophysiol 1993; 69:285–294.

    Google Scholar 

  106. Holohean AM, Hackman JC, Davidoff RA. Mechanism involved in the metabotropic glutamate rceptor enhancement of NMDA-mediated motoneurone responses in frog spinal cord. Br J Pharmacol 1999; 126:333–341.

    CAS  PubMed  Google Scholar 

  107. Pizzi M, Boroni F, Moraitis K, Bianchetti A, Memo M, Spano PF, Reversal of glutamate excitotoxicity by activation of PKC-associated metabotropic glutamate receptors in cerebellar granule cells relies on NR2C subunit expression. Eur J Neurosci 1999; 11:2489–2496.

    CAS  PubMed  Google Scholar 

  108. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neurosci 2001; 4:1079–1085.

    CAS  PubMed  Google Scholar 

  109. Yu SP, Sensi SL, Canzoniero LMT, Buisson A, Choi DW. Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 1997; 499:721–732.

    CAS  PubMed  Google Scholar 

  110. Challiss RA, Mistry R, Gray DW, Nahorski SR. Modulatory effects of NMDA on phosphoinositide response evoked by the metabotropic glutamate receptor agonist 1S,3R ACPD in neonatal rat cerebral cortex. Br J Pharmacol 1994; 112:231–239.

    CAS  PubMed  Google Scholar 

  111. Morari M, Galo G, Antonelli T, et al. Inhibitory effect of NMDA receptor activation on quisqualate-stimulated phosphatidylinositol turnover in the human cerebral cortex. Brain Res 1991; 553:14–17.

    CAS  PubMed  Google Scholar 

  112. Morari M, Menegale M, Calo G, et al. Excitatory amino acids (EAAs) stimulate phosphatidylinositide turnover in adult rat striatal slices: interaction between NMDA and EAA metabotropic receptors. Neurochem Int 1994; 24:191–200.

    CAS  PubMed  Google Scholar 

  113. Palmer E, Monaghan DT, Cotman CW. Glutamate receptors and phosphoinositide metabolism: stimulation via quisquale receptors is inhibited by N-methyl-D-aspartate receptor activation. Brain Res 1988; 464:161–165.

    CAS  PubMed  Google Scholar 

  114. Alagarsamy S, Marino MJ, Rouse ST, Gereau JV, Heinemann SF, Conn PJ. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nature Neurosci 1999; 2:234–240.

    CAS  PubMed  Google Scholar 

  115. Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26:438–458.

    CAS  PubMed  Google Scholar 

  116. Blaabjerg M, Kristensen BW, Bonde C, Zimmer J. The metabotropic glutamate receptor agonist 1S,3R-APDC stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures. Brain Res 2001; 389:91–104.

    Google Scholar 

  117. Bruno V, Battaglia G, Copani A, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 2001; 21:1013–1033.

    CAS  PubMed  Google Scholar 

  118. Bruno V, Battaglia G, Copani A, et al. An activity dependent switch from facilitation to inhibition in the control excitotoxicity by group I metabotropic glutamate receptors. Eur J Neurosci 2001; 13:1469–1478.

    CAS  PubMed  Google Scholar 

  119. Opitz T, Reymann KG. (1S, 3R)-ACPD protects synaptic transmission from hypoxia in hippocampal slices. Neuropharmacology 1993; 32:103–104.

    CAS  PubMed  Google Scholar 

  120. Pizzi M, Benarese M, Boroni F, Goffi F, Valerio A, Spano PF. Neuroprotection by metabotropic glutamate receptor agonists on kainate-induced degeneration of motor neurons in spinal cord slices from adult rat. Neuropharmacology 2000; 39:903–910.

    CAS  PubMed  Google Scholar 

  121. Pizzi M, Consolandi O, Memo M, Spano PF. Activation of multiple metabotropic glutamate receptor subtypes prevents NMDA-induced excitotoxicity in rat hippocampal slices. Eur J Neurosci 1996; 8:16–1521.

    Google Scholar 

  122. Schroder UH, Opitz T, Jager T, Sabelhaus CF, Breder J, Reymann KG. Protective effect of group I metabotropic glutamate receptor activation against hypoxic/hypoglycemic injury in rat hippocampal slices: timing and involvement of protein kinase C. Neuropharmacology 1999; 38:209–216.

    CAS  PubMed  Google Scholar 

  123. Bao WL, Williams AJ, Faden AI, Tortella FC. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 2001; 922:173–179.

    CAS  PubMed  Google Scholar 

  124. Perez-Velazquez JL, Zhang L. In vitro hypoxia induces expression of the NR2C subunit of the NMDA receptor in rat cortex and hippocampus. J Neurochem 1994; 63:71–1173.

    Google Scholar 

  125. Battaglia G, Bruno V, Pisani A, et al. Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing GABAergic transmission. Mol Cell Neurosci 2001; 17:1071–1083.

    CAS  PubMed  Google Scholar 

  126. Bruno V, Battaglia G, Kingston A, et al. Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)-2-methyl-4-carboxyphenylglycine (LY367385): comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlu1a and mGlu5 receptors. Neuropharmacology 1999; 38:199–207.

    CAS  PubMed  Google Scholar 

  127. Faden AI, O’Leary DM, Fan L, Bao W, Mullins PG, Movsesyan VA. Selective blockade of the mGluR1 receptors reduces traumatic neuronal injury in vitro and improves outcome after trauma. Exp Neurol 2001; 167:435–444.

    CAS  PubMed  Google Scholar 

  128. Pellegrini-Giampietro DE, Peruginelli F, Meli E, et al. Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms. Neuropharmacology 1999; 38:1607–1619.

    CAS  PubMed  Google Scholar 

  129. Kingston AE, O’Neill MJ, Bond A, et al. Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Ann NY Acad Sci 1999a; 890:438–449.

    CAS  PubMed  Google Scholar 

  130. Lyeth BG, Gong Q-Z, Shields S, Muizelaar P, Berman RF. Group I metabotropic glutamate antagonist reduce acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Exp Neurol 2001; 169:191–199.

    CAS  PubMed  Google Scholar 

  131. Bruno V, Ksiazek I, Battaglia G, et al. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 2000; 39:2223–2230.

    CAS  PubMed  Google Scholar 

  132. O’Leary DM, Movsesyan V, Vicini S, Faden AI. Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 2000; 131:29–1437.

    Google Scholar 

  133. D’Onofrio M, Cuomo L, Battaglia G, et al. Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J Neurochem 2001; 78:435–445.

    PubMed  Google Scholar 

  134. Battaglia G, Bruno V, Ngomba RT, Di Grezia R, Copani A, Nicoletti F. Selective activation of group-2 metabotropic glutamate receptors is protective against excitotoxic neuronal death. Eur J Pharmacol 1998; 356:271–274.

    CAS  PubMed  Google Scholar 

  135. Kingston AE, O’Neill MJ, Lam A, Bales KR, Monn JA, Schoepp DD. Neuroprotection by metabotropic glutamate receptor agonists: LY 354740, LY 379268 and LY 389795. Eur J Phamacol 1999; 377:155–165.

    CAS  Google Scholar 

  136. Bond A, Ragumoorthy N, Monn JA, et al. LY 379268, a potent and selective group II metabotropic glutamate receptor agonist, is neuroprotective in gerbil global, but not focal, cerebral ischemia. Neurosci Lett 1999; 273:191–194.

    CAS  PubMed  Google Scholar 

  137. Behrens MM, Strasser U, Heidinger V, et al. Selective activation of group II mGluRs with LY 354740 does not prevent neuronal excitotoxicity. Neuropharmacology 1999; 38:1621–1630.

    CAS  PubMed  Google Scholar 

  138. Bruno V, Battaglia G, Ksiazek I, et al. Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 2000; 20:6413–6420.

    CAS  PubMed  Google Scholar 

  139. Bruno V, Copani A, Bonanno L, et al. Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures. Eur J Pharmacol 1996; 310:61–66.

    CAS  PubMed  Google Scholar 

  140. Faden AI, Ivanova SA, Yakovlev AG, Mukhin AG. Neuroprotective effects of group III mGluR in traumatic neuronal injury. J Neurotrauma 1997; 14:885–895.

    CAS  PubMed  Google Scholar 

  141. Gasparini F, Bruno V, Battaglia G, et al. (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vitro. J Pharmacol Exp Ther 1999; 289:1678–1697.

    CAS  PubMed  Google Scholar 

  142. Lafon-Cazal M, Fagni L, Guiraud MJ, et al. MGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. Eur J Neurosci 1999; 11:663–672.

    CAS  PubMed  Google Scholar 

  143. Copani A, Bruno V, Battaglia G, et al. Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol Pharmacol 1995; 47:890–897.

    CAS  PubMed  Google Scholar 

  144. Henrich-Noack P, Flor PJ, Sabelhaus CF, et al. Distinct influence of the group III metabotropic glutamate receptor agonist (R,S)-4-phosphonophenylglycine [(R,S)-PPG] on different forms of neuronal damage. Neuropharmacology 2000; 39:911–917.

    CAS  PubMed  Google Scholar 

  145. Ehringer H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 1960; 8:1236–1239.

    Google Scholar 

  146. Di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: Ach/dopamine/NMDA interactions. Trends Neurosci 1994; 17:228–233.

    PubMed  Google Scholar 

  147. Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250:1429–1432.

    CAS  PubMed  Google Scholar 

  148. Kita H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience 1996; 70:925–940.

    CAS  PubMed  Google Scholar 

  149. Chatha BT, Bernard V, Streit P, Bolam JP. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience 2000; 101:1037–1051.

    CAS  PubMed  Google Scholar 

  150. Ossowska K. The role of excitatory amino acids in experimental models of Parkinson’s disease. J Neural Transm (P. D. Sect.) 1994; 8:39–71.

    CAS  Google Scholar 

  151. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 2000; 55:S40–S44.

    CAS  PubMed  Google Scholar 

  152. Parelkar NK, Wang JQ. Preproenkephalin mRNA expreession in rat dorsal striatum induced by selective activation of metabotropic glutamate receptor subtype-5. Synapse 2003; 47:255–261.

    CAS  PubMed  Google Scholar 

  153. Marti M, Paganini F, Stocchi S, Bianchi C, Beani L, Morari M. Presynaptic group I and II metabotropic glutamate receptors oppositely modulate striatal acetylcholine release. Eur J Neurosci 2001; 14:1181–1184.

    CAS  PubMed  Google Scholar 

  154. Marino MJ, Wittmann M, Bradley SR, Hubert GW, Smith Y, Conn PJ. Activation of group I metabotropic glutamate receptors produces a direct excitation and desinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 2001; 21:7001–7012.

    CAS  PubMed  Google Scholar 

  155. Bradley SR, Marino MJ, Wittmann M, et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J Neurosci 2000; 20:3085–3094.

    CAS  PubMed  Google Scholar 

  156. Wittmann M, Marino MJ, Bradley SR, Conn PJ. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiology 2001; 85:1960–1968.

    CAS  Google Scholar 

  157. Marino MJ, Valenti O, Wittmann M, Dilella AG, Kinney GG, Conn PJ. Group III metabotropic glutamate receptor-mediated modulation of the basal ganglia motor circuit. Neuropharmacology 2002; 43:297–298.

    Google Scholar 

  158. Konieczny J, Ossowska K, Wolfarth S, Pilc A. LY354740, a group II metabotropic glutamate receptor agonist with potential; antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch Pharmacol 1998; 358:500–502.

    CAS  PubMed  Google Scholar 

  159. Wolfarth S, Konieczny J, Lorenc-Koci E, Ossowska K, Pilc A. The role of metabotropic glutamate receptor (mGluR) ligands in parkinsonian muscle rigidity. Amino Acids 2000; 19:95–105.

    CAS  PubMed  Google Scholar 

  160. Dawson L, Chandha A, Megalou M, Duty S. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol 2000; 129:541–546.

    CAS  PubMed  Google Scholar 

  161. Kronthaler UO, Schmidt WJ. Activation of striatal group II metabotropic glutamate receptors has a differential effect on dopamine-D1 and-D2 receptor antagonist-induced hypokinesia in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 2000; 361:289–297.

    CAS  Google Scholar 

  162. Ossowska K, Konieczny J, Pilc A, Wolfarth S. The striatum as a target for anti-rigor effects of an antagonist of mGluR1 but not an agonist of group II metabotropic glutamate receptors. Brain Res 2002; 350:88–94.

    Google Scholar 

  163. Ossowska K, Konieczny J, Wardas J, Gołembiowska K, Wolfarth S, Pilc A. The role of striatal metabotropic glutamate receptors in Parkinson’s disease. Amino Acids 2002; 23:193–198.

    CAS  PubMed  Google Scholar 

  164. Ossowska K, Konieczny J, Wolfarth S, Wierońska J, Pilc A. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 2001; 41:413–420.

    CAS  PubMed  Google Scholar 

  165. Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in rat model of parkinsonism. J Neurosci 2002; 22:5668–5678.

    Google Scholar 

  166. Ossowska K, Wardas J, Pietraszek M, Konieczny J, Wolfarth S. The striopallidal pathway is involved in antiparkinsonian-like effects of the blockade of group I metabotorpic glutamate receptors in rats. Neurosci Lett 2003; 342:21–24.

    CAS  PubMed  Google Scholar 

  167. Wardas J, Pietraszek M, Wolfarth S, Ossowska K. The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: implications for the therapy of Parkinson’s disease. Neuroscience 2003; 122:747–756.

    CAS  PubMed  Google Scholar 

  168. Prisco S, Natoli S, Bernardi G, Mercuri NB. Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 2002; 42:289–297.

    CAS  PubMed  Google Scholar 

  169. Aguirre JA, Andbier B, Gonzales-Baron S, et al. Group I mGluR antagonist AIDA protects nigral DA cells from MPTP-induced injury. Neuroreport 2001; 12:2615–2617.

    CAS  PubMed  Google Scholar 

  170. Battaglia G, Fornai F, Busceti CL, et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 2002; 22:2135–2141.

    CAS  PubMed  Google Scholar 

  171. Gołembiowska K, Konieczny K, Ossowska K, Wolfarth S. The role of striatal metabotropic glutamate receptors in degeneration of dopamine neurons: review article. Amino Acids 2002; 23:99–205

    Google Scholar 

  172. Gołembiowska K, Konieczny J, Wolfarth S, Ossowska K. Neuroprotective action of MPEP, a selective mGluR5 antagonist, in the methamphetamine-induced dopaminergic neurotoxicity is associated with a decrease in dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 2003; 45:484–492.

    PubMed  Google Scholar 

  173. Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotropic factor induction. J Neurochem 2001; 76:351–360.

    CAS  PubMed  Google Scholar 

  174. Pilc A, Kłodzińska A, Nowak G. A role for glutamate in the treatment of anxiety and depression: focus on group I metabotropic glutamate (mGlu) receptors. Drugs Future 2002; 27:753–763.

    CAS  Google Scholar 

  175. Pałucha A, Brański P, Tokarski K, Bijak M, Pilc A. Influence of imipramine treatment on the group I of metabotropic glutamate receptors in CA1 region of hippocampus. Pol J Pharmacol 1997; 49:495–497.

    PubMed  Google Scholar 

  176. Pilc A, Brański P, Pałucha A, Tokarski K, Bijak M. Antidepressant treatment influences group I of glutamate metabotropic receptors in slices from hippocampal CA1 region. Eur J Pharmacol 1998; 349:83–87.

    CAS  PubMed  Google Scholar 

  177. Zahorodna A, Bijak M. An antidepressant-induced decrease in the responsiveness of hippocampal neurons to group I metabotropic glutamate receptor activation. Eur J Pharmacol 1999; 386:173–179.

    CAS  PubMed  Google Scholar 

  178. Tatarczyńska E, Kłodzińska A, Chojnacka-Wójcik E, Palucha A, Gasparini F, Kuhn R, et al. Potential axiolytic-and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 2001; 132:1423–1430.

    PubMed  Google Scholar 

  179. Pilc A, Kłodzińska A, Brański P, et al. Multiple MPEP administrations evoke anxiolyticand antidepressant-like effects in rats. Neuropharmacology 2002a; 4:181–187.

    Google Scholar 

  180. Bajkowska M, Brański P, Śmial/owska M, Pilc A. Effect of chronic antidepressant or electroconvulsive shock treatment on mGluR1a immunoreactivity expression in the rat hippocampus. Pol J Phamacol 1999; 51:539–541.

    CAS  Google Scholar 

  181. Matrisciano F, Storto M, Ngomba RT, et al. Imipramine treatment up-regulates the expression and function of mGlu 2/3 metabotropic glutamate receptors in the rat hippocampus. Neuropharmacology 2002; 42:1008–1015.

    CAS  PubMed  Google Scholar 

  182. Smialowska M, Szewczyk B, Brański P, et al. Effect of chronic imipramine or electroconvulsive shock on the expression of mGluR1a and mGluR5a immunoreactivity in rat brain hippocampus. Neuropharmacology 2002; 42:1016–1023.

    CAS  PubMed  Google Scholar 

  183. Kłodzińska A, Chojnacka-Wójcik E, Palucha A, Brański P, Popik P, Pilc A. Potential antianxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 1999; 38:1831–1839.

    PubMed  Google Scholar 

  184. Chojnacka-Wójcik E, Kłodzińska A, Pilc A. Glutamate receptor ligands as anxiolytics. Curr Opinion Invest Drugs 2001; 2:1112–1119.

    Google Scholar 

  185. Chojnacka-Wójcik E, Tatarczyńska E, Pilc A. The anxiolytic-like effect of metabotropic glutamate receptor antagonists after intrahippocampal injection in rats. Eur J Pharmacol 1997; 319:153–156.

    PubMed  Google Scholar 

  186. Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ. Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 1998; 284:651–660.

    CAS  PubMed  Google Scholar 

  187. Monn JA, Valli MJ, Massey SM, et al. Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possesing anticonvulsant and anxiolytic properties. J Med Chem 1997; 40:528–537.

    CAS  PubMed  Google Scholar 

  188. Tatarczyńska E, Kl/odzińska A, Kroczka B, Chojnacka-Wójcik E, Pilc A. The antianxietylike effects of antagonists of group I and agonist of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacology 2001; 158:94–99.

    PubMed  Google Scholar 

  189. Collado I, Pedregal C, Mazon A, et al. (2,S,1′S,2′S,3′R)-2-(2′-Carboxy-3′-methylcyclopropyl glycine) is a potent and selective metabotropic group 2 receptor agonist with anxiolytic properties. J Med Chem 2002; 45:2619–2629.

    Google Scholar 

  190. Spooren WPJM, Vassout A, Neijt HC, et al. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 2000; 295:1267–1275.

    CAS  PubMed  Google Scholar 

  191. Linden AM, Johnson BG, Peters SC, et al. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neurophamacology 2002; 43:251–259.

    CAS  Google Scholar 

  192. Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia-therapeutic implications. Biol Psychiat 1999; 46:1388–1395.

    CAS  PubMed  Google Scholar 

  193. Luisada PV, Brown BI. Clinical management of the phencyclidine psychosis. Clin Toxicol 1976; 9:539–545.

    CAS  PubMed  Google Scholar 

  194. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281:1349–1352.

    CAS  PubMed  Google Scholar 

  195. Kłodzińska A, Bijak M, Tokarski K, Pilc A. Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharmacol Biochem Behav 2002; 73:327–332.

    PubMed  Google Scholar 

  196. Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 2000; 292:76–87.

    CAS  PubMed  Google Scholar 

  197. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. Effects of ketamine and Nmethyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003; 117:697–706.

    CAS  PubMed  Google Scholar 

  198. Pietraszek M, Gol/embiowska K, Bijak M, Ossowska K, Wolfarth S. Differential effects of chronic haloperidol and clozapine administration on glutamatergic transmission in the fronto-parietal cortex in rats: microdialysis and electrophysiological studies. Naunyn-Schmiedebergs Arch Pharmacol 2002; 366:417–424.

    CAS  PubMed  Google Scholar 

  199. Tascedda F, Blom JMC, Brunello N, et al. Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats. Biol Psychiatry 2001; 50:117–122.

    CAS  PubMed  Google Scholar 

  200. Cartmell J, Monn JA, Schoepp DD. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 1999; 291:161–170.

    CAS  PubMed  Google Scholar 

  201. Kronthaler UO, Schmidt WJ. On the role of inhibitory glutamate receptors in N-methyl-D-aspartate-and dopamine-receptor mediated motor behavior rats. Amino Acids 2000; 19:103–118.

    CAS  PubMed  Google Scholar 

  202. Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, Kuhn R. Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidineinduced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol 2000; 397:R1–R2.

    CAS  PubMed  Google Scholar 

  203. Swanson DJ, Darylle D, Schoepp D. The group II metabotropic glutamate receptor agonist (′)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. J Pharmacol Exp Ther 2002; 303:919–927.

    CAS  PubMed  Google Scholar 

  204. Ossowska K, Pietraszek M, Wardas J, et al. The role of glutamate receptors in antipsychotic drug action. Amino Acids 2000; 19:87–94.

    CAS  PubMed  Google Scholar 

  205. Schreiber R, Lowe D, Voerste A, De Vry J. LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol 2000; 388:R3–R4.

    CAS  PubMed  Google Scholar 

  206. Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A. The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 2002; 43:1199–1209.

    CAS  PubMed  Google Scholar 

  207. Joo A, Shibata H, Ninomiya H, Kawasaki H, Tashiro N, Fukumaki Y. Structure and polymorphism of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol Psychiat 2001; 6:186–192.

    CAS  Google Scholar 

  208. Marti SB, Cichon S, Propping P, Nöthen M. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Gen (Neuropsychiat Gen) 2002; 114:46–50.

    Google Scholar 

  209. Devon RS, Anderson S, Teague PW, et al. The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiat 2001; 6:311–314.

    CAS  Google Scholar 

  210. Geyer MA, Dulawa SC, Ralph RJ, Henry SA. Startle habituation and prepulse inhibition studies in mutant mice. 55th Annu Conf Soc Biol Psychiat USA 2000.

    Google Scholar 

  211. Fundytus ME, Coderre TJ. Attenuation of precipitated morphine withdrawal symptoms by acute i.c.v.administration of a group II mGluR agonist. Br J Pharmacol 1997; 121:511–514.

    CAS  PubMed  Google Scholar 

  212. Fundytus ME, Ritchie J, Coderre TJ. Attenuation of morphine withdrawal symptoms by subtype-selective metabotropic glutamate receptor antagonists. Br J Pharmacol 1997; 120:1015–1020.

    CAS  PubMed  Google Scholar 

  213. Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ. LY 354740: a metabotropic glutamate receptor agonist wich ameliorates symptoms of nicotine withdrawal in rats. Neuropharmacology 1997; 36:1511–1516.

    CAS  PubMed  Google Scholar 

  214. Vandergriff J, Rasmussen K. The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology 1999; 38:217–222.

    CAS  PubMed  Google Scholar 

  215. Chiamurela C, Epping-Jordan NP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nature Neurosci 2001; 4:873–874.

    Google Scholar 

  216. Popik P, Wrobel M. Morphine conditioned reward is inhibited by MPEP, the mGluR5 antagonist. Neuropharmacology 2002; 43:1210–1217.

    CAS  PubMed  Google Scholar 

  217. Neugebauer V, Zinebi F, Russell R, Gallagher JP, Shinnick-Gallagher P. Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J Neurophysiol 2000; 84:759–770.

    CAS  PubMed  Google Scholar 

  218. Xi Z-X, Ramamoorthy S, Baker DA, Shen H, Samuvel DJ, Kalivas PW. Modulation of group II metabotropic glutamate receptor signaling by chronic cocaine. J Pharmacol Exp Ther 2002; 303:608–615.

    CAS  PubMed  Google Scholar 

  219. Moldrich RX, Jeffrey M, Talebi A, Beart PM, Chapman AG, Meldrum BS. Anti-epileptic activity of group II metabotropic glutamate receptor agonists (—)-2-oxa-4-aminobicyclo [3.1.0]hexane-4,6-dicarboxylate (LY389795). Neuropharmacology 2001; 41:8–18.

    CAS  PubMed  Google Scholar 

  220. Moldrich RX, Jeffrey M, Talebi A, Beart PM, Chapman AG, Meldrum BS. Anti-epileptic activity of group II metabotropic glutamate receptor agonists (—)-2-oxa-4-aminobicyclo [3.1.0]hexane-4,6-dicarboxylate (LY379268) and (—)-2-thia-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY389795). Neuropharmacology 2001; 41:8–18.

    CAS  PubMed  Google Scholar 

  221. Pilc A. LY-354740 Eli Lilly. I Drugs 2003; 6:66–71.

    CAS  PubMed  Google Scholar 

  222. Chapman AG, Talebi A, Yip PK, Meldrum BS. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid. Eur J Pharmacol 2001; 424:107–113.

    CAS  PubMed  Google Scholar 

  223. Chapman AG, Nanan K, Yip P, Meldrum BS. Anticonvulsant activity of a metabotropic glutamate receptor 8 preferential agonist, (R,S)-4-phosphonophenylglycine. Eur J Pharmacol 1999; 383:23–27.

    CAS  PubMed  Google Scholar 

  224. Moldrich RX, Beart PM, Jane DE, Chapman AG, Meldrum BS. Anticonvulsant activity of 3,4-dicarboxyphenylglycines in DBA/2 mice. Neuropharmacology 2001; 40:732–735.

    CAS  PubMed  Google Scholar 

  225. Chapman AG, Yip PK, Yap JS, et al. Anticolvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid). Eur J Pharmacol 1999; 368:17–24.

    CAS  PubMed  Google Scholar 

  226. De Vry J, Horvath E, Schreiber R. Neuroprotective and behavioural effects of the selective metabotropic glutamate mGlu (1) receptor antagonist BAY36-7620. Eur J Pharmacol 2001; 428:203–214.

    PubMed  Google Scholar 

  227. Wichmann J, Bleicher K, Vieira E, Woltering T, Knoach F, Mutel M. Alkyl diphenylacetyl, 9H-xanthene-and 9H-thioxanthenecarbonyl carbamates as positive allosteric modulators of mGlu1 receptors. Il Farmaco 2002; 57:989–992.

    CAS  PubMed  Google Scholar 

  228. Britton T, Barda D, Hornback W, et al. Selective, non-amino-acid allosteric potentiators of mGlu2 receptors. Neuropharmacology (Abstracts) 2002; 43:279.

    Google Scholar 

  229. Johnson M, Baez M, Britton T, et al. Subtype-selective positive allosteric modulators of the metabotropic glutamate 2 receptor: in vitro and in vivo characterization of novel mGlu2 potentiators. Neurophamacology (Abstracts) 2002; 43:191.

    Google Scholar 

  230. Micheli F, Di Fabio R, Cavanni P, et al. New pyrroles as mGluR1 antagonists. Neurophamacology (Abstracts) 2002; 43:318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ossowska, K. (2005). Metabotropic Glutamate Receptors. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics