Skip to main content

Glutamate Receptors

Ionotropic

  • Chapter
  • 1456 Accesses

Abstract

l-Glutamate is the primary excitatory neurotransmitter in the vertebrate central nervous system (CNS) (15). This conclusion, based on innumerable pharmacological, physiological, and biochemical studies, is now succinctly confirmed by the characterization of the vesicular glutamate transporters and their localization throughout the brain (6). In contrast to the neuromodulatory neurotransmitters that are commonly released by brainstem nuclei projecting diffusely to large regions of the brain, and in contrast to the inhibitory, nonprojecting, local circuit neurons that use γ-aminobutyric acid (GABA) or glycine, glutamate-using pathways provide fast signaling between discrete brain regions. (For further discussion of glutamate-using pathways, see Chapter 3). l-Glutamate released from presynaptic nerve terminals binds to glutamate receptors on the receiving neuron. The ionotropic glutamate receptors span the plasma membrane and the binding of l-Glutamate causes a conformational change that opens a pore in the membrane formed by the receptor complex. The opened ion channel allows the influx of Na+, and sometimes Ca++ ions, causing the cell to depolarize. If sufficiently depolarized, the neuron is activated. It is the fast-acting ionotropic glutamate receptors that underlie fast electrical responses in the CNS. Unexpectedly, there is also a wealth of slower-acting G protein-coupled glutamate receptors, the metabotropic glutamate receptors. The metabotropic receptors are the subject of Chapter 5 in this volume. The discovery and characterization of l-glutamate as the major CNS neurotransmitter was a major breakthrough and has opened the door to understanding many essential aspects of brain function at all levels of investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watkins JC. Pharmacology of excitatory amino acid transmitters. Adv Biochem Psychopharmacol 1981; 29:205–212.

    CAS  PubMed  Google Scholar 

  2. Danbolt NC, Chaudhry FA, Dehnes Y, et al. Properties and localization of glutamate transporters. Prog Brain Res 1998; 116:23–43.

    Article  CAS  PubMed  Google Scholar 

  3. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989; 29:365–402.

    Article  CAS  PubMed  Google Scholar 

  4. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999; 51:7–61.

    CAS  PubMed  Google Scholar 

  5. Collingridge GL, Lester RA. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 1989; 41:143–210.

    CAS  PubMed  Google Scholar 

  6. Fremeau RT Jr, Troyer MD, Pahner I, et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001; 31:247–260.

    Article  CAS  PubMed  Google Scholar 

  7. Takagaki G. The dawn of excitatory amino acid research in Japan. The pioneering work by Professor Takashi Hayashi. Neurochem Int 1996; 29:225–229.

    Article  CAS  PubMed  Google Scholar 

  8. Curtis DR, Phillis JW, Watkins JC. The chemical excitation of spinal neurones. Nature 1959; 183:656–682.

    Article  Google Scholar 

  9. Watkins JC, Krogsgaard Larsen P, Honore T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 1990; 11:25–33.

    Article  CAS  PubMed  Google Scholar 

  10. Davies J, Watkins JC. Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with gamma-D(and l)-glutamylglycine. Brain Res 1981; 206:172–177.

    Article  CAS  PubMed  Google Scholar 

  11. Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 1981; 21:165–204.

    Article  CAS  PubMed  Google Scholar 

  12. Monaghan DT, Holets VR, Toy DW, Cotman CW. Anatomical distributions of four pharmacologically distinct 3H-l-glutamate binding sites. Nature 1983; 306:176–179.

    Article  CAS  PubMed  Google Scholar 

  13. Honore T, Lauridsen J, Krogsgaard-Larsen P. The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. J Neurochem 1982; 38:173–178.

    Article  CAS  PubMed  Google Scholar 

  14. London ED, Coyle JT. Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol 1979; 15:492–505.

    CAS  PubMed  Google Scholar 

  15. Furukawa H, Gouaux E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. Embo J 2003; 22:2873–2885.

    Article  CAS  PubMed  Google Scholar 

  16. Olverman HJ, Jones A W, Watkins JC. l-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature 1984; 307:460–462.

    Article  CAS  PubMed  Google Scholar 

  17. Monaghan DT, Cotman CW. The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 1982; 252:91–100.

    Article  CAS  PubMed  Google Scholar 

  18. Monaghan DT, Yao D, Cotman CW. Distribution of [3H]AMPA binding sites in rat brain as determined by quantitative autoradiography. Brain Res 1984; 324:160–164.

    Article  CAS  PubMed  Google Scholar 

  19. Monaghan DT, Yao D, Olverman HJ, Watkins JC, Cotman CW. Autoradiography of D-2-[3H]amino-5-phosphonopentanoate binding sites in rat brain. Neurosci Lett 1984; 52:253–258.

    Article  CAS  PubMed  Google Scholar 

  20. Monaghan DT, Cotman CW. Distribution of N-methyl-d-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 1985; 5:2909–2919.

    CAS  PubMed  Google Scholar 

  21. Rainbow TC, Wieczorek CM, Halpain S. Quantitative autoradiography of binding sites for [3H]AMPA, a structural analogue of glutamic acid. Brain Res 1984; 309:173–177.

    Article  CAS  PubMed  Google Scholar 

  22. Unnerstall JR, Wamsley JK. Autoradiographic localization of high-affinity [3H]kainic acid binding sites in the rat forebrain. Eur J Pharmacol 1983; 86:361–371.

    Article  CAS  PubMed  Google Scholar 

  23. Lomeli H, Sprengel R, Laurie DJ, et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 1993; 315:318–322.

    Article  CAS  PubMed  Google Scholar 

  24. Yamazaki M, Araki K, Shibata A, Mishina M. Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 1992; 183:886–892.

    Article  CAS  PubMed  Google Scholar 

  25. Kashiwabuchi N, Ikeda K, Araki K, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 1995; 81:245–252.

    Article  CAS  PubMed  Google Scholar 

  26. Hirano T, Kasono K, Araki K, Mishina M. Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor delta 2 subunit. Neuroreport 1995; 6:524–526.

    Article  CAS  PubMed  Google Scholar 

  27. Heintz N, De Jager PL GluR delta 2 and the development and death of cerebellar Purkinje neurons in lurcher mice. Ann NY Acad Sci 1999; 868:502–514.

    Article  CAS  PubMed  Google Scholar 

  28. Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M. Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors. Brain Res Mol Brain Res 2003; 110:27–37.

    Article  CAS  PubMed  Google Scholar 

  29. Bleakman D, Lodge D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 1998; 37:1187–1204.

    Article  CAS  PubMed  Google Scholar 

  30. Grosskreutz J, Zoerner A, Schlesinger F, Krampfl K, Dengler R, Bufler J. Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells. Eur J Neurosci 2003; 17:1173–1178.

    Article  PubMed  Google Scholar 

  31. Bureau I, Dieudonne S, Coussen F, Mulle C. Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci USA 2000; 97:6838–6843.

    Article  CAS  PubMed  Google Scholar 

  32. Rozas JL, Paternain AV, Lerma J. Noncanonical signaling by ionotropic kainate receptors. Neuron 2003; 39:543–553.

    Article  CAS  PubMed  Google Scholar 

  33. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003; 278:20196–20202.

    Article  CAS  PubMed  Google Scholar 

  34. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct proteinprotein interactions with the dopamine D1 receptor. Cell 2002; 111:219–230.

    Article  CAS  PubMed  Google Scholar 

  35. Hollmann M. Heinemann, S. Cloned glutamate receptors. Annu Rev Neurosci 1994; 17:31–108.

    Article  CAS  PubMed  Google Scholar 

  36. Schiffer HH, Swanson, GT, Heinemann, SF. Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 1997; 19:1141–1146.

    Article  CAS  PubMed  Google Scholar 

  37. Chittajallu R, Braithwaite SP, Clarke VR, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 1999; 20:26–35.

    Article  CAS  PubMed  Google Scholar 

  38. Wo ZG. Oswald RE. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 1995; 18:161–168.

    Article  CAS  PubMed  Google Scholar 

  39. Mano I Teichberg VI. A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport 1998; 9:327–331.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenmund C, Stern-Bach Y, Stevens CF. The tetrameric structure of a glutamate receptor channel. Science 1998; 280:1596–1599.

    Article  CAS  PubMed  Google Scholar 

  41. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 1994; 13:1345–1357.

    Article  CAS  PubMed  Google Scholar 

  42. Lampinen M, Pentikainen O, Johnson MS, Keinanen K. AMPA receptors and bacterial periplasmic amino acid-binding proteins share the ionic mechanism of ligand recognition. EMBO J 1998; 17:4704–4711.

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 1998; 395:913–917.

    Article  CAS  PubMed  Google Scholar 

  44. Armstrong N. Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 2000; 28:165–181.

    Article  CAS  PubMed  Google Scholar 

  45. Hogner A, Kastrup JS, Jin R, et al. Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core. 2002; 322:93–109.

    CAS  Google Scholar 

  46. Hogner A, Greenwood JR, Liljefors T. et al. Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the GluR2 ligand-binding core, in comparison with DNQX. J Med Chem 2003; 46:214–221.

    Article  CAS  PubMed  Google Scholar 

  47. Jin R, Banke TG, Mayer ML, et al. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci 2003; 6:803–810.

    Article  CAS  PubMed  Google Scholar 

  48. Lunn ML, Hogner A, Stensbol TB, Gouaux E, Egebjerg J, Kastrup JS. Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA: implications for receptor subunit selectivity. J Med Chem 2003; 46:872–875.

    Article  CAS  PubMed  Google Scholar 

  49. Brauner-Osborne H, Egebjerg J, Nielsen EO, Madsen U, Krogsgaard-Larsen P Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 2000; 43:2609–2645.

    Article  CAS  PubMed  Google Scholar 

  50. Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E. Mechanism of glutamate receptor desensitization. Nature 2002; 417:245–253.

    Article  CAS  PubMed  Google Scholar 

  51. Kuner T, Seeburg PH, Guy HR. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci 2003; 26:27–32.

    Article  CAS  PubMed  Google Scholar 

  52. Kuner T, Beck C, Sakmann B, Seeburg PH. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter. J Neurosci 2001; 21:4162–4172.

    CAS  PubMed  Google Scholar 

  53. Bettler B, Boulter J, Hermans-Borgmeyer I, et al. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 1990; 5:583–595.

    Article  CAS  PubMed  Google Scholar 

  54. Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 1990; 249:1580–1585.

    Article  CAS  PubMed  Google Scholar 

  55. Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991; 67:11–19.

    Article  CAS  PubMed  Google Scholar 

  56. Egebjerg J, Heinemann SF. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci USA 1993; 90:755–759.

    Article  CAS  PubMed  Google Scholar 

  57. Seeburg PH, Higuchi M, Sprengel R. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 1998; 26:217–229.

    Article  CAS  PubMed  Google Scholar 

  58. Hume RI, Dingledine R, Heinemann SF. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 1991; 253:1028–1031.

    Article  CAS  PubMed  Google Scholar 

  59. Burnashev N, Villarroel A, Sakmann B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol 1996; 496(Pt 1):165–173.

    CAS  PubMed  Google Scholar 

  60. Seeburg PH, Hartner J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 2003; 13:279–83.

    Article  CAS  PubMed  Google Scholar 

  61. Higuchi M, Maas S, Single FN, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000; 406:78–81.

    Article  CAS  PubMed  Google Scholar 

  62. Kohler M, Burnashev N, Sakmann B, Seeburg PH. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 1993; 10:491–500.

    Article  CAS  PubMed  Google Scholar 

  63. Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol (Lond) 1996; 492:129–142.

    CAS  Google Scholar 

  64. Lomeli H, Mosbacher J, Melcher T, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994; 266:1709–1713.

    Article  CAS  PubMed  Google Scholar 

  65. Seeburg PH. The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 1996; 66:1–5.

    Article  CAS  PubMed  Google Scholar 

  66. Kamboj SK, Swanson GT, Cull-Candy SG. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol 1995; 486(Pt 2):297–303.

    CAS  PubMed  Google Scholar 

  67. Swanson GT, Green T, Heinemann SF. Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol Pharmacol 1998; 53:942–949.

    CAS  PubMed  Google Scholar 

  68. Clarke VR, Ballyk BA, Hoo KH, et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission [see comments]. Nature 1997; 389:599–603.

    Article  CAS  PubMed  Google Scholar 

  69. Paternain AV, Herrera MT, Nieto MA, Lerma J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J Neurosci 2000; 20:196–205.

    CAS  PubMed  Google Scholar 

  70. Swanson GT, Green T, Sakai R, et al. Differential activation of individual subunits in heteromeric kainate receptors. Neuron 2002; 34:589–598.

    Article  CAS  PubMed  Google Scholar 

  71. Jane DE, Tse H-W, Skifter DA, Christie JM, Monaghan DT. Glutamate receptor ion channels: activators and inhibitors. In: Endo M, Mishina M, Kurachi Y, eds. Handbook of Experimental Pharmacology: Pharmacology of Ionic Channel Function: Activators and Inhibitors. Berlin: Springer, 2000:415–478.

    Google Scholar 

  72. Krogsgaard-Larsen P, Honore T, Hansen JJ, Curtis DR, Lodge D. New class of glutamate agonist structurally related to ibotenic acid. Nature 1980; 284:64–66.

    Article  CAS  PubMed  Google Scholar 

  73. Wong LA, Mayer ML, Jane DE, Watkins JC. Willardiines differentiate agonist binding sites for kainate-versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. J Neurosci 1994; 14:3881–3897.

    CAS  PubMed  Google Scholar 

  74. Jane DE, Hoo K, Kamboj R, Deverill M, Bleakman D, Mandelzys A. Synthesis of willardiine and 6-azawillardiine analogs: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes. J Med Chem 1997; 40:3645–3650.

    Article  CAS  PubMed  Google Scholar 

  75. Jones KA, Wilding TJ, Huettner JE, Costa AM. Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology 1997; 36:853–863.

    Article  CAS  PubMed  Google Scholar 

  76. Wilding TJ, Huettner JE. Activation and desensitization of hippocampal kainate receptors. J Neurosci 1997; 17:2713–2721.

    CAS  PubMed  Google Scholar 

  77. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 1990; 247:571–574.

    Article  CAS  PubMed  Google Scholar 

  78. Honore T, Davies SN, Drejer J, et al. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 1988; 241:701–703.

    Article  CAS  PubMed  Google Scholar 

  79. Bleakman D, Ballyk BA, Schoepp DD, et al. Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 1996; 35:1689–1702.

    Article  CAS  PubMed  Google Scholar 

  80. Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses. Neuron 1993; 10:51–59.

    Article  CAS  PubMed  Google Scholar 

  81. Zorumski CF, Yamada KA, Price MT, Olney JW. A benzodiazepine recognition site associated with the non-NMDA glutamate receptor. Neuron 1993; 10:61–67.

    Article  CAS  PubMed  Google Scholar 

  82. O’Neill MJ, Bond A, Ornstein PL, et al. Decahydroisoquinolines: novel competitive AMPA/kainate antagonists with neuroprotective effects in global cerebral ischaemia. Neuropharmacology 1998; 37:1211–1222.

    Article  PubMed  Google Scholar 

  83. More JC, Troop HM, Dolman NP, Jane DE. Structural requirements for novel willardiine derivatives acting as AMPA and kainate receptor antagonists. Br J Pharmacol 2003; 138:1093–1100.

    Article  CAS  PubMed  Google Scholar 

  84. Partin KM, Patneau DK, Winters CA, Mayer ML, Buonanno A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 1993; 11:1069–1082.

    Article  CAS  PubMed  Google Scholar 

  85. Hawkins LM, Beaver KM, Jane DE, Taylor PM, Sunter DC, Roberts PJ. Characterization of the pharmacology and regional distribution of (S)-[3H]-5-fluorowillardiine binding in rat brain. Br J Pharmacol 1995; 116:2033–2039.

    CAS  PubMed  Google Scholar 

  86. Dev KK, Petersen V, Honore T, Henley JM. Pharmacology and regional distribution of the binding of 6-[3H]nitro-7-sulphamoylbenzo[f]-quinoxaline-2,3-dione to rat brain. J Neurochem 1996; 67:2609–2612.

    Article  CAS  PubMed  Google Scholar 

  87. Toms NJ, Reid ME, Phillips W, Kemp MC, Roberts PJ. A novel kainate receptor ligand [3H]-(2S,4R)-4-methylglutamate: pharmacological characterization in rabbit brain membranes. Neuropharmacology 1997; 36:1483–1488.

    Article  CAS  PubMed  Google Scholar 

  88. Monaghan DT, Nguyen L, Cotman CW. The distribution of [3H]kainate binding sites in primate hippocampus is similar to the distribution of both Ca2+-sensitive and Ca2+-insensitive [3H]kainate binding sites in rat hippocampus. Neurochem Res 1986; 11:1073–1082.

    Article  CAS  PubMed  Google Scholar 

  89. Monaghan DT, Yao D, Cotman CW. NMDA-and AMPA-sensitive binding sites: an autoradiographic analysis. Brain Res 1985; 340:378–383.

    Article  CAS  PubMed  Google Scholar 

  90. Frerking M, Nicoll RA. Synaptic kainate receptors. Curr Opin Neurobiol 2000; 10:342–351.

    Article  CAS  PubMed  Google Scholar 

  91. Lerma J, Paternain AV, Rodriguez-Moreno A, Lopez-Garcia JC. Molecular physiology of kainate receptors. Physiol Rev 2001; 81:971–998.

    CAS  PubMed  Google Scholar 

  92. Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 1996; 379:78–81.

    Article  CAS  PubMed  Google Scholar 

  93. Vignes M, Clarke VR, Parry MJ, et al. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus. Neuropharmacology 1998; 37:1269–1277.

    Article  CAS  PubMed  Google Scholar 

  94. Kerchner GA, Wilding TJ, Li P, Zhuo M, Huettner JE. Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci 2001; 21:59–66.

    CAS  PubMed  Google Scholar 

  95. Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben Ari Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. 1998; Nat Neurosci 1:470–478.

    Article  CAS  PubMed  Google Scholar 

  96. Frerking M, Petersen CC, Nicoll RA. Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proc Natl Acad Sci USA 1999; 96:12917–12922.

    Article  CAS  PubMed  Google Scholar 

  97. Min MY, Melyan Z, Kullmann DM. Synaptically released glutamate reduces gammaaminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. Proc Natl Acad Sci USA 1999; 96:9932–9937.

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez-Moreno A, Lerma J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 1998; 20:1211–1218.

    Article  CAS  PubMed  Google Scholar 

  99. Rodriguez-Moreno A, Lopez-Garcia JC, Lerma J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc Natl Acad Sci USA 2000; 97:1293–1298.

    Article  CAS  PubMed  Google Scholar 

  100. Braga MF, Aroniadou-Anderjaska V, Xie J, Li H. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J Neurosci 2003; 23:442–452.

    CAS  PubMed  Google Scholar 

  101. Mulle C, Sailer A, Swanson GT, et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 2000; 28:475–484.

    Article  CAS  PubMed  Google Scholar 

  102. Cossart R, Tyzio R, Dinocourt C, et al. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons. Neuron 2001; 29:497–508.

    Article  CAS  PubMed  Google Scholar 

  103. Satake S, Saitow F, Yamada J, Konishi S. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat Neurosci 2000; 3:551–558.

    Article  CAS  PubMed  Google Scholar 

  104. Bureau I, Mulle C. Potentiation of GABAergic synaptic transmission by AMPA receptors in mouse cerebellar stellate cells: changes during development. J Physiol 1998; 509(Pt 3):817–831.

    Article  Google Scholar 

  105. Lee CJ, Bardoni R, Tong CK, et al. Functional expression of AMPA receptors on central terminals of rat dorsal root ganglion neurons and presynaptic inhibition of glutamate release. Neuron 2002; 35:135–146.

    Article  CAS  PubMed  Google Scholar 

  106. Melyan Z, Wheal HV, Lancaster B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 2002; 34:107–114.

    Article  CAS  PubMed  Google Scholar 

  107. Jia Z, Agopyan N, Miu P, et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 1996; 17:945–956.

    Article  CAS  PubMed  Google Scholar 

  108. Jia Z, Lu YM, Agopyan N, Roder J. Gene targeting reveals a role for the glutamate receptors mGluR5 and GluR2 in learning and memory. Physiol Behav 2001; 73:793–802.

    Article  CAS  PubMed  Google Scholar 

  109. Iihara K, Joo DT, Henderson J, et al. The influence of glutamate receptor 2 expression on excitotoxicity in Glur2 null mutant mice. J Neurosci 2001; 21:2224–2239.

    CAS  PubMed  Google Scholar 

  110. Le D, Das S, Wang YF, et al. Enhanced neuronal death from focal ischemia in AMPAreceptor transgenic mice. Brain Res Mol Brain Res 1997; 52:235–241.

    Article  CAS  PubMed  Google Scholar 

  111. Zamanillo D, Sprengel R, Hvalby O, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 1999; 284:1805–1811.

    Article  CAS  PubMed  Google Scholar 

  112. Mead AN, Stephens DN. Selective disruption of stimulus-reward learning in glutamate receptor gria1 knock-out mice. J Neurosci 2003; 23:1041–1048.

    CAS  PubMed  Google Scholar 

  113. Sailer A, Swanson GT, Perez-Otano I, et al. Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J Neurosci 1999; 19:8757–8764.

    CAS  PubMed  Google Scholar 

  114. Contractor A, Swanson GT, Sailer A, O’Gorman S, Heinemann SF. Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 2000; 20:8269–8278.

    CAS  PubMed  Google Scholar 

  115. Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short-and longterm plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29:209–216.

    Article  CAS  PubMed  Google Scholar 

  116. Mulle C, Sailer A, Perez-Otano I, et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998; 392:601–605.

    Article  CAS  PubMed  Google Scholar 

  117. Bureau I, Bischoff S, Heinemann SF, Mulle C. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 1999; 19:653–663.

    CAS  PubMed  Google Scholar 

  118. Vissel B, Royle GA, Christie BR, et al. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 2001; 29:217–227.

    Article  CAS  PubMed  Google Scholar 

  119. Contractor A, Sailer AW, Darstein M, et al. Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2−/− mice. J Neurosci 2003; 23:422–429.

    CAS  PubMed  Google Scholar 

  120. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol Lond 1983; 334:33–46.

    CAS  PubMed  Google Scholar 

  121. Collingridge GL, Herron CE, Lester RA. Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus. J Physiol Lond 1988; 399:283–300.

    CAS  PubMed  Google Scholar 

  122. MacDonald JF, Porietis AV, Wojtowicz JM. L-aspartic acid induces a region of negative slope conductance in the current-voltage relationship of cultured spinal cord neurons. Brain Res 1982; 237:248–253.

    Article  CAS  PubMed  Google Scholar 

  123. Flatman JA, Schwindt PC, Crill WE, Stafstrom CE. Multiple actions of N-methyl-D-aspartate on cat neocortical neurons in vitro. Brain Res 1983; 266:169–173.

    Article  CAS  PubMed  Google Scholar 

  124. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309:261–263.

    Article  CAS  PubMed  Google Scholar 

  125. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamateactivated channels in mouse central neurones. Nature 1984; 307:462–465.

    Article  CAS  PubMed  Google Scholar 

  126. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones [published erratum appears in Nature 1986 Jun 26−Jul 2;321(6073):888]. Nature 1986; 321:519–522.

    Article  CAS  PubMed  Google Scholar 

  127. Mayer ML, Vyklicky L, Benveniste M, Patneau DL, Williamson L. Desensitization at NMDA and AMPA-kainate receptors. In: Wheal H, Thomson A, eds. Excitatory Amino Acids and Synaptic Transmission. London: Academic Press, 1991:123–140.

    Google Scholar 

  128. Krupp JJ, Vissel B, Heinemann SF, Westbrook GL. Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol Pharmacol 1996; 50:1680–1688.

    CAS  PubMed  Google Scholar 

  129. Benveniste M, Clements J, Vyklicky L, Jr., Mayer ML. A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol Lond 1990; 428:333–357.

    CAS  PubMed  Google Scholar 

  130. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325:529–531.

    Article  CAS  PubMed  Google Scholar 

  131. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241:835–837.

    Article  CAS  PubMed  Google Scholar 

  132. Danysz W, Parsons AC. Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 1998; 50:597–664.

    CAS  PubMed  Google Scholar 

  133. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96:13409–13414.

    Article  CAS  PubMed  Google Scholar 

  134. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99:13675–13680.

    Article  CAS  PubMed  Google Scholar 

  135. Hashimoto K, Fukushima T, Shimizu E, et al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60:572–576.

    Article  CAS  PubMed  Google Scholar 

  136. Sheng M. The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci 2001; 114:1251.

    CAS  PubMed  Google Scholar 

  137. Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N YAcad Sci 1999; 868:515–525.

    Article  CAS  Google Scholar 

  138. Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci 1995; 18:54–56.

    Article  CAS  PubMed  Google Scholar 

  139. Morris RG. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-d-aspartate receptor antagonist AP5. J Neurosci 1989; 9:3040–3057.

    CAS  PubMed  Google Scholar 

  140. Bear MF. NMDA-receptor-dependent synaptic plasticity in the visual cortex. Prog Brain Res 1996; 108:205–218.

    Article  CAS  PubMed  Google Scholar 

  141. Hrabetova S, Serrano P, Blace N, et al. Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci (On-line) 2000; 20:RC81.

    CAS  Google Scholar 

  142. Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 1994; 76:427–437.

    Article  CAS  PubMed  Google Scholar 

  143. Iwasato T, Datwani A, Wolf AM, et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 2000; 406:726–731.

    Article  CAS  PubMed  Google Scholar 

  144. Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain 2000; 4:5–15.

    Article  CAS  PubMed  Google Scholar 

  145. Willis WD. Role of neurotransmitters in sensitization of pain responses. Ann NY Acad Sci 2001; 933:142–156.

    Article  CAS  PubMed  Google Scholar 

  146. Trujillo KA. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox Res 2002; 4:373–391.

    Article  CAS  PubMed  Google Scholar 

  147. Schmidt BJ, Hochman S, MacLean JN. NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord. Ann NY Acad Sci 1998; 860:189–202.

    Article  CAS  PubMed  Google Scholar 

  148. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992; 258:597–603.

    Article  CAS  PubMed  Google Scholar 

  149. Mori H, Mishina M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995; 34:1219–1237.

    Article  CAS  PubMed  Google Scholar 

  150. Seeburg PH, Burnashev N, Kohr G, Kuner T, Sprengel R, Monyer H. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 1995; 50:19–134.

    CAS  PubMed  Google Scholar 

  151. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997; 18:493–503.

    Article  CAS  PubMed  Google Scholar 

  152. Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 1998; 393:377–381.

    Article  CAS  PubMed  Google Scholar 

  153. Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 1998; 18:2954–2961.

    CAS  PubMed  Google Scholar 

  154. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor [see comments]. Nature 1991; 354:31–37.

    Article  CAS  PubMed  Google Scholar 

  155. Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M. Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett 1992; 300:39–45.

    Article  CAS  PubMed  Google Scholar 

  156. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S. Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 1992; 185:826–832.

    Article  CAS  PubMed  Google Scholar 

  157. Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, et al. Zinc potentiates agonistinduced currents at certain splice variants of the NMDA receptor. Neuron 1993; 10:943–954.

    Article  CAS  PubMed  Google Scholar 

  158. Ikeda K, Nagasawa M, Mori H, et al. Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett 1992; 313:34–38.

    Article  CAS  PubMed  Google Scholar 

  159. Kutsuwada T, Kashiwabuchi N, Mori H, et al. Molecular diversity of the NMDA receptor channel [see comments]. Nature 1992; 358:36–41.

    Article  CAS  PubMed  Google Scholar 

  160. Meguro H, Mori H, Araki K, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 1992; 357:70–74.

    Article  CAS  PubMed  Google Scholar 

  161. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992; 256:1217–2112.

    Article  CAS  PubMed  Google Scholar 

  162. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12:529–540.

    Article  CAS  PubMed  Google Scholar 

  163. Ishii T, Moriyoshi K, Sugihara H, et al. Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits. J Biol Chem 1993; 268:2836–2843.

    CAS  PubMed  Google Scholar 

  164. Buller AL, Larson HC, Schneider BE, Beaton JA, Morrisett RA, Monaghan DT. The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J Neurosci 1994; 14:5471–5484.

    CAS  PubMed  Google Scholar 

  165. Laurie DJ, Seeburg PH. Ligand affinities at recombinant N-methyl-d-aspartate receptors depend on subunit composition. Eur J Pharmacol 1994; 268:335–345.

    Article  CAS  PubMed  Google Scholar 

  166. Williams K. Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993; 44:851–859.

    CAS  PubMed  Google Scholar 

  167. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 1995; 15:6498–6508.

    CAS  PubMed  Google Scholar 

  168. Sucher NJ, Akbarian S, Chi CL, et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 1995; 15:6509–6520.

    CAS  PubMed  Google Scholar 

  169. Perez-Otano I, Schulteis CT, Contractor A, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 2001; 21:1228–1237.

    CAS  PubMed  Google Scholar 

  170. Andersson O, Stenqvist A, Attersand A, von Euler G. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 2001; 78:178–184.

    Article  CAS  PubMed  Google Scholar 

  171. Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 2001; 21:RC185.

    CAS  PubMed  Google Scholar 

  172. Matsuda K, Kamiya Y, Matsuda S, Yuzaki M. Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res 2002; 100:43–52.

    Article  CAS  PubMed  Google Scholar 

  173. Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002; 415:793–798.

    CAS  PubMed  Google Scholar 

  174. O’Hara PJ, Sheppard PO, Thogersen H, et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993; 11:41–52.

    Article  PubMed  Google Scholar 

  175. Zheng F, Erreger K, Low CM, et al. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat Neurosci 2001; 4:894–901.

    Article  CAS  PubMed  Google Scholar 

  176. Pasternack A, Coleman SK, Jouppila A, et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J Biol Chem 2002; 277:49662–49667.

    Article  CAS  PubMed  Google Scholar 

  177. Nakanishi N, Shneider NA, Axel R. A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 1990; 5:569–5681.

    Article  CAS  PubMed  Google Scholar 

  178. Burnashev N, Schoepfer R, Monyer H, et al. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 1992; 257:1415–1419.

    Article  CAS  PubMed  Google Scholar 

  179. Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 1998; 92:279–289.

    Article  CAS  PubMed  Google Scholar 

  180. Sheng M, Lee SH. Growth of the NMDA receptor industrial complex. Nat Neurosci 2000; 3:633–635.

    Article  CAS  PubMed  Google Scholar 

  181. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995; 269:1737–1740.

    Article  CAS  PubMed  Google Scholar 

  182. Lau LF, Mammen A, Ehlers MD, et al. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J Biol Chem 1996; 271:21622–21628.

    Article  CAS  PubMed  Google Scholar 

  183. Muller BM, Kistner U, Kindler S, et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 1996; 17:255–265.

    Article  CAS  PubMed  Google Scholar 

  184. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 1998; 11:161–172.

    Article  CAS  PubMed  Google Scholar 

  185. Brenman JE, Christopherson KS, Craven SE, McGee AW, Bredt DS. Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci 1996; 16:7407–7415.

    CAS  PubMed  Google Scholar 

  186. Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 1998; 20:895–904.

    Article  CAS  PubMed  Google Scholar 

  187. Kim JH, Liao D, Lau LF, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 1998; 20:683–691.

    Article  CAS  PubMed  Google Scholar 

  188. Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA 2001; 98:7058–7061.

    Article  CAS  PubMed  Google Scholar 

  189. Sheng M, Hyoung Lee S. AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neurosci Res 2003; 46:127–134.

    CAS  PubMed  Google Scholar 

  190. Benveniste M, Mayer ML. Kinetic analysis of antagonist action at N-methyl-d-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 1991; 59:560–573.

    Article  CAS  PubMed  Google Scholar 

  191. Behe P, Stern P, Wyllie DJ, Nassar M, Schoepfer R, Colquhoun D. Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc R Soc Lond B Biol Sci 1995; 262:205–213.

    Article  CAS  Google Scholar 

  192. Schorge S, Colquhoun D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 2003; 23:1151–1158.

    CAS  PubMed  Google Scholar 

  193. Premkumar LS, Auerbach A. Stoichiometry of recombinant N-methyl-d-aspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 1997; 110: 485–502.

    Article  CAS  PubMed  Google Scholar 

  194. Wafford KA, Bain CJ, Le Bourdelles B, Whiting PJ, Kemp JA. Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. Neuroreport 1993; 4:1347–1349.

    Article  CAS  PubMed  Google Scholar 

  195. Brimecombe JC, Boeckman FA, Aizenman E. Functional consequences of NR2 subunit composition in single recombinant N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 1997; 94:11019–11024.

    Article  CAS  PubMed  Google Scholar 

  196. Vicini S, Wang JF, Li JH, et al. Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J Neurophysiol 1998; 79:555–66.

    CAS  PubMed  Google Scholar 

  197. Buller AL, Monaghan DT. Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. Eur J Pharmacol 1997; 320:87–94.

    Article  CAS  PubMed  Google Scholar 

  198. Cheffings CM, Colquhoun D. Single channel analysis of a novel NMDA channel from Xenopus oocytes expressing recombinant NR1a, NR2A and NR2D subunits. J Physiol 2000; 526 (Pt 3):481–491.

    CAS  PubMed  Google Scholar 

  199. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994; 368:144–147.

    Article  CAS  PubMed  Google Scholar 

  200. Brickley SG, Misra C, Mok MH, Mishina M, Cull-Candy SG. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 2003; 23:4958–4966.

    CAS  PubMed  Google Scholar 

  201. Shinozaki H, Ishida M, Shimamoto K, Ohfune Y. A conformationally restricted analogue of l-Glutamate, the (2S,3R,4S) isomer of l-alpha-(carboxycyclopropyl)glycine, activates the NMDA-type receptor more markedly than NMDA in the isolated rat spinal cord. Brain Res 1989; 480:355–359.

    Article  CAS  PubMed  Google Scholar 

  202. O’Callaghan D, Wong MG, Beart PM. Molecular modelling of N-methyl-d-aspartate receptor agonists. Mol Neuropharmacol 1992; 2:89–92.

    CAS  Google Scholar 

  203. Jane DE, Olverman HJ, Watkins JC. Agonists and competitive antagonists: structure-activity and molecular modelling studies. In: Watkins JC, ed. Oxford: Oxford University Press, 1994:31–104.

    Google Scholar 

  204. Urwyler S, Laurie D, Lowe DA, Meier CL, Muller W. Biphenyl-derivatives of 2-amino-7-phosphonoheptanoic acid, a novel class of potent competitive N-methyl-d-aspartate receptor antagonist—I. Pharmacological characterization in vitro. Neuropharmacology 1996; 35:643–654.

    CAS  PubMed  Google Scholar 

  205. Ornstein PL, Schoepp DD, Arnold MB, et al. 6-substituted decahydroisoquinoline-3-carboxylic acids as potent and selective conformationally constrained NMDA receptor antagonists. J Med Chem 1992; 35:3547–560.

    Article  CAS  PubMed  Google Scholar 

  206. Christie JM, Jane DE, Monaghan DT. Native N-methyl-d-aspartate receptors containing NR2A and NR2B subunits have pharmacologically distinct competitive antagonist binding sites. J Pharmacol Exp Ther 2000; 292:1169–1174.

    CAS  PubMed  Google Scholar 

  207. Beaton JA, Stemsrud K, Monaghan DT. Identification of a novel N-methyl-d-aspartate receptor population in the rat medial thalamus. J Neurochem 1992; 59:754–775.

    Article  CAS  PubMed  Google Scholar 

  208. Wafford KA, Kathoria M, Bain CJ, et al. Identification of amino acids in the N-methyl-d-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 1995; 47:374–380.

    CAS  PubMed  Google Scholar 

  209. Buller AL, Larson HC, Morrisett RA, Monaghan DT. Glycine modulates ethanol inhibition of heteromeric N-methyl-d-aspartate receptors by felbamate: insights into the mechanisam of action. Mol Pharmacol 1995; 48:717–723.

    CAS  PubMed  Google Scholar 

  210. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K. Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 1995; 65:454–458.

    Article  CAS  PubMed  Google Scholar 

  211. Priestley T, Laughton P, Myers J, Le Bourdelles B, Kerby J, Whiting PJ. Pharmacological properties of recombinant human N-methyl-d-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 1995; 48:841–884.

    CAS  PubMed  Google Scholar 

  212. Hess SD, Daggett LP, Crona J, et al. Cloning and functional characterization of human heteromeric N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 1996; 278:808–816.

    CAS  PubMed  Google Scholar 

  213. Marvizon JC, Lewin AH, Skolnick P. 1-Aminocyclopropane carboxylic acid: a potent and selective ligand for the glycine modulatory site of the N-methyl-d-aspartate receptor complex. J Neurochem 1989; 52:992–994.

    Article  CAS  PubMed  Google Scholar 

  214. Hood WF, Sun ET, Compton RP, Monahan JB. 1-Aminocyclobutane-1-carboxylate (ACBC): a specific antagonist of the N-methyl-D-aspartate receptor coupled glycine receptor. Eur J Pharmacol 1989; 161:281–228.

    Article  CAS  PubMed  Google Scholar 

  215. Hershkowitz N, Rogawski MA. Cycloleucine blocks NMDA responses in cultured hippocampal neurones under voltage clamp: antagonism at the strychnine-insensitive glycine receptor. Br J Pharmacol 1989; 98:1005–1013.

    CAS  PubMed  Google Scholar 

  216. Priestley T, Kemp JA. Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-d-aspartic acid receptor complex. Mol Pharmacol 1994; 46:1191–1196.

    CAS  PubMed  Google Scholar 

  217. Watson GB, Bolanowski MA, Baganoff MP, Deppeler CL, Lanthorn TH. d-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Res 1990; 510:158–160.

    Article  CAS  PubMed  Google Scholar 

  218. Sheinin A, Shavit S, Benveniste M. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology 2001; 41:151–158.

    Article  CAS  PubMed  Google Scholar 

  219. Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 1989; 52:1319–1328.

    Article  CAS  PubMed  Google Scholar 

  220. Kemp JA, Foster AC, Leeson PD, et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-d-aspartate receptor complex. Proc Natl Acad Sci USA 1988; 85:6547–6550.

    Article  CAS  PubMed  Google Scholar 

  221. Baron BM, Harrison BL, Miller FP, et al. Activity of 5,7-dichlorokynurenic acid, a potent antagonist at the N-methyl-d-aspartate receptor-associated glycine binding site. Mol Pharmacol 1990; 38:554–561.

    CAS  PubMed  Google Scholar 

  222. Leeson PD, Baker R, Carling RW, et al. Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the N-methyl-d-aspartate receptor. J Med Chem 1991; 34:1243–52.

    Article  CAS  PubMed  Google Scholar 

  223. Baron BM, Harrison BL, Kehne JH, et al. Pharmacological characterization of MDL 105,519, an NMDA receptor glycine site antagonist. Eur J Pharmacol 1997; 323:181–192.

    Article  CAS  PubMed  Google Scholar 

  224. Priestley T, Laughton P, Macaulay AJ, Hill RG, Kemp JA. Electrophysiological characterisation of the antagonist properties of two novel NMDA receptor glycine site antagonists, L-695,902 and L-701,324. Neuropharmacology 1996; 35:1573–1581.

    Article  CAS  PubMed  Google Scholar 

  225. Foster AC, Kemp JA, Leeson PD, et al. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-d-aspartate receptor from rat brain. Mol Pharmacol 1992; 41:914–922.

    CAS  PubMed  Google Scholar 

  226. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methylaspartate. Br J Pharmacol 1983; 79:565–575.

    CAS  PubMed  Google Scholar 

  227. Huettner JE, Bean BP. Block of N-methyl-d-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA. 1988; 85: 1307–1311.

    Article  CAS  PubMed  Google Scholar 

  228. Kloog Y, Haring R, Sokolovsky M. Kinetic characterization of the phencyclidine-N-methyl-d-aspartate receptor interaction: evidence for a steric blockade of the channel. Biochemistry 1988; 27:843–848.

    Article  CAS  PubMed  Google Scholar 

  229. Shaw GG, Pateman AJ. The regional distribution of the polyamines spermidine and spermine in brain. J Neurochem 1973; 20:1225–1230.

    Article  CAS  PubMed  Google Scholar 

  230. Harman RJ, Shaw GG. The spontaneous and evoked release of spermine from rat brain in vitro. Br J Pharmacol 1981; 73:165–174.

    CAS  PubMed  Google Scholar 

  231. Williams K. Modulation and block of ion channels: a new biology of polyamines. Cell Signal 1997; 9:1–13.

    Article  CAS  PubMed  Google Scholar 

  232. Durand GM, Bennett MV, Zukin RS. Splice variants of the N-methyl-d-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. [published erratum appears in Proc Natl Acad Sci USA. 1993 Oct 15;90(20):9739]. Proc Natl Acad Sci USA. 1993; 90:6731–6735.

    Article  CAS  PubMed  Google Scholar 

  233. Zhang L, Zheng X, Paupard MC, et al. Spermine potentiation of recombinant N-methyl-d-aspartate receptors is affected by subunit composition. Proc Natl Acad Sci USA 1994; 91:10883–10887.

    Article  CAS  PubMed  Google Scholar 

  234. Williams K, Kashiwagi K, Fukuchi J, Igarashi K. An acidic amino acid in the N-methyl-d-aspartate receptor that is important for spermine stimulation. Mol Pharmacol 1995; 48:1087–1098.

    CAS  PubMed  Google Scholar 

  235. Kashiwagi K, Fukuchi J, Chao J, Igarashi K, Williams K. An aspartate residue in the extracellular loop of the N-methyl-d-aspartate receptor controls sensitivity to spermine and protons. Mol Pharmacol 1996; 49:1131–1141.

    CAS  PubMed  Google Scholar 

  236. Chao J, Seiler N, Renault J, et al. N1-dansyl-spermine and N1-(n-octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-methyl-d-aspartate receptors. Mol Pharmacol 1997; 51:861–871.

    CAS  PubMed  Google Scholar 

  237. Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K. Block and modulation of N-methyl-d-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 1997; 52:701–713.

    CAS  PubMed  Google Scholar 

  238. Williams K, Zappia AM, Pritchett DB, Shen YM, Molinoff PB. Sensitivity of the N-methyl-d-aspartate receptor to polyamines is controlled by NR2 subunits. Mol Pharmacol 1994; 45:803–809.

    CAS  PubMed  Google Scholar 

  239. Williams K. Pharmacological properties of recombinant N-methyl-d-aspartate (NMDA) receptors containing the epsilon 4 (NR2D) subunit. Neurosci Lett 1995; 184:181–184.

    Article  CAS  PubMed  Google Scholar 

  240. Igarashi K, Williams K. Antagonist properties of polyamines and bis(ethyl)polyamines at N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 1995; 272:1101–1109.

    CAS  PubMed  Google Scholar 

  241. Carter C, Rivy JP, Scatton B. Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-d-aspartate (NMDA) receptor. Eur J Pharmacol 1989; 164:611–612.

    Article  CAS  PubMed  Google Scholar 

  242. Gallagher MJ, Huang H, Pritchett DB, Lynch DR. Interactions between ifenprodil and the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 1996; 271:9603–9611.

    Article  CAS  PubMed  Google Scholar 

  243. Gallagher MJ, Huang H, Lynch DR. Modulation of the N-methyl-D-aspartate receptor by haloperidol: NR2B-specific interactions. J Neurochem 1998; 70:2120–2128.

    Article  CAS  PubMed  Google Scholar 

  244. Butler TW, Blake JF, Bordner J, et al. (3R,4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol: a conformationally restricted analogue of the NR2B subtype-selective NMDA antagonist (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol. J Med Che 1998; 41:1172–1184.

    Article  CAS  Google Scholar 

  245. Kew JN, Trube G, Kemp JA. State-dependent NMDA receptor antagonism by Ro 8-4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br J Pharmacol 1998; 123:463–472.

    Article  CAS  PubMed  Google Scholar 

  246. Mutel V, Buchy D, Klingelschmidt A, et al. In vitro binding properties in rat brain of [3H]Ro 25–6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 1998; 70:2147–2155.

    Article  CAS  PubMed  Google Scholar 

  247. Traynelis SF, Cull Candy SG. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 1990; 345:347–350.

    Article  CAS  PubMed  Google Scholar 

  248. Tang CM, Dichter M, Morad M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 1990; 87:6445–6449.

    Article  CAS  PubMed  Google Scholar 

  249. Traynelis SF, Hartley M, Heinemann SF. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 1995; 268:873–876.

    Article  CAS  PubMed  Google Scholar 

  250. Gallagher MJ, Huang H, Grant ER, Lynch DR. The NR2B-specific interactions of polyamines and protons with the dN-methyl-d-aspartate receptor. J Biol Chem 1997; 272: 24971–24979.

    Article  CAS  PubMed  Google Scholar 

  251. Zheng X, Zhang L, Durand GM, Bennett MV, Zukin RS. Mutagenesis rescues spermine and Zn2+ potentiation of recombinant NMDA receptors. Neuron 1994; 12:811–818.

    Article  CAS  PubMed  Google Scholar 

  252. Williams K. Separating dual effects of zinc at recombinant N-methyl-d-aspartate receptors. Neurosci Lett 1996; 215:9–12.

    Article  CAS  PubMed  Google Scholar 

  253. Chen N, Moshaver A, Raymond LA. Differential sensitivity of recombinant N-methyl-d-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 1997; 51:1015–1023.

    CAS  PubMed  Google Scholar 

  254. Paoletti P, Ascher P, Neyton J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors [published erratum appears in J Neurosci 1997 Oct 15;17(20):following table of contents]. J Neurosci 1997; 17:5711–5725.

    CAS  PubMed  Google Scholar 

  255. Murphy DE, Hutchison AJ, Hurt SD, Williams M, Sills MA. Characterization of the binding of [3H]-CGS 19755: a novel N-methyl-d-aspartate antagonist with nanomolar affinity in rat brain. Br J Pharmacol 1988; 95:932–938.

    CAS  PubMed  Google Scholar 

  256. Sills MA, Fagg G, Pozza M, et al. [3H]CGP 39653: a new N-methyl-d-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur J Pharmacol 1991; 192:19–24.

    Article  CAS  PubMed  Google Scholar 

  257. Monaghan DT, Andaloro VJ, Skifter DA. Molecular determinants of NMDA receptor pharmacological diversity. Prog Brain Res 1998; 116:158–177.

    Google Scholar 

  258. Brown JC 3rd, Tse HW, Skifter DA, et al. [3H]homoquinolinate binds to a subpopulation of NMDA receptors and to a novel binding site. J Neurochem 1998; 71:1464–1470.

    Article  CAS  PubMed  Google Scholar 

  259. Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 1987; 10:273–280.

    Article  CAS  Google Scholar 

  260. Baron BM, Siegel BW, Harrison BL, Gross RS, Hawes C, Towers P. [3H]MDL 105,519, a high-affinity radioligand for the N-methyl-d-aspartate receptor-associated glycine recognition site. J Pharmacol Exp Ther 1996; 279:62–68.

    CAS  PubMed  Google Scholar 

  261. Baron BM, Siegel BW, Slone AL, Harrison BL, Palfreyman MG, Hurt SD. [3H]5,7-dichlorokynurenic acid, a novel radioligand labels NMDA receptor-associated glycine binding sites. Eur J Pharmacol 1991; 206:149–154.

    Article  CAS  PubMed  Google Scholar 

  262. Yoneda Y, Suzuki T, Ogita K, Han D. Support for radiolabeling of a glycine recognition domain on the N-methyl-d-aspartate receptor ionophore complex by 5,7-[3H]dichlorokynurenate in rat brain. J Neurochem 1993; 60:634–645.

    Article  CAS  PubMed  Google Scholar 

  263. Grimwood S, Moseley AM, Carling RW, Leeson PD, Foster AC. Characterization of the binding of [3H]L-689,560, an antagonist for the glycine site on the N-methyl-d-aspartate receptor, to rat brain membranes. Mol Pharmacol 1992; 41:923–930.

    CAS  PubMed  Google Scholar 

  264. Honer M, Benke D, Laube B, et al. Differentiation of glycine antagonist sites of N-methyl-d-aspartate receptor subtypes. Preferential interaction of CGP 61594 with NR1/2B receptors. J Biol Chem 1998; 273:11158–11163.

    Article  CAS  PubMed  Google Scholar 

  265. Reynolds IJ, Miller RJ. Multiple sites for the regulation of the N-methyl-d-aspartate receptor. Mol Pharmacol 1988; 33:581–584.

    CAS  PubMed  Google Scholar 

  266. Largent BL, Gundlach AL, Snyder SH. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 1986; 238:739–748.

    CAS  PubMed  Google Scholar 

  267. Schoemaker H, Allen J, Langer SZ. Binding of [3H]ifenprodil, a novel NMDA antagonist, to a polyamine-sensitive site in the rat cerebral cortex. Eur J Pharmacol 1990; 176: 249–250.

    Article  CAS  PubMed  Google Scholar 

  268. Dana C, Benavides J, Schoemaker H, Scatton B. Pharmacological characterisation and autoradiographic distribution of polyamine-sensitive [3H]ifenprodil binding sites in the rat brain. Neurosci Lett 1991; 125:45–48.

    Article  CAS  PubMed  Google Scholar 

  269. Chazot PL, Lawrence S, Thompson CL. Studies on the subtype selectivity of CP-101,606: evidence for two classes of NR2B-selective NMDA receptor antagonists. Neuropharmacology 2002; 42:319–324.

    Article  CAS  PubMed  Google Scholar 

  270. Forrest D, Yuzaki M, Soares HD, et al. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 1994; 13:325–338.

    Article  CAS  PubMed  Google Scholar 

  271. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98:427–436.

    Article  CAS  PubMed  Google Scholar 

  272. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996; 87:1327–1338.

    Article  CAS  PubMed  Google Scholar 

  273. Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit. J Neurosci 1998; 18:6704–6712.

    CAS  PubMed  Google Scholar 

  274. Kishimoto Y, Kawahara S, Kirino Y, et al. Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport 1997; 8:3717–721.

    Article  CAS  PubMed  Google Scholar 

  275. Kutsuwada T, Sakimura K, Manabe T, et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 1996; 16:333–344.

    Article  CAS  PubMed  Google Scholar 

  276. Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT. Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 1996; 16:5014–5025.

    CAS  PubMed  Google Scholar 

  277. Kadotani H, Hirano T, Masugi M, et al. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 1996; 16:7859–7867.

    CAS  PubMed  Google Scholar 

  278. Ikeda K, Araki K, Takayama C, et al. Reduced spontaneous activity of mice defective in the epsilon 4 subunit of the NMDA receptor channel. Brain Res Mol Brain Res 1995; 33:61–71.

    Article  CAS  PubMed  Google Scholar 

  279. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 2002; 22:2335–2342.

    CAS  PubMed  Google Scholar 

  280. Minami T, Matsumura S, Okuda-Ashitaka E, et al. Characterization of the glutamatergic system for induction and maintenance of allodynia. Brain Res 2001; 895:178–185.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Monaghan, D.T., More, J.C.A., Feng, B., Jane, D.E. (2005). Glutamate Receptors. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics