Skip to main content

Dopamine-Glutamate Interactions in Reward-Related Incentive Learning

  • Chapter

Abstract

Extensive evidence implicates the neurotransmitter dopamine (DA) in reward-related incentive learning (for reviews, see refs. 113). DA projections to the nucleus accumbens (NAc; refs. 1417), striatum (18), amygdala (19), and medial prefrontal cortex (mPFC; ref. (20) have been shown to be involved. In recent years, researchers have begun to focus on the neurochemical mechanisms underlying the role of DA in learning and significant advances have been made (2123). Many data suggest that DA afferents interact with glutamatergic (Glu) afferents common to the same cell when reward-related learning occurs (see ref. 22). Results further suggest that a number of signaling molecules activated by Glu and DA synaptic transmission interact to bring about short-term and long-term alterations that mediate the neurochemical and structural changes that form the basis of reward-related incentive learning (see ref. 22). In this chapter, we will review some of the studies examining the role of DA and especially Glu neurotransmission in reward-related learning. This will be followed by a discussion of evidence that provides a basis for understanding the DA-Glu interactions and the signaling pathways that mediate the effects of reward on behavior. Finally, the role of Glu in reward-related learning will be considered from the point of view of this evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wise RA. Catecholamine theories of reward: a critical review. Brain Res 1978; 152:215–247.

    CAS  PubMed  Google Scholar 

  2. Wise RA. Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 1982; 5:39–87.

    Google Scholar 

  3. Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res Rev 1983; 6:173–196.

    CAS  Google Scholar 

  4. Beninger RJ, Hoffman DC, Mazurski EJ. Receptor subtype-specific dopaminergic agents and conditioned behavior. Neurosci Biobehav Rev 1989; 13:113–122.

    CAS  PubMed  Google Scholar 

  5. Nakajima S. Subtypes of dopamine receptors involved in the mechanism of reinforcement. Neurosci Biobehav Rev 1989; 13:123–128.

    CAS  PubMed  Google Scholar 

  6. Miller R, Wickens JR, Beninger RJ. Dopamine D-1 and D-2 receptors in relation to reward and performance: a case for the D-1 receptor as a primary site of therapeutic action of neuroleptic drugs. Prog Neurobiol 1990; 34:143–183.

    CAS  PubMed  Google Scholar 

  7. Le Moal M, Simon H. Mesocortical dopaminergic network: functional and regulatory roles. Physiol Rev 1991; 71:155–234.

    PubMed  Google Scholar 

  8. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 1993; 18:247–291.

    CAS  PubMed  Google Scholar 

  9. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278:52–58.

    CAS  PubMed  Google Scholar 

  10. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997; 275:1593–1599.

    CAS  PubMed  Google Scholar 

  11. Beninger RJ, Miller R. Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 1998; 22:335–345.

    CAS  PubMed  Google Scholar 

  12. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 1998; 28:309–369.

    CAS  PubMed  Google Scholar 

  13. Di Chiara G. Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 1999; 375:13–30.

    PubMed  Google Scholar 

  14. Salamone JD. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 1994; 61:117–133.

    CAS  PubMed  Google Scholar 

  15. Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 1999; 31:6–41.

    CAS  PubMed  Google Scholar 

  16. Zahm D. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24:85–105.

    CAS  PubMed  Google Scholar 

  17. Salamone JD, Correa M. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 2002; 137:3–25.

    CAS  PubMed  Google Scholar 

  18. Beninger RJ, Ranaldi R. Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding. Behav Brain Res 1993; 55:203–212.

    CAS  PubMed  Google Scholar 

  19. Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002; 3:563–73.

    CAS  PubMed  Google Scholar 

  20. Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63:241–320.

    CAS  PubMed  Google Scholar 

  21. Wickens J. Striatal dopamine in motor activation and reward-mediated learning: Steps towards a unifying model. J Neural Transm 1990; 80:9–31.

    CAS  Google Scholar 

  22. Sutton MA, Beninger RJ. Psychopharmacology of conditioned reward: evidence for a rewarding signal at D1-like dopamine receptors. Psychopharmacology 1999; 144:95–110.

    CAS  PubMed  Google Scholar 

  23. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs [comment]. J Neurosci 2002; 22:3306–3311.

    CAS  PubMed  Google Scholar 

  24. Bindra D. A motivational view of learning, performance and behavior modification. Psychol Rev 1974; 81:199–213.

    CAS  PubMed  Google Scholar 

  25. Tombaugh TN, Tombaugh J, Anisman H. Effects of dopamine receptor blockade on alimentary behavior: home cage food consumption, magazine training, operant acquisition and performance. Psychopharmacology 1979; 66:219–225.

    CAS  PubMed  Google Scholar 

  26. Phillips AG, McDonald AC, Wilkie DM. Disruption of an autoshaped response to a signal of BSR by neuroleptic drugs. Pharmacol Biochem Behav 1981; 14:543–548.

    CAS  PubMed  Google Scholar 

  27. Blackburn JR, Phillips AG, Fibiger HC. Dopamine and prepatory behavior: I. Effects of pimozide. Behav Neurosci 1987; 101:352–360.

    CAS  PubMed  Google Scholar 

  28. Blackburn JR, Phillips AG, Fibiger HC. Dopamine and preparatory behavior: III effects of metoclopramide and thioridazine. Behav Neurosci 1989; 103:903–907.

    CAS  PubMed  Google Scholar 

  29. Dickinson A, Smith J, Mirenowicz J. Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci 2000; 114:468–483.

    CAS  PubMed  Google Scholar 

  30. Smith-Roe SL, Kelley AE. Coincident activation of NMDA and dopamine D-1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 2000; 20:7737–7742.

    CAS  PubMed  Google Scholar 

  31. Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci 2001; 21:9471–9477.

    PubMed  Google Scholar 

  32. Parkinson JA, Dalley JW, Cardinal RN, et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behavior: implications for mesoaccumbens dopamine function. Behav Brain Res 2002; 137:149–163.

    CAS  PubMed  Google Scholar 

  33. Baldwin AE, Sadeghian K, Kelley AE. Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 2002; 22:1063–1071.

    CAS  PubMed  Google Scholar 

  34. Staubli U, Thibault O, DiLorenzo M, Lynch G. Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. Behav Neurosci 1989; 103:54–60.

    CAS  PubMed  Google Scholar 

  35. Burns LH, Everitt BJ, Kelley AE, Robbins TW. Glutamate—dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology 1994; 115:516–528.

    CAS  PubMed  Google Scholar 

  36. Baldwin AE, Holahan MR, Sadeghian K, Kelley AE. N-methyl-d-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci 2000; 114:84–98.

    CAS  PubMed  Google Scholar 

  37. Kelley AE, Smith-Roe SL, Holahan MR. Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Nat Acad Sci USA 1997; 94:12174–12179.

    CAS  PubMed  Google Scholar 

  38. Wise RA, Schwartz HV. Pimozide attenuates acquisition of lever pressing for food in rats. Pharmacol Biochem Behav 1981; 15:655–656.

    CAS  PubMed  Google Scholar 

  39. Freed WJ, Wyatt RJ. Impairment of instrumental learning in rats by glutamic acid diethyl ester. Pharmacol Biochem Behav 1981; 14:223–226.

    CAS  PubMed  Google Scholar 

  40. Pallares MA, Nadal RA, Silvestre JS, Ferre NS. Effects of ketamine, a noncompetitive NMDA antagonist, on the acquisition of the lever press response in rats. Physiol Behav 1995; 57:389–392.

    CAS  PubMed  Google Scholar 

  41. Buffalo EA, Gillam MP, Allen RR, Paule MG. Acute behavioral effects of MK-801 in rhesus monkeys: assessment using an operant test battery. Pharmacol Biochem Behav 1994; 48:935–940.

    CAS  PubMed  Google Scholar 

  42. Clissold DB, Ferkany JW, Pontecorvo MJ. Competitive and noncompetitive N-methyl-Daspartate (NMDA) antagonists, haloperidol, and scopolamine impair performance in a nonspatial operant discrimination task. Psychobiology 1991; 14:332–338.

    Google Scholar 

  43. Mélan C, Eichenlaub D, Ungerer A, Messier C, Destrade C. Blockade of spontaneous posttraining performance improvement in mice by NMDA antagonists. Pharmacol Biochem Behav 1997; 56:589–594.

    PubMed  Google Scholar 

  44. Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A. The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever press learning tasks in mice. Neuropharmacology 1996; 35:1057–1064.

    CAS  PubMed  Google Scholar 

  45. Mathis C, Ungerer A. The retention deficit induced by (RS)-alpha-methyl-4-carboxyphenylglycine in a lever press learning task is blocked by selective agonists of either group I or group II metabotropic glutamate receptors. Exp Brain Res 1999; 129:147–155.

    CAS  PubMed  Google Scholar 

  46. Ungerer A, Mathis C, Mélan C. Are glutamate receptors specifically implicated in some forms of memory processes? Exp Brain Res 1998; 123:45–51.

    CAS  PubMed  Google Scholar 

  47. Pin JP, Duvoisin R. Review: neurotransmitter receptors I: the metabotropic glutamate receptor: structure and functions. Neuropharmacology 1995; 34:1–26.

    CAS  PubMed  Google Scholar 

  48. Chiamulera C, Epping-Jordan MP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001; 4:873–874.

    CAS  PubMed  Google Scholar 

  49. Wise RA, Spindler J, de Wit H, Gerber GJ. Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 1978; 201:262–264.

    CAS  PubMed  Google Scholar 

  50. Wise RA, Spindler J, Legault L. Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can J Pharmacol 1978; 32:77–70.

    CAS  Google Scholar 

  51. Phillips AG, Fibiger HC. Decreased resistence to extinction after haloperidol: implications for the role of dopamine in reinforcement. Pharmacol Biochem Behav 1979; 10:751–760.

    CAS  PubMed  Google Scholar 

  52. Mason ST, Beninger RJ, Phillips AG, Fibiger HC. Pimozide-induced suppression of responding: evidence against a block of food reward. Pharmacol Biochem Behav 1980; 12:917–923.

    CAS  PubMed  Google Scholar 

  53. Beninger RJ, Cheng M, Hahn BL, et al. Effects of extinction, pimozide, SCH 23390, and metoclopramide on food-reinforced operant responding. Psychopharmacology 1987; 92:343–349.

    CAS  PubMed  Google Scholar 

  54. Beninger RJ, D’Amico CM, Ranaldi R. Microinjections of flupenthixol into the caudate putamen of rats produce intrasession declines in food-rewarded operant responding. Pharmacol Biochem Behav 1993; 45:343–350.

    CAS  PubMed  Google Scholar 

  55. Phillips G, Willner P, Muscat R. Anatomical substrates for neuroleptic-induced reward attentuation and neuroleptic-induced response decrement. Behav Pharmacol 1991; 2:129–141.

    PubMed  Google Scholar 

  56. Shoaib M, Shippenberg TS, Goldberg SR, Schindler CW. Behavioral studies with the glycine partial agonist (+)-HA966 on cocaine-induced locomotor activity and reinforcement. Behav Pharmacol 1995; 6:568–576.

    CAS  PubMed  Google Scholar 

  57. Pierce RC, Meil WM, Kalivas PW. The NMDA antagonist, dizocilpine, enhances cocaine reinforcement without influencing mesoaccumbens dopamine transmission. Psychopharmacology (Berl) 1997; 133:188–195.

    CAS  Google Scholar 

  58. Wessinger WD. Tolerance to and dependence on MK-801 (dizocilpine) in rats. Pharmacol Biochem Behav 1994; 49:1049–1056.

    CAS  PubMed  Google Scholar 

  59. Poling A, Cleary J, Jackson K, Wallace S. D-Amphetamine and phencyclidine alone and in combination: effects on fixed-ratio and interresponse-time-greater-than-t responding of rats. Pharmacol Biochem Behav 1981; 15:357–361.

    CAS  PubMed  Google Scholar 

  60. Hudzik TJ, Slifer BL. Interaction of sigma and PCP-like drugs on operant behaviors in the rat. Psychopharmacology (Berl) 1992; 108:115–122.

    CAS  Google Scholar 

  61. Balster RL, Baird JB. Effects of phencyclidine, D-amphetamine and pentobarbital on spaced responding in mice. Pharmacol Biochem Behav 1979; 11:617–623.

    CAS  PubMed  Google Scholar 

  62. Sanger DJ, Jackson A. Effects of phencyclidine and other N-methyl-D-aspartate antagonists on the schedule-controlled behavior of rats. J Pharmacol Exp Ther 1989; 248:1215–1221.

    CAS  PubMed  Google Scholar 

  63. Genovese RF, Lu XC. Effects of MK-801 stereoisomers on schedule-controlled behavior in rats. Psychopharmacology (Berl) 1991; 105:477–480.

    CAS  Google Scholar 

  64. Hauber W, Bohn I, Giertler C. NMDA, but not dopamine D2, receptors in the rat nucleus accumbens are invoved in guidance of instrumental behavior by stimuli predicting reward magnitude. J Neurosci 2000; 20:6282–6288.

    CAS  PubMed  Google Scholar 

  65. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J Comp Physiol Psychol 1954; 47:419–427.

    CAS  PubMed  Google Scholar 

  66. Mogenson GJ, Takigawa M, Robertson A, Wu M. Self-stimulation of the nucleus accumbens and ventral tegmental area of Tsai: attenuated by microinjection of spiroperidol into nucleus accumbens. Brain Res 1979; 171:247–259.

    CAS  PubMed  Google Scholar 

  67. Herberg LJ, Rose IC. Excitatory amino acid pathways in brain-stimulation reward. Behav Brain Res 1990; 39:230–239.

    CAS  PubMed  Google Scholar 

  68. Panagis G, Kastellakis A. The effects of ventral tegmental administration of GABA(A), GABA(B), NMDA and AMPA receptor agonists on ventral pallidum self-stimulation. Behav Brain Res 2002; 131:115–23.

    CAS  PubMed  Google Scholar 

  69. Corbett D. Possible abuse potential of the NMDA antagonist MK-801. Behav Brain Res 1989; 34:239–246.

    CAS  PubMed  Google Scholar 

  70. Herberg LJ, Rose IC. The effect of MK-801 and other antagonists of NMDA-type glutamate receptors on brain-stimulation reward. Psychopharmacology (Berl) 1989; 99:87–90.

    CAS  Google Scholar 

  71. Olds ME. Dopaminergic basis for the facilitation of brain stimulation reward by the NMDA receptor antagonist, MK-801. Eur J Pharmacol 1996; 306:23–32.

    CAS  PubMed  Google Scholar 

  72. Ranaldi R, Bauco P, Wise RA. Synergistic effects of cocaine and dizocilpine (MK-801) on brain stimulation reward. Brain Res 1997; 760:231–237.

    CAS  PubMed  Google Scholar 

  73. French ED, Ceci A. noncompetitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neurosci Lett 1990; 119:159–162.

    CAS  PubMed  Google Scholar 

  74. Bubser M, Keseberg U, Notz PK, Schmidt WJ. Differential behavioral and neurochemical effects of competitive and noncompetitive NMDA receptor antagonists in rats. Eur J Pharmacol 1992; 229:75–82.

    CAS  PubMed  Google Scholar 

  75. Löscher W, Annies R, Honack D. Comparison of competitive and uncompetitive NMDA receptor antagonists with regard to monoaminergic neuronal activity and behavioral effects in rats. Eur J Pharmacol 1993; 242:263–274.

    PubMed  Google Scholar 

  76. Bespalov A, Dumpis M, Piotrovsky L, Zvartau E. Excitatory amino acid receptor antagonist kynurenic acid attenuates rewarding potential of morphine. Eur J Pharmacol 1994; 264:233–239.

    CAS  PubMed  Google Scholar 

  77. Pickens R, Harris WC. Self-administration of d-amphetamine by rats. Psychopharmacologia 1968; 12:158–163.

    CAS  PubMed  Google Scholar 

  78. Pickens R, Thompson T. Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J Pharmacol Exp Ther 1968; 161:122–129.

    CAS  PubMed  Google Scholar 

  79. Baxter BL, Gluckman MI, Srein L, Scerni R. Self-injection of apomorphine in the rat: positive reinforcement by a dopamine receptor stimulant. Pharmacol Biochem Behav 1974; 2:387–391.

    CAS  PubMed  Google Scholar 

  80. Woolverton WL, Goldberg LI, Ginos JZ. Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Therap 1984; 230:678–683.

    CAS  Google Scholar 

  81. Self DW, Stein L. The D1 agonists SKF-82958 and SKF-77434 are self-administered by rats. Brain Res 1992; 582:349–352.

    CAS  PubMed  Google Scholar 

  82. Weed MR, Vanover KE, Woolverton WL. Reinforcing effect of the D1 dopamine agonist SKF 81297 in rhesus monkeys. Psychopharmacology 1993; 113:51–52.

    CAS  PubMed  Google Scholar 

  83. Carlezon WA, Wise RA. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 1996; 16:3112–3122.

    CAS  PubMed  Google Scholar 

  84. David V, Durkin TP, Cazala P. Rewarding effects elicited in the microinjection of either AMPA or NMDA glutamatergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. Eur J Neurosci 1998; 10:1394–1402.

    CAS  PubMed  Google Scholar 

  85. Schenk S, Valadez A, McNamara C, et al. Development and expression of sensitization to cocaine’s reinforcing properties: role of NMDA receptors. Psychopharmacology 1993; 111:332–338.

    CAS  PubMed  Google Scholar 

  86. Schenk S, Valadez A, Worley CM, McNamara C. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK-801 (dizocilpine). Behav Pharmacol 1993; 4:652–659.

    CAS  PubMed  Google Scholar 

  87. Koob GF, Le HT, Creese I. The D1 dopamine receptor antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 1987; 79:315–320.

    CAS  PubMed  Google Scholar 

  88. Davis WM, Smith SM. Effect of haloperidol on (+)-amphetamine self-administration. J Pharmac Pharmacol 1975; 27:540–542.

    CAS  Google Scholar 

  89. Slifer BL, Balster RL. Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazocine and cyclazocine in rhesus monkeys. J Pharmacol Exp Ther 1983; 225:522–528.

    CAS  PubMed  Google Scholar 

  90. Koek W, Woods JH, Winger GD. MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J Pharmacol Exp Ther 1988; 245:969–974.

    CAS  PubMed  Google Scholar 

  91. Beardsley PM, Hayes BA, Balster RL. The self-administration of MK-801 can depend upon drug-reinforcement history, and its discriminative stimulus properties are phencyclidinelike in rhesus monkeys. J Pharmacol Exp Ther 1990; 252:953–959.

    CAS  PubMed  Google Scholar 

  92. Cornish JL, Duffy P, Kalivas PW. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 1999; 93:1359–1367.

    CAS  PubMed  Google Scholar 

  93. Pulvirenti L, Maldonado-Lopez R, Koob GF. NMDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in the rat. Brain Res 1992; 594:327–330.

    CAS  PubMed  Google Scholar 

  94. Rassnick S, Pulvirenti L, Koob GF. Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacology (Berl) 1992; 109:92–98.

    CAS  Google Scholar 

  95. See RE, Kruzich PJ, Grimm JW. Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaineseeking behavior. Psychopharmacology 2001; 154:301–310.

    CAS  PubMed  Google Scholar 

  96. Ranaldi R, French E, Roberts DCS. Systemic pretreatment with MK-801 (dizocilpine) increases breaking points for self-administration of cocaine on a progressive-ratio schedule in rats. Psychopharmacology 1996; 128:83–88.

    CAS  PubMed  Google Scholar 

  97. Roberts DCS, Coh EA, Vickers G. Self-administration of cocaine on a progressive ratio schedule in rats: dose-response relationship and effect of haloperidol pretreatment. Psychopharmacology. 1989; 97:535–538.

    CAS  PubMed  Google Scholar 

  98. Stewart J, de Wit H, Eikelboom R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 1984; 91:251–268.

    CAS  PubMed  Google Scholar 

  99. Cornish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 2000; 20:U11–U15.

    Google Scholar 

  100. Meil WM, See RE. Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 1997; 87:139–148.

    CAS  PubMed  Google Scholar 

  101. De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ. MK-801 reinstates drug-seeking behavior in cocaine-trained rats. Neuroreport 1998; 9:637–640.

    PubMed  Google Scholar 

  102. Bespalov AY, Zvartau EE, Balster RL, Beardsley PM. Effects of N-methyl-D-aspartate receptor antagonists on reinstatement of cocaine-seeking behavior by priming injections of cocaine or exposures to cocaine-associated cues in rats. Behav Pharmacol 2000; 11:37–44.

    CAS  PubMed  Google Scholar 

  103. Kelley AE, Throne LC. NMDA receptors mediate the behavioral effects of amphetamine infused into the nucleus accumbens. Brain Res 1992; 29:247–254.

    CAS  Google Scholar 

  104. Cador M, Robbins TW, Everitt BJ. Involvement of the amygdala in stimulus-reward association: Interaction with the ventral striatum. Neuroscience 1989; 30:77–86.

    CAS  PubMed  Google Scholar 

  105. Burns LH, Robbins TW, Everitt BJ. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 1993; 55:167–183.

    CAS  PubMed  Google Scholar 

  106. Whitelaw RB, Markou A, Robbins TW, Everitt BJ. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behavior under a second-order schedule of reinforcement. Psychopharmacology 1996; 127:213–224.

    CAS  PubMed  Google Scholar 

  107. Hitchcott PK, Phillips GD. Amygdala and hippocampus control dissociable aspects of drugassociated conditioned rewards. Psychopharmacology 1997; 131:187–195.

    CAS  PubMed  Google Scholar 

  108. Spyraki C, Fibiger HC, Phillips AG. Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 1983; 253:185–194.

    Google Scholar 

  109. Mackey WB, van der Kooy D. Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol Biochem Behav 1985; 22:101–106.

    CAS  PubMed  Google Scholar 

  110. Carr GD, White NM. Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 1983; 33:2551–2557.

    CAS  PubMed  Google Scholar 

  111. Carr GD, White NM. Anatomical disassociation of amphetamine’s rewarding and aversive effects: an intracranial microinjection study. Psychopharmacology 1986; 89:340–346.

    CAS  PubMed  Google Scholar 

  112. Abrahams BS, Rutherford JD, Mallet PE, Beninger RJ. Place conditioning with the dopamine D1-like agonist SKF 82958 but not SKF 81297 or SKF 77434. Eur J Pharmacol 1998; 343:111–118.

    CAS  PubMed  Google Scholar 

  113. Hoffman DC, Beninger RJ. Selective D1 and D2 dopamine agonists produce opposing effects in place conditioning but not in conditioned taste aversion learning. Pharmacol Biochem Behav 1988; 31:1–8.

    CAS  PubMed  Google Scholar 

  114. Tzschentke TM. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998; 56:613–672.

    CAS  PubMed  Google Scholar 

  115. Tzschentke TM, Schmidt WJ. Functional heterogeneity of the rat medial prefrontal cortex: effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioral sensitization. Eur J Neurosci 1999; 11:4099–4109.

    CAS  PubMed  Google Scholar 

  116. Barr GA, Paredes W, Bridger WH. Place conditioning with morphine and phencyclidine: dose dependent effects. Life Sci 1985; 36:363–368.

    CAS  PubMed  Google Scholar 

  117. Marglin SH, Milano WC, Mattie ME, Reid LD. PCP and conditioned place preferences. Pharmacol Biochem Behav 1989; 33:281–283.

    CAS  PubMed  Google Scholar 

  118. Acquas E, Carboni E, Leone P, Di Chiara G. SCH 23390 blocks drug-conditioned placepreference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology (Berl) 1989; 99:151–155.

    CAS  Google Scholar 

  119. Acquas E, Carboni E, Garau L, Di Chiara G. Blockade of acquisition of drug-conditioned place aversion by 5HT3 antagonists. Psychopharmacology (Berl) 1990; 100:459–463.

    CAS  Google Scholar 

  120. Layer RT, Kaddis FG, Wallace LJ. The NMDA receptor antagonist MK-801 elicits conditioned place preference in rats. Pharmacol Biochem Behav 1993; 44:245–247.

    CAS  PubMed  Google Scholar 

  121. Hoffman DC. The noncompetitive NMDA antagonist MK-801 fails to block amphetamineinduced place conditioning in rats. Pharmacol Biochem Behav 1994; 47:907–912.

    CAS  PubMed  Google Scholar 

  122. Papp M, Moryl E. Rewarding properties of noncompetitive and competitive NMDA antagonists as measured by place preference conditioning in rats. Pol J Pharmacol 1994; 46:79–81.

    CAS  PubMed  Google Scholar 

  123. Steinpreis RE, Kramer MA, Mix KS, Piwowarczyk MC. The effects of MK801 on place conditioning. Neurosci Res 1995; 22:427–30.

    CAS  PubMed  Google Scholar 

  124. Del Pozo E, Barrios M, Baeyens JM. The NMDA receptor antagonist dizocilpine (MK-801) stereoselectively inhibits morphine-induced place preference conditioning in mice. Psychopharmacology (Berl) 1996; 125:209–213.

    Google Scholar 

  125. Papp M, Moryl E, Maccecchini ML. Differential effects of agents acting at various sites of the NMDA receptor complex in a place preference conditioning model. Eur J Pharmacol 1996; 317:191–196.

    CAS  PubMed  Google Scholar 

  126. Panos JJ, Rademacher DJ, Renner SL, Steinpreis RE. The rewarding properties of NMDA and MK-801 (dizocilpine) as indexed by the conditioned place preference paradigm. Pharmacol Biochem Behav 1999; 64:591–596.

    CAS  PubMed  Google Scholar 

  127. Tzschentke TM, Schmidt WJ. N-methyl-D-aspartic acid-receptor antagonists block morphine-induced conditioned place preference in rats. Neurosci Lett 1995; 193:37–40.

    CAS  PubMed  Google Scholar 

  128. Tzschentke TM, Schmidt WJ. Blockade of morphine-and amphetamine-induced conditioned place preference in the rat by riluzole. Neurosci Lett 1998; 242:114–116.

    CAS  PubMed  Google Scholar 

  129. Papp M, Gruca P, Willner P. Selective blockade of drug-induced place preference conditioning by ACPC, a functional NDMA-receptor antagonist. Neuropsychopharmacology 2002; 27:727–743.

    CAS  PubMed  Google Scholar 

  130. Popik P, Danysz W. Inhibition of reinforcing effects of morphine and motivational aspects of naloxone-precipitated opioid withdrawal by N-methyl-D-aspartate receptor antagonist, memantine. J Pharmacol Exp Ther 1997; 280:854–865.

    CAS  PubMed  Google Scholar 

  131. Tzschentke TM, Schmidt WJ. Interactions of MK-801 and GYKI 52466 with morphine and amphetamine in place preference conditioning and behavioral sensitization. Behav Brain Res 1997; 84:99–107.

    CAS  PubMed  Google Scholar 

  132. Slusher BS, Thomas A, Paul M, Schad CA, Ashby CR Jr. Expression and acquisition of the conditioned place preference response to cocaine in rats is blocked by selective inhibitors of the enzyme N-acetylated-alpha-linked-acidic dipeptidase (NAALADASE). Synapse 2001; 41:22–28.

    CAS  PubMed  Google Scholar 

  133. Kim HS, Jang CG. MK-801 inhibits methamphetamine-induced conditioned place preference and behavioral sensitization to apomorphine in mice. Brain Res Bull 1997; 44:221–227.

    CAS  PubMed  Google Scholar 

  134. Layer RT, Uretsky NJ, Wallace LJ. Effects of the AMPA/kainate receptor antagonist DNQX in the nucleus accumbens on drug-induced conditioned place preference. Brain Res 1993; 617:267–273.

    CAS  PubMed  Google Scholar 

  135. Mead AN, Stephens DN. CNQX but not NBQX prevents expression of amphetamineinduced place preference conditioning: a role for the glycine site of the NMDA receptor, but not AMPA receptors. J Pharmacol Exp Therap 1999; 290:9–15.

    CAS  Google Scholar 

  136. Cervo L, Samanin R. Effects of dopaminergic and glutamatergic receptor antagonists on the acquisition of cocaine conditioned place preference. Brain Res 1995; 673:242–250.

    CAS  PubMed  Google Scholar 

  137. Kim HS, Park WK, Jang CG, Oh S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain Res Bull 1996; 40:201–208.

    CAS  PubMed  Google Scholar 

  138. Kaddis FG, Uretsky NJ, Wallace LJ. DNQX in the nucleus accumbens inhibits cocaineinduced conditioned place preference. Brain Res 1995; 697:76–82.

    CAS  PubMed  Google Scholar 

  139. Spyraki C, Fibiger HC, Phillips AG. Attenuation by haloperidol of place preference conditioning using food reinforcement. Psychopharmacology 1982; 77:379–382.

    CAS  PubMed  Google Scholar 

  140. Mead AN, Vasilaki A, Spyraki C, Duka T, Stephens DN. AMPA-receptor involvement in cfos expression in the medial prefrontal cortex and amygdala dissociates neural substrates of conditioned activity and conditioned reward. Eur J Neurosci 1999; 11:4089–4098.

    CAS  PubMed  Google Scholar 

  141. Bespalov A. The expression of both amphetamine-conditioned place preference and pentylenetetrazol-conditioned place aversion is attenuated by the NMDA receptor antagonist (+/−)-CPP. Drug Alcohol Depend 1996; 41:85–88.

    CAS  PubMed  Google Scholar 

  142. Popik P, Kolasiewicz W. Mesolimbic NMDA receptors are implicated in the expression of conditioned morphine reward. Naunyn Schmiedebergs Arch Pharmacol 1999; 359:288–294.

    CAS  PubMed  Google Scholar 

  143. Popik P, Wrobel M, Rygula R, Bisaga A, Bespalov AY. Effects of memantine, an NMDA receptor antagonist, on place preference conditioned with drug and nondrug reinforcers in mice. Behav Pharmacol 2003; 14:237–244.

    CAS  PubMed  Google Scholar 

  144. Irwin S, Armstrong DM. Conditioned locomotor responses with drug as the UCS: individual differences. Neuropharmacology 1961; 2:151–157.

    Google Scholar 

  145. Post RM, Lockfeld A, Squillance KM, Contel NR. Drug environment interaction: context dependency of cocaine-induced behavioral sensitization. Life Sci 1981; 28:755–760.

    CAS  PubMed  Google Scholar 

  146. Martin-Iverson MT, McManus DS. Stimulant-conditioned locomotion is not affected by blockade of D1 and/or D2 dopamine receptors during conditioning. Brain Res 1990; 521:175–185.

    CAS  PubMed  Google Scholar 

  147. Mazurski EJ, Beninger RJ. Effects of selective drugs for dopaminergic D1 and D2 receptors on conditioned locomotion in rats. Psychopharmacology 1991; 105:107–112.

    CAS  PubMed  Google Scholar 

  148. Vezina P, Stewart J. The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Res 1989; 499:108–121.

    CAS  PubMed  Google Scholar 

  149. Drew KL, Glick SD. Role of D-1 and D-2 receptor stimulation in sensitization to amphetamine-induced circling behavior and in expression and extinction of the Pavlovian conditioned response. Psychopharmacology 1990; 101:465–472.

    CAS  PubMed  Google Scholar 

  150. Cervo L, Samanin R. Effects of dopaminergic and glutamatergic receptor antagonists on the establishment and expression of conditioned locomotion to cocaine in rats. Brain Res 1996; 731:31–38.

    CAS  PubMed  Google Scholar 

  151. Stewart J, Druhan JP. The development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the noncompetitive NMDA receptor antagonist, MK-801. Psychopharmacology 1992; 110:125–132.

    Google Scholar 

  152. Damianopoulos EN, Carey RJ. Evidence for N-methyl-D-aspartate receptor mediation of cocaine induced corticosterone release and cocaine conditioned stimulant effects. Behav Brain Res 1995; 68:219–228.

    CAS  PubMed  Google Scholar 

  153. Druhan JP, Wilent WB. Effects of the competitive N-methyl-D-aspartate receptor antagonist, CPP, on the development and expression of conditioned hyperactivity and sensitization induced by cocaine. Behav Brain Res 1999; 102:195–210.

    CAS  PubMed  Google Scholar 

  154. Beninger RJ, Hahn BL. Pimozide blocks establishment but not expression of amphetamineproduced environment-specific conditioning. Science 1983; 220:1304–1306.

    CAS  PubMed  Google Scholar 

  155. Beninger RJ, Herz RS. Pimozide blocks establishment but not expression of cocaineproduced environmental conditioning. Life Sci 1986; 38:1425–1431.

    CAS  PubMed  Google Scholar 

  156. McFarland K, Ettenberg A. Haloperidol does not attenuate conditioned place preferences or locomotor activation produced by food-or heroin-predictive discriminative cues. Pharmacol Biochem Behav 1999; 62:631–641.

    CAS  PubMed  Google Scholar 

  157. Bespalov AY, Zvartau EE. Intraaccumbens administration of NMDA receptor antagonist (+/−)-CPP prevents locomotor activation conditioned by morphine and amphetamine in rats. Pharmacol Biochem Behav 1996; 55:203–207.

    CAS  PubMed  Google Scholar 

  158. Bespalov AY, Dravolina OA, Zvartau EE, Beardsley PM, Balster RL. Effects of NMDA receptor antagonists on cocaine-conditioned motor activity in rats. Eur J Pharmacol 2000; 390:303–312.

    CAS  PubMed  Google Scholar 

  159. Hotsenpiller G, Giorgetti M, Wolf ME. Alterations in behavior and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 2001; 14:1843–55.

    CAS  PubMed  Google Scholar 

  160. Kandel E. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001; 294:1030–1038.

    CAS  PubMed  Google Scholar 

  161. Rankin CH. From gene to identified neuron to behavior in Caenorhabditis elegans. Nat Rev Genet 2002; 3: 622–630.

    CAS  PubMed  Google Scholar 

  162. Waddell S, Quinn WG. Flies, genes, and learning. Annu Rev Neurosci 2001; 24: 1283–1309.

    CAS  PubMed  Google Scholar 

  163. Fiala A, Muller U, Menzel R. Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee, Apis mellifera. J. Neurosci. 1999; 19: 10, 125–10, 134.

    Google Scholar 

  164. Rose SPR. God’s organism? The chick as a model system for memory studies. Learn Mem 2000; 7: 1–17.

    CAS  PubMed  Google Scholar 

  165. Izquierdo I, Medina JH. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 1997; 68: 285–316.

    CAS  PubMed  Google Scholar 

  166. Izquierdo I, Medina JH, Vianna MRM, Izquierdo LA, Barros DM. Separate mechanisms for short-and long-term memory. Behav Brain Res 1999; 103: 1–11.

    CAS  PubMed  Google Scholar 

  167. Wickens J. Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Prog Neurobiol 1988; 31: 507–528.

    CAS  PubMed  Google Scholar 

  168. Wickens JR. A theory of the striatum. In: Winlow W, ed. Pergamon Studies in Neuroscience. Tarrytown, NY: Pergamon, 1993.

    Google Scholar 

  169. Wickens J, Kötter R. Cellular models of reinforcement. In: Houk JC, Davis J, Beiser DG, eds. Models of Information Processing in the Basal Ganglia. Cambridge, MA: MIT, 1995: 187–214.

    Google Scholar 

  170. Cepeda C, Levine MS. Dopamine and N-methyl-d-aspartate receptor interactions in the neostriatum. Dev Neurosci 1998; 20: 1–18.

    CAS  PubMed  Google Scholar 

  171. Nicola SM, Surmeier DJ, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000; 23: 185–215.

    CAS  PubMed  Google Scholar 

  172. Reynolds JNJ, Wickens JR. Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostratum, in vivo. Neuroscience 2000; 99: 199–204.

    CAS  PubMed  Google Scholar 

  173. Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001; 13: 1071–1077.

    CAS  PubMed  Google Scholar 

  174. Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism of reward-related learning. Nature 2001; 413: 67–70.

    CAS  PubMed  Google Scholar 

  175. Beninger RJ. Role of D1 and D2 receptors in learning. In: Waddington J, ed. D1: D2 Dopamine Receptor Interactions: Neuroscience and Pharmacology. London: Academic Press, 1993: 115–157.

    Google Scholar 

  176. Kita H, Kitai ST. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res 1988; 447: 346–352.

    CAS  PubMed  Google Scholar 

  177. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons. Trends Neurosci 1990; 13: 259–265.

    CAS  PubMed  Google Scholar 

  178. Miller R. Meaning and Purpose in the Intact Brain. Oxford: Clarendon Press, 1981.

    Google Scholar 

  179. Kelley AE. Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 1999; 27: 198–213.

    Google Scholar 

  180. Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2001; 2: 695–703.

    CAS  PubMed  Google Scholar 

  181. Konradi C, Leveque JC, Hyman SE. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 1996; 16: 4231–4239.

    CAS  PubMed  Google Scholar 

  182. Das S, Grunert M, Williams L, Vincent SR. NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse 1997; 25: 227–233.

    CAS  PubMed  Google Scholar 

  183. Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 2002; 42: 135–163.

    CAS  PubMed  Google Scholar 

  184. Vincent SL, Sebben M, Dumuis A, Bockaert J. Neurotransmitter regulation of MAP kinase signaling in striatal neurons in primary culture. Synapse 1998; 29: 29–36.

    CAS  PubMed  Google Scholar 

  185. Curtis J, Finkbeiner S. Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth. J Neurosci Res 1999; 58: 88–95.

    CAS  PubMed  Google Scholar 

  186. Choe ES, Chung KT, Mao L, Wang JQ. Amphetamine increases phosphorylation of extracellular signal-regulated kinase and transcription factors in the rat striatum via group I metabotropic glutamate receptors. Neuropsychopharmacology 2002; 27: 565–75.

    CAS  PubMed  Google Scholar 

  187. Jentsch JD, Olausson P, Nestler EJ, Taylor JR. Stimulation of protein kinase a activity in the rat amygdala enhances reward-related learning. Biol Psychiatry 2002; 52: 111–118.

    CAS  PubMed  Google Scholar 

  188. Baldwin AE, Sadeghian K, Holahan MR, Kelley AE. Appetitive instrumental learing is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Learn Mem 2002; 77: 44–62.

    CAS  PubMed  Google Scholar 

  189. Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 1998; 18: 1848–1859.

    CAS  PubMed  Google Scholar 

  190. Self DW, Terwilliger RZ, Nestler EJ, Stein L. Inactivation of Gi and Go proteins in nucleus accumbens reduces both cocaine and heroin reinforcement. J Neurosci 1994; 14: 6239–6247.

    CAS  PubMed  Google Scholar 

  191. Kelley AE, Holahan MR. Enhanced reward-related responding following cholera toxin infusion into the nucleus accumbens. Synapse 1997; 26: 46–54.

    CAS  PubMed  Google Scholar 

  192. Beninger RJ, Nakonechny PL, Savina I. cAMP-dependent protein kinase and reward-related learning: Intra-accumbens Rp-cAMPS blocks amphetamine-produced place conditioning in rats. Psychopharmacology (Berl) 2003; 170: 23–32.

    CAS  Google Scholar 

  193. Cervo L, Mukherjee S, Bertaglia A, Samanin R. Protein kinases A and C are involved in the mechanisms underlying consolidation of cocaine place conditioning. Brain Res 1997; 775: 30–36.

    CAS  PubMed  Google Scholar 

  194. Sutton MA, McGibney K, Beninger RJ. Conditioned locomotion in rats following amphetamine infusion into the nucleus accumbens: blockade by coincident inhibition of protein kinase A. Behav Pharmacol 2000; 11: 365–376.

    CAS  PubMed  Google Scholar 

  195. Stemmelin J, Mathis C, Ungerer A. GF 109203X, a selective inhibitor of protein kinase C, impairs retention performance in an operant task. Neuroreport 1999; 10: 2805–2809.

    CAS  PubMed  Google Scholar 

  196. Aujla H, Beninger RJ. Intra-accumbens protein kinase C inhibitor NPC 15437 blocks amphetamine-produced conditioned place preference in rats. Behav Brain Res 2003; 147: 41–48.

    PubMed  Google Scholar 

  197. Narita M, Aoki T, Ozaki S, Yajima Y, Suzuki T. Involvement of protein kinase Cgamma isoform in morphine-induced reinforcing effects. Neuroscience 2001; 103: 309–314.

    CAS  PubMed  Google Scholar 

  198. Wise RA. Opiate reward: sites and substrates. Neurosci Biobehav Rev 1989; 13: 129–133.

    CAS  PubMed  Google Scholar 

  199. Thomas KL, Everitt BJ. Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: a cellular imaging study with gamma protein kinase C expression. J Neurosci 2001; 21: 2526–2535.

    CAS  PubMed  Google Scholar 

  200. Gerdjikov TV, Ross G, Beninger RJ. Place preference induced by nucleus accumbens amphetamine is impaired by antagonists of ERK or p38 MAP kinases in rats. Behav Neurosci 2004; 118: 740–750.

    CAS  PubMed  Google Scholar 

  201. Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 2000; 20: 8701–8709.

    CAS  PubMed  Google Scholar 

  202. Mazzucchelli C, Vantaggiato C, Ciamei A, et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–20.

    CAS  PubMed  Google Scholar 

  203. Shapiro ML, Caramanos Z. NMDA antagonist MK-801 impairs acquisition but not performance of spatial working and reference memory. Psychobiology 1990; 18: 231–243.

    CAS  Google Scholar 

  204. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res 2003; 140: 1–47.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Beninger, R.J., Gerdjikov, T.V. (2005). Dopamine-Glutamate Interactions in Reward-Related Incentive Learning. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics