Skip to main content

Glutamatergic Pathways

Their Relevance for Psychiatric Diseases

  • Chapter
Dopamine and Glutamate in Psychiatric Disorders

Abstract

Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system (CNS). Its effects are mediated through a large variety of ionotropic and metabotropic receptors abundantly expressed along the whole extent of the neuraxis. Abnormal regulation of glutamatergic transmission is, therefore, a key factor that underlies the appearance and progression of many neurodegenerative and psychiatric diseases. Unfortunately, the success of therapeutic strategies aimed at modulating glutamatergic transmission has been variable owing to the widespread distribution of glutamate receptors throughout the brain and the importance of glutamate in normal brain functioning. Although the importance of glutamatergic transmission in the modulation of neuronal activity involved in processing limbic and cognitive information has long been established, the complexity of the neuronal pathways involved combined with the multifarious effects glutamate could mediate via pre- and postsynaptic interactions with various receptor subtypes, have led to important controversies regarding the exact role glutamate plays in psychiatric diseases. However, substantial progress has been made over the past 10 yr in dissecting out the anatomy, physiology, and pharmacology of various neuronal pathways whereby glutamate could functionally modulate integrative processing of complex cognitive information. This chapter briefly summarizes some of these observations and considers their implications in our understanding of the anatomo-patho-physiology of psychiatric diseases, particularly schizophrenia, for which various hypotheses based on abnormal glutamatergic/dopaminergic transmission have been put forward to explain the neurochemical dysfunction of this disease (115).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weickert CS, Kleinman JE. The neuroanatomy and neurochemistry of schizophrenia. Psychiatr Clin North Am 1998; 21:57–75.

    Article  CAS  PubMed  Google Scholar 

  2. Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia— therapeutic implications. Biol Psychiatry 1999; 46:1388–1395.

    Article  CAS  PubMed  Google Scholar 

  3. Moore H, West AR, Grace AA. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 1999; 46:40–55.

    Article  CAS  PubMed  Google Scholar 

  4. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev 2000; 31:251–269.

    Article  CAS  PubMed  Google Scholar 

  5. Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 2000; 31:330–341.

    Article  CAS  PubMed  Google Scholar 

  6. Lewis DA, Gonzalez-Burgos G. Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52:309–317.

    Article  CAS  PubMed  Google Scholar 

  7. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Rev 2000; 31:288–294.

    Article  CAS  PubMed  Google Scholar 

  8. Rajkowska G. Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res 2000; 126:397–412.

    Article  CAS  PubMed  Google Scholar 

  9. Terenius L. Schizophrenia: pathophysiological mechanisms—a synthesis. Brain Res Rev 2000; 31:401–404.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman RE, McGlashan TH. Neural network models of schizophrenia. Neuroscientist 2001; 7:441–454.

    Article  CAS  PubMed  Google Scholar 

  11. Sharp FR, Tomitaka M, Bernaudin M, Tomita. Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 2001; 330–334.

    Google Scholar 

  12. Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51:775–787.

    Article  CAS  PubMed  Google Scholar 

  13. Pralong E, Magistretti P, Stoop R. Cellular perspectives on the glutamate-monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol 2002; 67:173–202.

    Article  CAS  PubMed  Google Scholar 

  14. Frankle WG, Lerma J, Laruelle M. The synaptic hypothesis of schizophrenia. Neuron 2003; 39:205–216.

    Article  CAS  PubMed  Google Scholar 

  15. Spedding M, Neau I, Harsing L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr Opin Pharmacol 2003; 3:33–40.

    Article  CAS  PubMed  Google Scholar 

  16. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45:17–25.

    Article  CAS  PubMed  Google Scholar 

  17. Carmichael ST, Price JL. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 1994; 346:366–402.

    Article  CAS  PubMed  Google Scholar 

  18. Goldman-Rakic PS. Anatomical and functional circuits in prefrontal cortex of nonhuman primates. Relevance to epilepsy. Adv Neurol 1995; 66:51–63.

    CAS  PubMed  Google Scholar 

  19. Goldman-Rakic PS. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 1999; 46:650–661.

    Article  CAS  PubMed  Google Scholar 

  20. Preuss TM, Goldman-Rakic PS. Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex. J Comp Neurol 1987; 257:269–281.

    Article  CAS  PubMed  Google Scholar 

  21. Romanski LM, Giguere M, Bates JF, Goldman-Rakic PS. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 1997; 379:313–332.

    Article  CAS  PubMed  Google Scholar 

  22. Giguere M, Goldman-Rakic PS. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 1988; 277:195–213.

    Article  CAS  PubMed  Google Scholar 

  23. Pakkenberg B. Total nerve cell number in neocortex of schizophrenics and controls estimated using optical dissectors. Biol Psychiatry 1993; 34:768–772.

    Article  CAS  PubMed  Google Scholar 

  24. Young KA, Manaye KF, Liang C, Hicks PB, German DC. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47:944–953.

    Article  CAS  PubMed  Google Scholar 

  25. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57:65–73.

    Article  CAS  PubMed  Google Scholar 

  26. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN. Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 2001; 158:1411–1422.

    Article  CAS  PubMed  Google Scholar 

  27. Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA. Reciprocal alterations in pre-and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 2002; 12:1063–1070.

    Article  PubMed  Google Scholar 

  28. Volk DW, Lewis DA. Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiol Behav 2002; 77:501–505.

    Article  CAS  PubMed  Google Scholar 

  29. Volk DW, Lewis DA. Effects of a mediodorsal thalamus lesion on prefrontal inhibitory circuitry: implications for schizophrenia. Biol Psychiatry 2003; 53:385–389.

    Article  PubMed  Google Scholar 

  30. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 1984: 4:2877–2890.

    CAS  PubMed  Google Scholar 

  31. Murase S, Grenhoff J, Chouvet G, Gonon FG, Svensson TH. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett 1993; 157:53–56.

    Article  CAS  PubMed  Google Scholar 

  32. Smith Y, Charara A, Parent A. Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 1996; 364:231–253.

    Article  CAS  PubMed  Google Scholar 

  33. Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 1992; 320:145–160.

    Article  CAS  PubMed  Google Scholar 

  34. Smith ID, Grace AA. Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 1992; 12:287–303

    Article  CAS  PubMed  Google Scholar 

  35. Charara A, Smith Y, Parent A. Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 1996; 364:254–266.

    Article  CAS  PubMed  Google Scholar 

  36. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 2000; 20:3864–3873.

    CAS  PubMed  Google Scholar 

  37. Groenewegen HJ, Wright CI, Beijer AV. The nucleus accumbens: gateway for limbic structures to reach the motor system? Progr Brain Res 1996; 107:485–511.

    Article  CAS  Google Scholar 

  38. Heimer L. Basal forebrain in the context of schizophrenia. Brain Res Rev 2000; 31:205–235.

    Article  CAS  PubMed  Google Scholar 

  39. Fudge JL, Haber SN. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 2000; 97:479–494.

    Article  CAS  PubMed  Google Scholar 

  40. Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 2001; 104:807–827.

    Article  CAS  PubMed  Google Scholar 

  41. Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 1978; 139:43–63.

    Article  CAS  PubMed  Google Scholar 

  42. Yeterian EH, Pandya DN. Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 1991; 312:43–67.

    Article  CAS  PubMed  Google Scholar 

  43. Kunishio K, Haber SN. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 1994; 350:337–356.

    Article  CAS  PubMed  Google Scholar 

  44. Haber SN, Kunishio K, Mizobuchi, Lynd-Balta E. The orbital and medial prefrontal circuit through the basal ganglia. J Neurosci 1995; 15:4851–4867.

    CAS  PubMed  Google Scholar 

  45. Price JL, Carmichael ST, Drevets WC. Networks related to the orbitral and medial prefrontal cortex: a substrate for emotional behavior? Progr Brain Res 1996; 107:523–536.

    Article  CAS  Google Scholar 

  46. Ferry AT, Ongur D, An X, Price JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000; 425:447–470.

    Article  CAS  PubMed  Google Scholar 

  47. Yeterian EH, Pandya DN. Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 1998; 399:384–402.

    Article  CAS  PubMed  Google Scholar 

  48. Friedman DP, Aggleton JP, Saunders RC. Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the macaque brain. J Comp Neurol 2002; 450:345–365.

    Article  PubMed  Google Scholar 

  49. Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985; 5:776–794.

    CAS  PubMed  Google Scholar 

  50. Berendse HW, Galis-de Graaf Y, Groenewegen HJ. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 1992; 316:314–347.

    Article  CAS  PubMed  Google Scholar 

  51. Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 1993; 338:255–278.

    Article  CAS  PubMed  Google Scholar 

  52. Sesack SR, Pickel VM. In the rat nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 1990; 527:266–279.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson LR, Aylwards RL, Hussain Z, Totterdell S. Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 1994; 61:851–865.

    Article  CAS  PubMed  Google Scholar 

  54. French SJ, Totterdell S. Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 2002; 446:151–165.

    Article  PubMed  Google Scholar 

  55. Smith Y, Parent A. Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 1986; 18:347–371.

    Article  CAS  PubMed  Google Scholar 

  56. Russchen FT, Bakst I, Amaral DG, Price JL. The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 1985; 329:241–257.

    Article  CAS  PubMed  Google Scholar 

  57. Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 2002; 110:257–275.

    Article  CAS  PubMed  Google Scholar 

  58. Kita H, Kitai ST. Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 1990; 298:40–49.

    Article  CAS  PubMed  Google Scholar 

  59. Russchen FT, Price JL. Amygdalostriatal projections in the rat. Topographical organization and fiber morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 1984; 47:15–22.

    Article  CAS  PubMed  Google Scholar 

  60. Wright CI, Beijer AVJ, Groenewegen HJ. Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 1996; 16:1877–1893.

    CAS  PubMed  Google Scholar 

  61. Wright CI, Groenewegen HJ. Patterns of convergence and segregation in the medial nucleus accumbens of the rat: relationships of prefrontal, cortical, midline thalamic, and basal amygdaloid afferents. J Comp Neurol 1995; 361:383–403.

    Article  CAS  PubMed  Google Scholar 

  62. Wright CI, Groenewegen HJ. Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience 1996; 73:359–373.

    Article  CAS  PubMed  Google Scholar 

  63. Finch DM. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 1996; 6:495–512.

    Article  CAS  PubMed  Google Scholar 

  64. French SJ, Totterdell S. Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 2003; 119:19–31.

    Article  CAS  PubMed  Google Scholar 

  65. Kelley AE, Domesick VB. The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde-and retrograde-horseradish peroxidase study. Neuroscience 1982; 7:2321–2335.

    Article  CAS  PubMed  Google Scholar 

  66. Groenewegen HJ, Room P, Witter MP, Lohman AHM. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 1982; 7:977–995.

    Article  CAS  PubMed  Google Scholar 

  67. Totterdell S, Smith AD. Convergence of hippocampal and dopaminergic inputs onto identified neurons in the nucleus accumbens of the rat. J Chem Neuroanat 1989; 2: 285–298.

    CAS  PubMed  Google Scholar 

  68. O’Donnell P, Grace AA. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 1995; 15:3622–3639.

    PubMed  Google Scholar 

  69. O’Donnell P. Ensemble coding in the nucleus accumbens. Psychobiology 1999; 27:187–197.

    Google Scholar 

  70. O’Donnell P, Grace AA. Hippocampal gating of cortical throughput in the nucleus accumbens: modulation by dopamine. Biol Psychiatry 1996; 39:632.

    Article  Google Scholar 

  71. Rosenkranz JA, Grace AA. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 2002; 22:324–337.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Smith, Y. (2005). Glutamatergic Pathways. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics