Skip to main content

Dopamine and Glutamate in Attention Deficit Hyperactivity Disorder

  • Chapter
Dopamine and Glutamate in Psychiatric Disorders

Abstract

Attention deficit hyperactivity disorder (ADHD) is a complex condition, thought to have multiple subtypes lurking within a broad, behaviorally defined phenotype, making it difficult to identify specific biological causes of this syndrome. However, the evidence from studies conducted over the past decade suggests that dopamine (DA) plays a prominent role in the etiology and treatment of ADHD. Here we will start with consensus views that have emerged about ADHD at the behavioral, biological, and genetic levels of analysis. Then, we will summarize the evidence that links DA to ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Still GF. Some abnormal psychical conditions in children. Lancet 1902; 1:1008–1012.

    Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994.

    Google Scholar 

  3. World Health Organization. The ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. Geneva, Switzerland: WHO, 1993.

    Google Scholar 

  4. Swanson J, Castellanos FX, Murias M, LaHoste GJ, Kennedy J. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Curr Opin Neurobiol 1998; 8:263–271.

    Article  CAS  PubMed  Google Scholar 

  5. Sergeant JA, Geurts H, Oosterlaan J. How specific is a deficit of executive functioning for Attention-Deficit/Hyperactivity Disorder? Behav Brain Res 2002; 130(1-2):3–28.

    Article  PubMed  Google Scholar 

  6. Nigg JT. Is ADHD a disinhibitory disorder? Psychol Bull 2001; 127(5):571–598.

    Article  CAS  PubMed  Google Scholar 

  7. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121:65–94.

    Article  CAS  PubMed  Google Scholar 

  8. Sonuga-Barke E, Williams E, Hall M, Saxton T. Hyperactivity and delay aversion III: the effect on cognitive style of imposing delay after errors. J Child Psychol Psychiatry 1996; 37:189–194.

    Article  CAS  PubMed  Google Scholar 

  9. Pennington BF, Ozonoff S. Executive functions and developmental psychopathology. J Child Psychol Psychiatry 1996; 37:51–87.

    Article  CAS  PubMed  Google Scholar 

  10. van der Meere J, Sergeant J. Focused attention in pervasively hyperactive children. J Abnorm Child Psychol 1988; 16(6):627–639.

    Article  PubMed  Google Scholar 

  11. Sonuga-Barke E, Houlberg K, Hall M. When is “impulsiveness” not impulsive? The case of hyperactive children’s cognitive style. J Child Psychol Psychiatry 1994; 35(7):1247–1253.

    Article  CAS  PubMed  Google Scholar 

  12. Casey BJ, Castellanos FX, Giedd JN, et al. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1997; 36:374–383.

    Article  CAS  PubMed  Google Scholar 

  13. Halperin JM, Sharma V, Greenblatt ER, Schwartz ST. Assessment of the continuous performance test: Reliability and validity in a nonreferred sample. Psych Assess 1991; 3:603–608.

    Article  Google Scholar 

  14. Oosterlaan J, Sergeant JA. Response inhibition and response re-engagement in attentiondeficit/ hyperactivity disorder, disruptive, anxious and normal children. Behav Brain Res 1998; 94(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  15. Swanson JM, Posner M, Potkin S, et al. Activating tasks for the study of visual-spatial attention in ADHD children: a cognitive anatomic approach. J Child Neurol 1991; 6:S119–S127.

    PubMed  Google Scholar 

  16. Kuntsi J, Oosterlaan J, Stevenson J. Psychological mechanisms in hyperactivity: I response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 2001; 42(2):199–210.

    Article  CAS  PubMed  Google Scholar 

  17. Parasuraman R. Sustained attention: a multifactorial approach. In: Posner MI, Marin OSM, ed. Attention and Performance XI. Hillsdale, NJ: Lawrence Erlbaum, 1985.

    Google Scholar 

  18. Swanson J, Shea C, McBurnett K, Potkin S, Fiore T, Crinella F. Attention and hyperactivity. In: Enns J, ed. The development of attention: research and theory. New York: Elsevier Science Publishers, North Holland, 1990:383–403.

    Chapter  Google Scholar 

  19. Swanson J, Posner M, Cantwell D, et al. Attention-deficit/hyperactivity disorder: symptom domains, cognitive processes & neural networks. In: Parasuraman R, ed. The Attentive Brain. Boston: MIT Press, 1998:445–460.

    Google Scholar 

  20. Swanson J, Volkow N, Newcorn J, et al. Attention Deficit Hyperactivity Disorder. Encyclopedia of Cognitive Science, NPG Reference. London: Macmillan Publishers Ltd., 2003: 226–231.

    Google Scholar 

  21. Posner M, Raichle M. Images of Mind. New York: Scientific American Library, 1994.

    Google Scholar 

  22. Lou HC, Henriksen L, Bruhn P. Focal cerebral dysfunction in developmental learning disabilities. Lancet 1990; 335:8–11.

    Article  CAS  PubMed  Google Scholar 

  23. Zametkin AJ, Nordahl TE, Gross M, et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med 1990; 323:1361–1366.

    CAS  PubMed  Google Scholar 

  24. Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance imaging study. Proc Natl Acad Sci U S A 1998; 95:14494–14499.

    Article  CAS  PubMed  Google Scholar 

  25. Rubia K, Overmeyer S, Taylor E, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 1999; 156:891–896.

    CAS  PubMed  Google Scholar 

  26. Aylward EH, Reiss AL, Reader MJ, Singer HS, Brown JE, Denckla MB. Basal ganglia volumes in children with attention-deficit hyperactivity disorder. J Child Neurol 1996; 11:112–115.

    Article  CAS  PubMed  Google Scholar 

  27. Berquin PC, Giedd JN, Jacobsen LK, et al. The cerebellum in attention-deficit/hyperactivity disorder: a morphometric study. Neurology 1998; 50(4):1087–1093.

    CAS  PubMed  Google Scholar 

  28. Castellanos FX, Giedd JN, Eckburg P, et al. Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. Am J Psychiatry 1994; 151:1791–1796.

    CAS  PubMed  Google Scholar 

  29. Castellanos FX, Giedd JN, Marsh WL, et al. Quantitative brain magnetic resonance imaging in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 1996; 53:607–616.

    CAS  PubMed  Google Scholar 

  30. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder and normal controls. Neurology 1997; 48:589–601.

    CAS  PubMed  Google Scholar 

  31. Baumgardner TL, Singer HS, Denckla MB, et al. Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder. Neurology 1996; 47:477–482.

    CAS  PubMed  Google Scholar 

  32. Giedd JN, Castellanos FX, Casey BJ, et al. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry 1994; 151:665–669.

    CAS  PubMed  Google Scholar 

  33. Hynd GW, Hern KL, Novey ES, et al. Attention deficit hyperactivity disorder and asymmetry of the caudate nucleus. J Child Neurol 1993; 8:339–347.

    Article  CAS  PubMed  Google Scholar 

  34. Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D. Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol 1990; 47:919–926.

    CAS  PubMed  Google Scholar 

  35. Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H. Corpus callosum morphology in attention-deficit hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 1991; 24:141–146.

    Article  CAS  PubMed  Google Scholar 

  36. Mostofsky SH, Reiss AL, Lockhart P, Denckla MB. Evaluation of cerebellar size in attentiondeficit hyperactivity disorder. J Child Neurol 1998; 13(9):434–439.

    Article  CAS  PubMed  Google Scholar 

  37. Semrud-Clikeman M, Filipek PA, Biederman J, et al. Attention-deficit hyperactivity disorder: magnetic resonance imaging morphometric analysis of the corpus callosum. J Am Acad Child Adolesc Psychiatry 1994; 33(6):875–881.

    Article  CAS  PubMed  Google Scholar 

  38. Castellanos FX. Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clin Pediatr 1997; 36:381–393.

    Article  CAS  Google Scholar 

  39. Tannock R. Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatry 1998; 39(1):65–99.

    Article  CAS  PubMed  Google Scholar 

  40. Castellanos FX, Tannock R. Neuroscience of attention-deficit hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3:617–628.

    CAS  PubMed  Google Scholar 

  41. Swanson J, Castellanos FX. Biological bases of ADHD-neuroanatomy, genetics, and pathophysiology. In: Jensen P, Cooper J, ed. Attention Deficit Hyperactivity Disorder: State of the Science, Best Practices. Kingston, NJ: Civic Research Institute, 1998:1–20.

    Google Scholar 

  42. National Institutes of Health Consensus Development Conference Statement: diagnosis and treatment of attention-deficit/hyperactivity disorder (ADHD). J Am Acad Child Adolesc Psychiatry 2000; 39(2):182–193.

    Article  Google Scholar 

  43. Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288:1740–1748.

    Article  PubMed  Google Scholar 

  44. Sowell E, Thompson P, Welcome S, Henkenius A, Toga A, Peterson B. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003; 362:1699–1707.

    Article  PubMed  Google Scholar 

  45. Morton J, Frith U. Causal modeling: a structural approach to developmental psychopathology. In: Cicchetti D, Cohen DJ, ed. Developmental Psychopathology. New York: John Wiley, 1995:357–390.

    Google Scholar 

  46. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9:357–381.

    Article  CAS  PubMed  Google Scholar 

  47. Le Moal M. Mesocorticolimbic dopamine neurons: functional and regulatory roles. In: Bloom F, Kupfer D, ed. Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press, 1995:283–294.

    Google Scholar 

  48. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 2003; 479(1–3):23–40.

    Article  CAS  PubMed  Google Scholar 

  49. Swanson JM, McBurnett K, Wigal T, et al. Effect of stimulant medication on children with attention deficit disorder: a “review of reviews.” Special Issue: Issues in the education of children with attentional deficit disorder. Exceptional Children 1993; 60:154–161.

    Google Scholar 

  50. Swanson J, McBurnet K, Christian D, Wigal T. Stimulant medications and the treatment of children with ADHD. Advan Clin Child Psychology 1995; 17:265–322.

    Google Scholar 

  51. Cavazos L. Notice of inquiry. Invitation to comment on special education for children with attention deficit disorder. Department of Education. Federal Register 1990; 55(230):49598.

    Google Scholar 

  52. Davila R, Williams M, MacDonald J. Clarification of policy to address the needs of children with attention deficit hyperactivity disorders within general and/or special education. Memorandum from the US Department of Eduction: Office of Special Education and Rehabilitation Services. 1991.

    Google Scholar 

  53. Swanson J, Gupta S, Guinta D, et al. Acute tolerance to methylphenidate in the treatment of attention deficit/hyperactivity disorder in children. Clin Pharmacol Ther 1999; 66:295–305.

    Article  CAS  PubMed  Google Scholar 

  54. Greenhill L, Swanson J, Steinhoff K, et al. A pharmacokinetic/pharmacodynamic study comparing a single morning dose of Adderall to twice-daily dosing in children with ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42(10):1234–1241.

    Article  PubMed  Google Scholar 

  55. Wolraich ML, Greenhill LL, Pelham W, et al. Randomized, controlled trial of oros methylphenidate once a day in children with attention-deficit/hyperactivity disorder. Peds 2001; 108(4):883–892.

    CAS  Google Scholar 

  56. Greenhill LL, Findling RL, Swanson JM. A double-blind, placebo-controlled study of modified-release methylphenidate in children with attention-deficit/hyperactivity disorder. Peds 2002; 109(3):e39.

    Google Scholar 

  57. Biederman J, Quinn D, Weiss M, et al. Efficacy and safety of Ritalin LA, a new, once daily, extended-release dosage form of methylphenidate, in children with attention deficit hyperactivity disorder. Paediatr Drugs 2003; 5(12):833–841.

    Article  PubMed  Google Scholar 

  58. McCracken J, Biederman J, Greenhill L, et al. Analog classroom assessment of a once-daily mixed amphetamine formulation, SLI381 (Adderall XR), in children with ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42(6):673–683.

    Article  PubMed  Google Scholar 

  59. The MTA Cooperative Group. Multimodal Treatment Study of Children with ADHD. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 1999; 56(12):1073–1086.

    Article  Google Scholar 

  60. Swanson JM, Kraemer HC, Hinshaw SP, Arnold LE, Conners CK, Abikoff HB, et al. Clinical relevance of the primary findings of the MTA: success rates based on severity of ADHD and ODD symptoms at the end of treatment. J Am Acad Child Adolesc Psychiatry 2001; 40(2):168–179.

    Article  CAS  PubMed  Google Scholar 

  61. The MTA Cooperative Group. The NIMH MTA follow-up: changes in effectivess and growth after the end of treatment. Peds, 2004; 113:754–761.

    Google Scholar 

  62. The MTA Cooperative Group. The NIMH MTA follow-up: 24-month outcomes of treatment strategies for attention-deficit/hyperactivity disorder (ADHD). Peds, 2004; 113:762–769.

    Google Scholar 

  63. Kornetsky C. Psychoactive drugs in the immature organism. Psychopharmacologia 1970; 17:105–136.

    Article  CAS  PubMed  Google Scholar 

  64. Wender PH. Minimal Brain Dysfunction in Children. New York: Wiley-Interscience, 1971.

    Google Scholar 

  65. Coyle JT, Snyder SH. Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 1969; 170:221–231.

    CAS  PubMed  Google Scholar 

  66. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attentiondeficit/hyperactivity disorder: a review and integration. Behav Brain Res 1998; 94(1):127–152.

    Article  CAS  PubMed  Google Scholar 

  67. Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust N Z J Psychiatry 1991; 25:277–283.

    Article  CAS  PubMed  Google Scholar 

  68. Pliszka SR, McCracken JT, Maas JW. Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 1996; 35:264–272.

    Article  CAS  PubMed  Google Scholar 

  69. Mikkelsen E, Lake CR, Brown GL, Ziegler MG, Ebert MH. The hyperactive child syndrome: peripheral sympathetic nervous system function and the effect of D-AMPhetamine. Psychiatry Res 1981; 4:157–169.

    Article  CAS  PubMed  Google Scholar 

  70. Brown G, Ebert U, Minichiello M. Biochemical and pharmacological aspects of attention deficit disorder. In: Bloomingdale LM, ed. Attention Deficit Disorder: Identification, Course, and Rationale. New York: Spectrum Press Medical and Scientific Books, 1985.

    Google Scholar 

  71. Shekim WO, Sinclair E, Glaser R, Horwitz E, Javaid J, Bylund DB. Norepinephrine and dopamine metabolites and educational variables in boys with attention deficit disorder and hyperactivity. J Child Neurol 1987; 2:50–56.

    Article  CAS  PubMed  Google Scholar 

  72. Rapoport JL, Mikkelsen EJ, Ebert MH, Brown GL, Weise VK, Kopin IJ. Urinary catecholamines and amphetamine excretion in hyperactive and normal boys. J Nerv Ment Dis 1978; 166:731–737.

    Article  CAS  PubMed  Google Scholar 

  73. Shaywitz BA, Cohen DJ, Bowers MB. CSF amine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine—a preliminary report. J Pediatr 1977; 90:67–71.

    Article  CAS  PubMed  Google Scholar 

  74. Cohen DJ, Caparula BK, Shaywitz BA, Bowers M. Dopamine and serotonin metabolism in neuropsychiatrically disturbed children: cerebro-sprinal fluid homovanillic acid and 5-hydroxyindoleacetic acid. Arch Gen Psychiatry 1977; 34:545–550.

    CAS  PubMed  Google Scholar 

  75. Castellanos FX, Elia J, Kruesi MJP, et al. Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Res 1994; 52:305–316.

    Article  CAS  PubMed  Google Scholar 

  76. Castellanos FX, Elia J, Kruesi MJP, et al. Cerebrospinal homovanillic acid predicts behavioral response to stimulants in 45 boys with attention-deficit/hyperactivity disorder. Neuropsychopharmacology 1996; 14:125–137.

    Article  CAS  PubMed  Google Scholar 

  77. Bradley C. The behavior of children receiving benzedrine. Am J Psychiatry 1937; 94:577–585.

    Google Scholar 

  78. Bradley C. Benzedrine and Dexedrine in the treatment of children’s behavior disorders. Peds 1950; 5:24–37.

    CAS  Google Scholar 

  79. Ferris RM, Tang FLM, Maxwell RA. A comparison of the capacities of isomers of amphetamine, deoxypipradol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 1972; 181:407–416.

    CAS  PubMed  Google Scholar 

  80. Harris J, Baldessarini R. Uptake of (3H)-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. Neuropharmacology 1973; 12(7):669–679.

    Article  CAS  PubMed  Google Scholar 

  81. Heikkila RE OHMCCG. Amphetamine: evaluation of d-and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 1975; 194(1):47–56.

    CAS  PubMed  Google Scholar 

  82. Wechsler L, Savaki H, Sokoloff L. Effects of d-and l-AMPhetamine on local cerebral glucose utilization in the conscious rat. J Neurochem 1979; 32(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  83. Wigal S, Swanson J, Feifel D, et al. A double-blind, placebo-controlled trial of dexmethylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in children with attention deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry, in press.

    Google Scholar 

  84. Ding YS, Fowler JS, Volkow ND, et al. Chiral drugs: comparison of the pharmacokinetics of [11C]D-threo and L-threo-methylphenidate in the human and baboon brain. Psychopharmacology (Berl) 1997; 131:71–78.

    Article  CAS  Google Scholar 

  85. Volkow ND, Ding YS, Fowler JS, et al. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in human brain. Arch Gen Psychiatry 1995; 52:456–463.

    CAS  PubMed  Google Scholar 

  86. Volkow ND, Wang GJ, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21(2): U1–U5.

    Google Scholar 

  87. Volkow ND, Fowler JS, Wang G J, et al. Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain [published erratum appears in J Nucl Med 1993; 34(5):838]. J Nucl Med 1993; 34:609–613.

    CAS  PubMed  Google Scholar 

  88. Volkow ND, Wang GJ, Fowler JS, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 2002; 43(3):181–187.

    Article  CAS  PubMed  Google Scholar 

  89. Volkow ND, Wang GJ, Ma Y, et al. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 2003; 23(36): 11461–11468.

    CAS  PubMed  Google Scholar 

  90. Neto P, Lou H, Cumming P, Pryds O, Gjedde A. Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth. Ann NY Acad Sci 2002; 965:434–439.

    Article  Google Scholar 

  91. Volkow ND, Swanson JM. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry 2003; 160(11):1909–1918.

    Article  PubMed  Google Scholar 

  92. Faraone SV, Biederman J, Chen WJ, et al. Segregation analysis of attention deficit hyperactivity disorder. Psychiatr Genet 1992; 2:257–275.

    Article  Google Scholar 

  93. Deutsch CK, Matthysse S, Swanson JM, Farkas LG. Genetic latent structure analysis of dysmorphology in attention deficit disorder. J Am Acad Child Adolesc Psychiatry 1990; 29:189–194.

    Article  CAS  PubMed  Google Scholar 

  94. Stevenson J. Evidence for a genetic etiology in hyperactivity in children. Behav Genet 1992; 22:337–344.

    Article  CAS  PubMed  Google Scholar 

  95. Mitchell R, Howlett S, Earl L, et al. Distribution of the 3’ VNTRpolymorphism in the human dopamine transporter gene in the world population. Hum Biol 2004; 72:295–304.

    Google Scholar 

  96. Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HH. Molecular biology of the dopamine receptors. Eur J Pharmacol 1991; 207:277–286.

    Article  CAS  PubMed  Google Scholar 

  97. Cook EH, Jr., Stein MA, Krasowski MD, et al. Association of attention deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56:993–998.

    CAS  PubMed  Google Scholar 

  98. LaHoste GJ, Swanson JM, Wigal SB, et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1996; 1:121–124.

    CAS  PubMed  Google Scholar 

  99. Swanson JM, Sunohara GA, Kennedy JL, et al. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psychiatry 1998; 3:38–41.

    Article  CAS  PubMed  Google Scholar 

  100. Crowe RR. Candidate genes in psychiatry: an epidemiological perspective. Am J Med Genet 1993; 48:74–77.

    Article  CAS  PubMed  Google Scholar 

  101. Swanson J, Posner M, Fusella J, Wasdell M, Sommer T, Fan J. Genes and attention deficit hyperactivity disorder. Curr Psychiatry Rep 2001; 3:92–100.

    Article  CAS  PubMed  Google Scholar 

  102. Faraone SV, Doyle AE, Mick E, Biederman J. Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 2001; 158(7):1052–1057.

    Article  CAS  PubMed  Google Scholar 

  103. Collier DA, Curran S, Asherson P. Mission: not impossible? Candidate gene studies in child psychiatric disorders. Mol Psychiatry 2000; 5(5):457–460.

    Article  CAS  PubMed  Google Scholar 

  104. Swanson J, Oosterlaan J, Murias M, et al. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc Natl Acad Sci USA 2000; 97(9):4754–4759.

    Article  CAS  PubMed  Google Scholar 

  105. Langley K, Marshall L, van den Bree M, et al. Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 2004; 161(1):133–138.

    Article  PubMed  Google Scholar 

  106. Manor I, Tyano S, Eisenberg J, Bachner-Melman R, Kotler M, Ebstein RP. The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Mol Psychiatry 2002; 7(7):790–794.

    Article  CAS  PubMed  Google Scholar 

  107. Fossella J, Posner M, Fan J, Swanson J, Pfaff D. Attentional phenotypes for the analysis of higher mental function. ScientificWorldJournal 2002; 2(1):217–223.

    CAS  PubMed  Google Scholar 

  108. Bax M, Mac Keith R. Minimal Cerebral Dysfunctions. Clinics in Developmental Medicine. Lavenham, Suffolk: The Lavenham Press LTD, 1962.

    Google Scholar 

  109. Lou HC. Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 1996; 85(11):1266–1271.

    Article  CAS  PubMed  Google Scholar 

  110. Amsel A. Arousal, suppression, and persistence: Frustration theory, attention, and its disorders. Cognition and Emotion. 1990: 239–268.

    Google Scholar 

  111. Altman J. An animal model of minimal brain dysfunction. In: Lewis M, ed. Learning Disabilities and Prenatal Risk. Urbana, IL: University of IL Press, 1986.

    Google Scholar 

  112. Ebstein RP, Novick O, Umansky R, et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat Genet 1996; 12:78–80.

    Article  CAS  PubMed  Google Scholar 

  113. Leckman JF, Mayes LC. Understanding developmental psychopathology: how useful are evolutionary accounts? J Am Acad Child Adolesc Psychiatry 1998; 37:1011–1021.

    Article  CAS  PubMed  Google Scholar 

  114. Jensen PS, Mrazek D, Knapp PK, et al. Evolution and revolution in child psychiatry: ADHD as a disorder of adaptation. J Am Acad Child Adolesc Psychiatry 1997; 36(12):1672–1679.

    Article  CAS  PubMed  Google Scholar 

  115. Chen C, Burton M, Greenberger E, Dmitrieva J. Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evol Hum Behav 1999; 20:309–324.

    Article  Google Scholar 

  116. Harpending H, Rogers A. Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet 2000; 1(1):361–385.

    Article  CAS  PubMed  Google Scholar 

  117. Boas F. The Results of the Jessup Expedition. 16th International Congress of the Americanists. 1908. Vienna, Austria. Reprinted in Krupnik I, Fitzhugh WW, eds. Gateways: Exploring the Legacy of the Jessup Pacific Expedition, 1897–102. Circumpolar Anthropology Series #1, National Museum of Natural History, Smithsonian Institution, Washington, DC, 2001.

    Google Scholar 

  118. Andrews P, Gangestad S, Matthews D. Adaptationism—how to carry out an exaptationist program. Behav Brain Sci 2002; 25:489–553.

    PubMed  Google Scholar 

  119. Swanson J, Moyzis R, Fossella J, Fan J, Posner M. Adaptationism and molecular biology: an example based on ADHD. Behav Brain Sci 2002; 25:530–531.

    Article  Google Scholar 

  120. Lichter JB, Barr CL, Kennedy JL, Van Tol HH, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993; 2:767–773.

    Article  CAS  PubMed  Google Scholar 

  121. Ding YC, Chi HC, Grady DL, et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA 2002; 99(1):309–314.

    Article  CAS  PubMed  Google Scholar 

  122. Grady DL, Chi HC, Ding YC, Smith M, Wang E, Schuck S, et al. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8(5):536–545.

    Article  CAS  PubMed  Google Scholar 

  123. Fisher SE, Francks C, McCracken JT, et al. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet 2002; 70(5):1183–1196.

    Article  CAS  PubMed  Google Scholar 

  124. Bakker SC, van der Meulen EM, Buitelaar JK, et al. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. Am J Hum Genet 2003; 72(5):1251–1260.

    Article  CAS  PubMed  Google Scholar 

  125. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273:1516–1517.

    Article  CAS  PubMed  Google Scholar 

  126. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet Supplement 2003; 33:228–237.

    Article  CAS  Google Scholar 

  127. Benveniste H. The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovasc Brain Metab Rev 1991; 3(3):213–245.

    CAS  PubMed  Google Scholar 

  128. Rubinstein M, Cepeda C, Hurst RS, et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 2001; 21(11):3756–3763.

    CAS  PubMed  Google Scholar 

  129. Laufer M, Denhoff E. Hyperkinetic behavior in children. J Pediatr 1957; 50(4):463–474.

    Article  CAS  PubMed  Google Scholar 

  130. Carrey N, MacMaster F, Fogel J, et al. Metabolite changes resulting from treatment in children with ADHD: a 1H-MRS study. Clin Neuropharmacol 2003; 26:218–221.

    Article  PubMed  Google Scholar 

  131. Carrey N, MacMaster F, Sparkes S, Khan S, Kusumakar V. Glutamatergic changes with treatment in attention deficit hyperactivity disorder: a preliminary case series. J Child Adolesc Psychopharmacol 2002; 12:331–336.

    Article  PubMed  Google Scholar 

  132. MacMaster FP, Carrey N, Sparkes S, Kusumakar V. Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol Psychiatry 2003; 53:184–187.

    Article  PubMed  Google Scholar 

  133. Jin Z, Zang YF, Zeng YW, Zhang L, Wang YF. Striatal neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: a 1H-magnetic resonance spectroscopy study. Neurosci Lett 2001; 315:45–48.

    Article  CAS  PubMed  Google Scholar 

  134. Yeo R, Hill D, Campbell R, et al. Proton magnetic spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2003; 42:303–310.

    Article  PubMed  Google Scholar 

  135. Grachev I, Kumar R, Ramachandran T, Sverenyi N. Cognitive interference is associated with neuronal marker N-acetyl aspartate in the anterior cingulate cortex: an in vivo (1)HMRS study of the Stroop Color-Word task. Mol Psychiatry 2001; 6:529–539.

    Article  CAS  Google Scholar 

  136. Juranek J. MRS using a 4 Tesla system in children with ADHD. Application to the UC Irvine General Clinical Research Center, Irvine, CA, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Swanson, J.M. et al. (2005). Dopamine and Glutamate in Attention Deficit Hyperactivity Disorder. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics