Skip to main content

Abstract

Dopamine (DA) and glutamate are part of intricate neurobiological mechanisms mediating different kinds of aggressive behavior, involving the canonical amines and acids, neuropeptides, and neurosteroids in corticomesolimbic circuits (1). Beginning with invertebrates, the critical role of serotonin (5-HT) for aggression-inhibiting mechanisms has emerged, and it is important to understand how other transmitters, such as DA and glutamate, interact with serotonergic mechanisms. The two major sources of information for delineating the role of glutamate and DA in aggressive behavior are (1) neurobiological studies of preclinical model systems, mostly in rodents and cats, and (2) investigations into the mechanisms for pharmacotherapeutic interventions in clinical settings. The epidemiological statistics on criminal violence, emergency room visits, and public health records of treating violent individuals and victims of violence document the magnitude and urgency of the problem and the need for increasing the understanding the neurobiological basis of these adaptive and pathological behaviors. Although most acts of violence are committed by individuals who are not in mental health settings, and although most mentally ill patients are not violent, the rate of injury resulting from violent acts is higher for mental health staff than injurious accidents for heavy construction and mining professions (2,3). Up to 22% of psychiatric inpatients committed aggressive acts within the last 2 wk (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miczek KA, Fish EW, DeBold JF, de Almeida RMM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 2002; 163:434–458.

    Article  CAS  PubMed  Google Scholar 

  2. Sanders J, Milne S, Brown P, Bell AJ. Assessment of aggression in psychiatric admissions: semistructured interview and case note survey. Br Med J 2000; 320(7242):1112.

    Article  CAS  Google Scholar 

  3. Love CC, Hunter ME. Violence in public sector psychiatric hospitals. Benchmarking nursing staff injury rates. J Psychosoc Nurs Ment Health Serv 1996; 34(5):30–34.

    CAS  PubMed  Google Scholar 

  4. Tardiff K, Sweillam A. Assault, suicide, and mental illness. Arch Gen Psychiatry 1980; 37:164–169.

    CAS  PubMed  Google Scholar 

  5. Citrome L, Volavka J. Psychopharmacology of violence: Part I: Assessment and acute treatment. Psychiatri Ann 1997; 27:691–695.

    Google Scholar 

  6. Citrome L, Volavka J. Psychopharmacology of violence: Part II: Beyond the acute episode. Psychiatr Ann 1997; 10:696–703.

    Google Scholar 

  7. Itil TM, Wadud A. Treatment of human aggression with major tranquilizers, antidepressants and newer psychotropic drugs. J Nerv Ment Dis 1975; 160:83–99.

    Article  CAS  PubMed  Google Scholar 

  8. Itil TM. Drug therapy in the management of aggression. In: Brain PF, ed. Multidisciplinary Approaches to Aggression Research. New York: Elsevier/North-Holland Biomedical, 1981:489–501.

    Google Scholar 

  9. Leventhal BL, Brodie HKH. The pharmacology of violence. In: Hamburg DA, ed. Biobehavioral Aspects of Aggression. New York: Alan R. Liss, 1981:85–106.

    Google Scholar 

  10. Poeldinger W. Pharmakotherapie der aggressivitaet. Schweiz Arch Neurol Neurochir Psychiatr 1981; 129:147–155.

    Google Scholar 

  11. Tupin JP. Psychopharmacology and Aggression. In: Roth LH, ed. Clinical Treatment of the Violent Person. Rockville, MD: U.S. Department of Health and Human Services, 1985: 83–99.

    Google Scholar 

  12. Sheard MH. Clinical pharmacology of aggressive behavior. Clin Neuropharmacol 1988; 11:483–492.

    Article  CAS  PubMed  Google Scholar 

  13. Connor DF, Boone RT, Steingard RJ, Lopez ID, Melloni RH. Psychopharmacology and aggression: II. A meta-analysis of nonstimulant medication effects on overt aggression-related behaviors in youth with SED. J Emot Behav Disord 2003; 11(3):157–168.

    Article  Google Scholar 

  14. Humble F, Berk M. Pharmacological management of aggression and violence. Hum Psychopharmacol 2003; 18(6):423–436.

    Article  CAS  PubMed  Google Scholar 

  15. Swann AC. Neuroreceptor mechanisms of aggression and its treatment. J Clin Psychiatry 2003; 64:26–35.

    CAS  PubMed  Google Scholar 

  16. Monroe RR. Brain Dysfunction in Aggressive Criminals. Lexington: DC Heath and Company, 1978.

    Google Scholar 

  17. Bear DM, Fedio P. Quantitative analysis of interictal behavior in temporal lobe epilepsy. Arch Neurol 1977; 34(8):454–467.

    CAS  PubMed  Google Scholar 

  18. Siegel A, Mirsky AF. The neurobiology of violence and aggression. In: Reiss AJ, Jr., ed. Understanding and Preventing Violence. Biobehavioral Influences. Washington, DC: National Academy Press, 1994:59–172.

    Google Scholar 

  19. Mirsky AF, Harman N. On aggressive behavior and brain disease-some questions and possible relationships derived from the study of men and monkeys. In: Whalen RF, ed. The Neuropsychology of Aggression. New York: Plenum Press, 1974:185–210.

    Google Scholar 

  20. Weiger WA, Bear DM. An approach to the neurology of aggression. J Psychiatr Res 1988; 22:85–98.

    Article  CAS  PubMed  Google Scholar 

  21. Scott JP. Aggression. Chicago: University of Chicago Press, 1958.

    Google Scholar 

  22. Darwin C. The Expression of the Emotions in Man and Animals. 1st ed. London: John Murray, 1872.

    Google Scholar 

  23. Blanchard RJ, Wall PM, Blanchard DC. Problems in the study of rodent aggression. Horm Behav 2003; 44(3):161–170.

    Article  PubMed  Google Scholar 

  24. Miczek KA, Fish EW, De Bold JF. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 2003; 44(3):242–257.

    Article  CAS  PubMed  Google Scholar 

  25. Lederhendler II. Aggression and violence: perspectives on integrating animal and human research approaches. Horm Behav 2003; 44(3):156–160.

    Article  PubMed  Google Scholar 

  26. Miczek KA. Research on animal aggression: emerging successes for understanding determinants of human violence. In: Carrol ME, Overmier JB, ed. Animal Research and Human Health: Advancing Human Welfare Through Behavioral Science. Washington, DC: American Psychological Association, 2001.

    Google Scholar 

  27. Brain PF, Benton D. The Biology of Aggression. 1st ed. Rockville, MD: Sijthoff and Noordhoff, 1981.

    Google Scholar 

  28. Grant EC, Mackintosh JH. A comparison of the social postures of some common laboratory rodents. Behaviour 1963; 21:246–295.

    Article  Google Scholar 

  29. Blanchard RJ, Blanchard CD. Aggressive behavior in the rat. Behav Biol 1977; 21:197–224.

    Article  CAS  PubMed  Google Scholar 

  30. Scott JP, Fredericson E. The causes of fighting in mice and rats. Physiol Zool 1951; 24:273–309.

    Google Scholar 

  31. Azrin NH, Hutchinson RR, Hake DF. Pain-induced fighting in the squirrel monkey. J Exp Anal Behav 1963; 6:620.

    Article  CAS  PubMed  Google Scholar 

  32. Brady JV, Nauta WJH. Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesion in the albino rat. J Comp Physiol Psychol 1953; 46:339–346.

    Article  CAS  PubMed  Google Scholar 

  33. Seggie J. Effect of adrenalectomy or gonadectomy on affective behavior changes following septal lesions in the rat. J Comp Physiol Psychol 1971; 74(1):11–19.

    Article  CAS  PubMed  Google Scholar 

  34. Pinel JPJ, Treit D, Rovner LI. Temporal lobe aggression in rats. Science 1977; 197:1088–1089.

    Article  CAS  PubMed  Google Scholar 

  35. De Molina AF, Hunsperger RW. Organization of the subcortical system governing defense and flight reactions in the cat. J Physiol 1962; 160:200–213.

    Google Scholar 

  36. Siegel A, Roeling TAP, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 1999; 23:359–389.

    Article  CAS  PubMed  Google Scholar 

  37. Blanchard DC, Griebel G, Blanchard RJ. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 2001; 25(3):205–218.

    Article  CAS  PubMed  Google Scholar 

  38. Flannelly KJ, Flannelly L. Time course of postpartum aggression in rats (Rattus norvegicus). J Comp Psychol 1987; 101:101–103.

    Article  Google Scholar 

  39. Blanchard DC, Blanchard RJ. Ethoexperimental approaches to the biology of emotion. Ann Rev Psychol 1988; 39:43–68.

    Article  CAS  Google Scholar 

  40. Svare B, Gandelman R. A longitudinal analysis of maternal aggression in Rockland-Swiss albino mice. Dev Psychobiol 1976; 9:437–446.

    Article  CAS  PubMed  Google Scholar 

  41. Svare B, Betteridge C, Katz D, Samuels O. Some situational and experiential determinants of maternal aggression in mice. Physiol Behav 1981; 26:253–258.

    Article  CAS  PubMed  Google Scholar 

  42. Blanchard RJ, Blanchard DC. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry. Great Britain: Pergamon Press, 1989:S3–S14.

    Google Scholar 

  43. Lonstein JS, Stern JM. Site and behavioral specificity of periaqueductal gray lesions on postpartum sexual, maternal, and aggressive behaviors in rats. Brain Res 1998; 804(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  44. Miczek KA, Haney M, Tidey J, Vatne T, Weerts E, DeBold JF. Temporal and sequential patterns of agonistic behavior: Effects of alcohol, anxiolytics and psychomotor stimulants. Psychopharmacology 1989; 97:149–151.

    Article  CAS  PubMed  Google Scholar 

  45. Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM. Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 1992; 107:551–563.

    Article  CAS  PubMed  Google Scholar 

  46. Eibl-Eibesfeldt I. Beiträge zur Biologie der Haus—und der Ährenmaus nebst einigen Beobachtungen an anderen Nagern. Z Tierpsychol 1950; 7:558–587.

    Google Scholar 

  47. Scott JP. Agonistic behavior of mice and rats: A review. Am Zool 1966; 6:683–701.

    CAS  PubMed  Google Scholar 

  48. Eibl-Eibesfeldt I. The fighting behavior of animals. Sci Am 1961; 203:112–120.

    Article  Google Scholar 

  49. Lorenz K. On Aggression. London: Methuen, 1966.

    Google Scholar 

  50. Rose RM, Holaday JW, Bernstein IS. Plasma testosterone, dominance rank and aggressive behavior in a group of male rhesus monkeys. Nature 1971; 231:366–368.

    Article  CAS  PubMed  Google Scholar 

  51. Winslow JT, Miczek KA. Social status as determinant of alcohol effects on aggressive behavior in squirrel monkeys (Saimiri sciureus). Psychopharmacology 1985; 85:167–172.

    Article  CAS  PubMed  Google Scholar 

  52. Miczek KA, Barros HM, Sakoda L, Weerts EM. Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 1998; 22:1698–1705.

    CAS  PubMed  Google Scholar 

  53. Dollard J, Doob L, Miller N, Mowrer O, Sears R. Frustration and Aggression. New Haven: Yale University Press, 1939.

    Book  Google Scholar 

  54. Cherek DR, Heistad GT. Fixed-interval induced aggression. Psychon Sci 1971; 25:7–8.

    Google Scholar 

  55. de Almeida RMM, Miczek KA. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline—a 5-HT1B receptor agonist. Neuropsychopharmacology 2002; 27:171–181.

    Article  PubMed  Google Scholar 

  56. Leshner AI, Nock BL. The effects of experience on agonistic responding: an expectancy theory interpretation. Behav Biol 1976; 17:561–566.

    Article  CAS  PubMed  Google Scholar 

  57. Potegal M, Tenbrink L. Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 1984; 98:66–75.

    Article  Google Scholar 

  58. Potegal M. The persistence of attack satiation in female golden hamsters. Aggress Behav 1984; 10:303–307.

    Article  Google Scholar 

  59. Fish EW, Faccidomo S, Miczek KA. Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 1999; 146:391–399.

    Article  CAS  PubMed  Google Scholar 

  60. Fish EW, DeBold JF, Miczek KA. Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology 2002; 163(3–4):459–466.

    Article  CAS  PubMed  Google Scholar 

  61. de Boer SF, Van Der Vegt BJ, Koolhaas JM. Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence? Behav Genet 2003; 33(5):485–501.

    Article  PubMed  Google Scholar 

  62. Halasz J, Liposits Z, Kruk MR, Haller J. Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear-and stress-related structures. Eur J Neurosci 2002; 15(3):561–569.

    Article  PubMed  Google Scholar 

  63. Miczek KA, Covington HE, III, Clark R. Social defeat vs. impulsive aggressive experiences in rats: sensitization for cocaine self-administration. Soc Neurosci Abstr 2003.

    Google Scholar 

  64. Tecott LH, Barondes SH. Genes and aggressiveness. Behavioral genetics. Curr Biol 1996; 6(3):238–240.

    Article  CAS  PubMed  Google Scholar 

  65. Van Erp AMM, Miczek KA. Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 2000; 20(24):9320–9325.

    PubMed  Google Scholar 

  66. Post RM. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 1992; 149:999–1010.

    CAS  PubMed  Google Scholar 

  67. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology 2001; 158(4):343–359.

    Article  CAS  PubMed  Google Scholar 

  68. Martinez M, Calvo-Torrent A, Herbert J. Mapping brain response to social stress in rodents with c-fos expression: a review. Stress 2002; 5(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  69. Miczek KA, Nikulina E, Kream R, Carter G, Espejo E. Behavioral sensitization to cocaine after a brief social defeat stress: c-fos expression in the PAG. Psychopharmacology 1999; 141:225–234.

    Article  CAS  PubMed  Google Scholar 

  70. Nikulina EM, Covington HE III, Ganshow RP, Hammer RP Jr., Miczek KA. Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience 2004; 123:857–865.

    Article  CAS  PubMed  Google Scholar 

  71. Miczek KA, Covington HE, III, Nikulina EM, Hammer RP, Jr. Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neurosci Biobehav Rev 2004; 27:787–802. Review.

    Article  CAS  PubMed  Google Scholar 

  72. Covington HE, Miczek KA. NMDA receptor antagonists block behavioral sensitization, but not enhanced cocaine self-administration after social defeat stress. Soc Neurosci Abstr 2002; 28:897–911.

    Google Scholar 

  73. Paquet M, Tremblay M, Soghomonian JJ, Smith Y. AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohistochemical and in situ hybridization study. J Neurosci 1997; 17(4):1377–1396.

    CAS  PubMed  Google Scholar 

  74. Redmond DE, Maas JW, Kling A, Graham CW, Dekirmenjian H. Social behavior of monkeys selectively depleted of monoamines. Science 1971; 174:428–431.

    Article  CAS  PubMed  Google Scholar 

  75. Redmond DE, Jr., Maas JW, Kling A, Dekirmenjian H. Changes in primate social behavior after treatment with alpha-methyl-para-tyrosine. Psychosom Med 1971; 33:97–113.

    CAS  PubMed  Google Scholar 

  76. Eichelman BSJ, Thoa NB, Ng KY. Facilitated aggression in the rat following 6-hydroxydopamine administration. Physiol Behav 1972; 8:1–3.

    Article  CAS  PubMed  Google Scholar 

  77. Pucilowski O, Kostowski W, Bidzinski A, Hauptmann M. Effect of 6-hydroxydopamine-induced lesions of A 10 dopaminergic neurons on aggressive behavior in rats. Pharmacol Biochem Behav 1982; 16:547–551.

    Article  CAS  PubMed  Google Scholar 

  78. Mos J, Van Valkenburg CFM. Specific effect on social stress and aggression on regional dopamine metabolism in rat brain. Neurosci Lett 1979; 15:325–327.

    Article  CAS  PubMed  Google Scholar 

  79. Hadfield MG. Dopamine: mesocortical versus nigrostriatal uptake in isolated fighting mice and controls. Behav Brain Res 1983; 7:269–281.

    Article  CAS  PubMed  Google Scholar 

  80. Haney M, Noda K, Kream R, Miczek KA. Regional serotonin and dopamine activity: sensitivity to amphetamine and aggressive behavior in mice. Aggress Behav 1990; 16:259–270.

    Article  CAS  Google Scholar 

  81. Puglisi-Allegra S, Cabib S. Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse. Aggress Behav 1990; 16:271–284.

    Article  CAS  Google Scholar 

  82. Muir JL, Everitt BJ, Robbins TW. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 1996; 6:470–481.

    Article  CAS  PubMed  Google Scholar 

  83. Tidey JW, Miczek KA. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 1996; 721:140–149.

    Article  CAS  PubMed  Google Scholar 

  84. Thierry AM, Tassin JP, Blanc G, Glowinski J. Selective activation of the mesocortical DA system by stress. Nature 1976; 263:242–243.

    Article  CAS  PubMed  Google Scholar 

  85. Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 1989; 52:1655–1658.

    Article  CAS  PubMed  Google Scholar 

  86. Tidey JW, Miczek KA. Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacology 1997; 130:203–212.

    Article  CAS  PubMed  Google Scholar 

  87. Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 2003; 17(2):371–378.

    Article  CAS  PubMed  Google Scholar 

  88. Senault B. Syndrome agressif induit par l’apomorphine chez le Rat. J Physiol 1968; 60:543–544.

    Google Scholar 

  89. Senault B. Influence de l’isolement sur le comportement d’agressivit, intraspécifique induit par l’apomorphine chez le rat. Psychopharmacologia 1971; 20:389–394.

    Article  CAS  PubMed  Google Scholar 

  90. Crowley TJ. Dose-dependent facilitation or supression of rat fighting by methamphetamine, phenobarbital, or imipramine. Psychopharmacologia 1972; 27:213–222.

    Article  CAS  PubMed  Google Scholar 

  91. Hasselager E, Rolinski Z, Randrup A. Specific antagonism by dopamine inhibitors of items of amphetamine induced aggressive behaviour. Psychopharmacologia 1972; 24:485–495.

    Article  CAS  PubMed  Google Scholar 

  92. Miczek KA. Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 1974; 39:275–301.

    Article  CAS  PubMed  Google Scholar 

  93. Puech AJ, Simon P, Chermat R, Boisseir JR. Profil neuropsychopharmacologique de l’apomorphine. J Pharmacol 1974; 5:241–254.

    CAS  Google Scholar 

  94. Ray A, Sharma KK, Alkondon M, Sen P. Possible interrelationship between the biogenic amines involved in the modulation of footshock aggression in rats. Arch Int Pharmacodyn Ther 1983; 265:36–41.

    CAS  PubMed  Google Scholar 

  95. Winslow JT, Miczek KA. Habituation of aggression in mice: Pharmacological evidence of catecholaminergic and serotonergic mediation. Psychopharmacology 1983; 81:286–291.

    Article  CAS  PubMed  Google Scholar 

  96. Hodge GK, Butcher LL. Catecholamine correlates of isolation-induced aggression in mice. Eur J Pharmacol 1975; 31:81–93.

    Article  CAS  PubMed  Google Scholar 

  97. Miczek KA, O’Donnell JM. Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-dopa. Psychopharmacology 1978; 57:47–55.

    Article  CAS  PubMed  Google Scholar 

  98. Miczek KA, Yoshimura H. Disruption of primate social behavior by D-amphetamine and cocaine: differential antagonism by antipsychotics. Psychopharmacology 1982; 76:163–171.

    Article  CAS  PubMed  Google Scholar 

  99. Miczek KA, Haney M. Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in mice. Psychopharmacology 1994; 115:358–365.

    Article  CAS  PubMed  Google Scholar 

  100. Nikulina EM, Marchand JE, Kream RM, Miczek KA. Behavioral sensitization to cocaine after a brief social stress is accompanied by changes in fos expression in the murine brainstem. Brain Res 1998; 810(1–2):200–210.

    Article  CAS  PubMed  Google Scholar 

  101. Nikulina EM, Hammer RP, Jr., Miczek KA, Kream RM. Social defeat stress increases expression of mu-opioid receptor mRNA in rat ventral tegmental area. Neuroreport 1999; 10(14):3015–3019.

    Article  CAS  PubMed  Google Scholar 

  102. Diana M, Pistis M, Muntoni A, Gessa G. Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 1995; 272(2):781–785.

    CAS  PubMed  Google Scholar 

  103. Nowycky MC, Walters JR, Roth RH. Dopaminergic-neurons—effect of acute and chronic morphine administration on single cell activity and transmitter metabolism. J Neural Transm 1978; 42(2):99–116.

    Article  CAS  PubMed  Google Scholar 

  104. Gianutsos G, Lal H. Narcotic analgesics and aggression. In: Valzelli L, ed. Modern Problems of Pharmopsychiatry: Psychopharmacology of Aggression. New York: S. Karger, 1978: 114–138.

    Google Scholar 

  105. Kantak KM, Miczek KA. Social, motor, and autonomic signs of morphine withdrawal: differential sensitivities to catecholaminergic drugs in mice. Psychopharmacology 1988; 96:468–476.

    Article  CAS  PubMed  Google Scholar 

  106. Tidey JW, Miczek KA. Heightened aggressive behavior during morphine withdrawal: effects of d-amphetamine. Psychopharmacology 1992; 107:297–302.

    Article  CAS  PubMed  Google Scholar 

  107. Janssen PAJ, Jageneau AH, Niemegeers JE. Effects of various drugs on isolation-induced fighting behavior of male mice. J Pharmacol Exp Ther 1960; 129:471–475.

    PubMed  Google Scholar 

  108. Rolinski Z. Pharmacological studies on isolation-induced aggressiveness in mice in relation to biogenic amines. Pol J Pharmacol Pharm 1975; 27(1):37–44.

    CAS  PubMed  Google Scholar 

  109. Krsiak M, Sulcova A, Tomasikova Z, Dlohozkova N, Kosar E, Masek K. Drug effects on attack, defense and escape in mice. Pharmacol Biochem Behav 1981; 14:47–52.

    CAS  PubMed  Google Scholar 

  110. Olivier B, van Dalen D. Social behaviour in rats and mice: an ethologically based model for differentiating psychoactive drugs. Aggress Behav 1982; 8:163–168.

    Article  CAS  Google Scholar 

  111. Yudofsky SC, Silver JM, Schneider SE. Pharmacologic treatment of aggression. Psychiatr Ann 1987; 17:397–406.

    Google Scholar 

  112. Brizer DA. Psychopharmacology and the management of violent patients. Psychiatr Clin North Am 1988; 11:551–568.

    CAS  PubMed  Google Scholar 

  113. McMillen BA, DaVanzo EA, Song AH, Scott SM, Rodriguez ME. Effects of classical and atypical antipsychotic drugs on isolation-induced aggression in male mice. Eur J Pharmacol 1989; 160:149–153.

    Article  CAS  PubMed  Google Scholar 

  114. Tidey JW, Miczek KA. Effects of SKF38393 and quinpirole on patterns of aggressive, motor and schedule-controlled behaviors in mice. Behav Pharmacol 1992; 3:553–565.

    Article  CAS  PubMed  Google Scholar 

  115. Tidey JW, Miczek KA. Morphine withdrawal aggression: modification with D1 and D2 receptor agonists. Psychopharmacology 1992; 108:177–184.

    Article  CAS  PubMed  Google Scholar 

  116. Aguilar MA, Minarro J, Perez-Iranzo N, Simon VM. Behavioral profile of raclopride in agonistic encounters between male mice. Pharmacol Biochem Behav 1994; 47(3):753–756.

    Article  CAS  PubMed  Google Scholar 

  117. Rodriguez-Arias M, Pinazo J, Minarro J, Stinus L. Effects of SCH 23390, raclopride, and haloperidol on morphine withdrawal-induced aggression in male mice. Pharmacol Biochem Behav 1999; 64(1):123–130.

    Article  CAS  PubMed  Google Scholar 

  118. Fowler SC, Liou JR. Haloperidol, raclopride, and eticlopride induce microcatalepsy during operant performance in rats, but clozapine and SCH 23390 do not. Psychopharmacology 1998; 140(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  119. Paulus MP, Geyer MA. A scaling approach to find order parameters quantifying the effects of dopaminergic agents on unconditioned motor activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15(6):903–919.

    Article  CAS  PubMed  Google Scholar 

  120. Rodriguez-Arias M, Minarro J, Aguilar MA, Pinazo J, Simon VM. Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 1998; 8:95–103.

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez-Arias M, Felip CM, Broseta I, Minarro J. The dopamine D3 antagonist U-99194A maleate increases social behaviors of isolation-induced aggressive male mice. Psychopharmacology 1999; 144(1):90–94.

    Article  CAS  PubMed  Google Scholar 

  122. Gendreau PL, Petitto JM, Petrova A, Gariepy J, Lewis MH. D3 and D2 dopamine receptor agonists differentially modulate isolation-induced social-emotional reactivity in mice. Behav Brain Res 2000; 114(1–2):107–117.

    Article  CAS  PubMed  Google Scholar 

  123. Glazer WM, Dickson RA. Clozapine reduces violence and persistent aggression in schizophrenia. J Clin Psychiatry 1998; 59 (Suppl 3):8–14.

    CAS  PubMed  Google Scholar 

  124. Hector RI. The use of clozapine in the treatment of aggressive schizophrenia. Can J Psychiatry 1998; 43(5):466–472.

    CAS  PubMed  Google Scholar 

  125. Volavka J. The effects of clozapine on aggression and substance abuse in schizophrenic patients. J Clin Psychiatry 1999; 60 (Suppl 12):43–46.

    CAS  PubMed  Google Scholar 

  126. Rabinowitz J, Avnon M, Rosenberg V. Effect of clozapine on physical and verbal aggression. Schizophr Res 1996; 22(3):249–255.

    Article  CAS  PubMed  Google Scholar 

  127. Spivak B, Roitman S, Vered Y, Mester R, Graff E, Talmon Y, et al. Diminished suicidal and aggressive behavior, high plasma norepinephrine levels, and serum triglyceride levels in chronic neuroleptic-resistant schizophrenic patients maintained on clozapine. Clin Neuropharmacol 1998; 21:245–250.

    CAS  PubMed  Google Scholar 

  128. Chalasani L, Kant R, Chengappa R. Clozapine impact on clinical outcomes and aggression in severely ill adolescents with childhood-onset schizophrenia. Can J Psychiatry 2001; 46(10):965–968.

    CAS  PubMed  Google Scholar 

  129. Bhana N, Foster RH, Olney R, Plosker GL. Olanzapine: an updated review of its use in the management of schizophrenia. Drugs 2001; 61(1):111–161.

    Article  CAS  PubMed  Google Scholar 

  130. Kennedy JS, Bymaster FP, Schuh L, Calligaro DO, Nomikos G, Felder CC, et al. A current review of olanzapine’s safety in the geriatric patient: from pre-clinical pharmacology to clinical data. Int J Geriatr Psychiatry 2001; 16(S1):S33–S61.

    Article  PubMed  Google Scholar 

  131. Barratt ES. The use of anticonvulsants in aggression and violence. Psychopharmacol Bull 1993; 29:75–81.

    CAS  PubMed  Google Scholar 

  132. Pabis DJ, Stanislav SW. Pharmacotherapy of aggressive behavior. Ann Pharmacother 1996; 30:278–287.

    CAS  PubMed  Google Scholar 

  133. Lindenmayer JP, Kotsaftis A. Use of sodium valproate in violent and aggressive behaviors: a critical review. J Clin Psychiatry 2000; 61(2):123–128.

    CAS  PubMed  Google Scholar 

  134. Marsh L, Krauss GL. Aggression and violence in patients with epilepsy. Epilepsy Behav 2000; 1(3):160–168.

    Article  PubMed  Google Scholar 

  135. Fenwick P. The nature and management of aggression in epilepsy. J Neuropsychiatry Clin Neurosci 1989; 1(4):418–425.

    CAS  PubMed  Google Scholar 

  136. Adamec RE. Does kindling model anything clinically relevant? Biol Psychiatry 1990; 27(3):249–279.

    Article  CAS  PubMed  Google Scholar 

  137. Adamec R, Young B. Neuroplasticity in specific limbic system circuits may mediate specific kindling induced changes in animal affect-implications for understanding anxiety associated with epilepsy. Neurosci Biobehav Rev 2000; 24(7):705–723.

    Article  CAS  PubMed  Google Scholar 

  138. Kalynchuk LE. Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neurosci Biobehav Rev 2000; 24(7):691–704.

    Article  CAS  PubMed  Google Scholar 

  139. Kalynchuk LE, Pinel JP, Triet D. Characterization of the defensive natures of kindling-induced emotionality. Behav Neurosci 1999; 113:766–775.

    Article  CAS  PubMed  Google Scholar 

  140. Adamec RE. Lasting effects of FG-7142 on anxiety, aggression and limbic physiology in the cat. J Psychopharmacol 1993; 7(3):232–248.

    Article  CAS  Google Scholar 

  141. Naalsund LU, Allen CN, Fonnum F. Changes in neurobiological parameters in the hippocampus after exposure to trimethyltin. Neurotoxicology 1985; 6(3):145–158.

    CAS  PubMed  Google Scholar 

  142. Patel M, Ardelt BK, Yim GK, Isom GE. Interaction of trimethyltin with hippocampal glutamate. Neurotoxicology 1990; 11(4):601–608.

    CAS  PubMed  Google Scholar 

  143. Lipe GW, Ali SF, Newport GD, Scallet AC, Slikker W Jr. Effect of trimethyltin on amino acid concentrations in different regions of the mouse brain. Pharmacol Toxicol 1991; 68(6):450–455.

    Article  CAS  PubMed  Google Scholar 

  144. Dawson R, Jr., Patterson TA, Eppler B. Endogenous excitatory amino acid release from brain slices and astrocyte cultures evoked by trimethyltin and other neurotoxic agents. Neurochem Res 1995; 20(7):847–858.

    Article  CAS  PubMed  Google Scholar 

  145. Ishida N, Akaike M, Tsutsumi S, et al. Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 1997; 81(4):1183–1191.

    Article  CAS  PubMed  Google Scholar 

  146. Raine A, Buchsbaum MS, Stanley J, Lottenberg S, Abel L, Stoddard J. Selective reductions in prefrontal glucose metabolism in murderers. Biol Psychiatry 1994; 36(6):365–373.

    Article  CAS  PubMed  Google Scholar 

  147. Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 2000; 57(2):119–127.

    Article  CAS  PubMed  Google Scholar 

  148. Best M, Williams JM, Coccaro EF. Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci USA 2002; 99(12): 8448–8453.

    Article  CAS  PubMed  Google Scholar 

  149. Juhasz C, Behen ME, Muzik O, Chugani DC, Chugani HT. Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia 2001; 42(8):991–1001.

    Article  CAS  PubMed  Google Scholar 

  150. King BH, Wright DM, Handen BL, et al. Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder. J Am Acad Child Adolesc Psychiatry 2001; 40(6):658–665.

    Article  CAS  PubMed  Google Scholar 

  151. Rewerski W, Kostowski W, Piechocki T, Rylski M. The effects of some hallucinogens on aggressiveness of mice and rats. I. Pharmacology 1971; 5:314–320.

    Article  CAS  PubMed  Google Scholar 

  152. Burkhalter JE, Balster RL. The effects of phencyclidine on isolation-induced aggression in mice. Psychol Rep 1979; 45:571–576.

    CAS  PubMed  Google Scholar 

  153. Wilmot CA, Vander Wende C, Spoerlein MT. The effects of phencyclidine on fighting in differentially housed mice. Pharmacol Biochem Behav 1987; 28:341–346.

    Article  CAS  PubMed  Google Scholar 

  154. Krsiak M. Behavioral changes and aggressivity evoked by drugs in mice. Res Commun Chem Pathol Pharmacol 1974; 7:237–257.

    CAS  PubMed  Google Scholar 

  155. McAllister KH. Ethological analysis of the effects of MK-801 upon aggressive male mice: similarity to chlordiazepoxide. Pharmacol Biochem Behav 1990; 37(1):101–106.

    Article  CAS  PubMed  Google Scholar 

  156. Musty RE, Consroe PF. Phencyclidine produces aggressive behavior in rapid eye movement sleep deprived rats. Life Sci 1982; 30:1733–1738.

    Article  CAS  PubMed  Google Scholar 

  157. Tyler CB, Miczek KA. Effects of phencyclidine on aggressive behavior in mice. Pharmacol Biochem Behav 1982; 17:503–510.

    Article  CAS  PubMed  Google Scholar 

  158. Lang A, Harro J, Soosaar A, et al. Role of N-methyl-d-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats. Naunyn Schmiedeberg Arch Pharmacol 1995; 351(4):363–370.

    Article  CAS  Google Scholar 

  159. Belozertseva IV, Bespalov AY. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress Behav 1999; 25:381–396.

    Article  CAS  Google Scholar 

  160. Sukhotina IA, Bespalov AY. Effects of the NMDA receptor channel blockers memantine and MRZ 2/579 on morphine withdrawal-facilitated aggression in mice. Psychopharmacology 2000; 149(4):345–350.

    Article  CAS  PubMed  Google Scholar 

  161. Schubert K, Shaikh MB, Siegel A. NMDA receptors in the midbrain periaqueductal gray mediate hypothalamically evoked hissing behavior in the cat. Brain Res 1996; 762(1–2):80–90.

    Article  Google Scholar 

  162. Bandler R, Depaulis A, Vergnes M. Identification of midbrain neurons mediating defensive behaviour in the rat by microinjections of excitatory amino acids. Behav Brain Res 1985; 15:107–119.

    Article  CAS  PubMed  Google Scholar 

  163. Shaikh MB, Barrett JA, Siegel A. The pathways mediating affective defense and quiet biting attack behavior from the midbrain central gray of the cat: an autoradiographic study. Brain Res 1987; 437:9–25.

    Article  CAS  PubMed  Google Scholar 

  164. Brodkin ES, Goforth SA, Keene AH, Fossella JA, Silver LM. Identification of quantitative trait loci that affect aggressive behavior in mice. J Neurosci 2002; 22(3):1165–1170.

    CAS  PubMed  Google Scholar 

  165. Anagnostopoulos AV, Mobraaten LE, Sharp JJ, Davisson MT. Transgenic and knockout databases: behavioral profiles of mouse mutants. Physiol Behav 2001; 73(5):675–689.

    Article  CAS  PubMed  Google Scholar 

  166. Miczek KA, Maxson SC, Fish EW, Faccidomo S. Aggressive behavioral phenotypes in mice. Behav Brain Res 2001; 125(1–2):167–181.

    Article  CAS  PubMed  Google Scholar 

  167. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41:237–260.

    Article  CAS  PubMed  Google Scholar 

  168. Kalivas PW, McFarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 2003; 168(1–2):44–56.

    Article  CAS  PubMed  Google Scholar 

  169. Starr MS. The role of dopamine in epilepsy. Synapse 1996; 22(2):159–194.

    Article  CAS  PubMed  Google Scholar 

  170. Calabresi P, Pisani A, Mercuri NB, Bernardi G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 1996; 19(1):19–24.

    Article  Google Scholar 

  171. Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 1992; 320(2):145–160.

    Article  CAS  PubMed  Google Scholar 

  172. Johnson SW, Seutin V, North RA. Burst firing in dopamine neurons induced by N-methyl-d-aspartate: role of electrogenic sodium pump. Science 1992; 258(5082):665–667.

    Article  CAS  PubMed  Google Scholar 

  173. Tong ZY, Overton PG, Clark D. Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 1996; 22(3):195–208.

    Article  CAS  PubMed  Google Scholar 

  174. Takahata R, Moghaddam B. Target-specific glutamatergic regulation of dopamine neurons in the ventral tegmental area. J Neurochem 2000; 75(4):1775–1778.

    Article  CAS  PubMed  Google Scholar 

  175. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 2000; 20(10):3864–3873.

    CAS  PubMed  Google Scholar 

  176. Van Erp AMM, Miczek KA. Aggressive behavior, increased accumbal dopamine and decreased cortical serotonin in rats. J Neurosci 2000; 15:9320–9325.

    Google Scholar 

  177. Pfaus JG, Damsma G, Nomikos GG, et al. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res 1990; 530:345–348.

    Article  CAS  PubMed  Google Scholar 

  178. Bassareo V, Di Chiara G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 1997; 17(2):851–861.

    CAS  PubMed  Google Scholar 

  179. Mathe JM, Nomikos GG, Schilstrom B, Svensson TH. Non-NMDA excitatory amino acid receptors in the ventral tegmental area mediate systemic dizocilpine (MK-801) induced hyperlocomotion and dopamine release in the nucleus accumbens. J Neurosci Res 1998; 51(5):583–592.

    Article  CAS  PubMed  Google Scholar 

  180. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. Effects of ketamine and Nmethyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003; 117(3):697–706.

    Article  CAS  PubMed  Google Scholar 

  181. Takahata R, Moghaddam B. Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 2003; 28(6):1117–1124.

    CAS  PubMed  Google Scholar 

  182. Spanagel R, Eilbacher B, Wilke R. Memantine-induced dopamine release in the prefrontal cortex and striatum of the rat—a pharmacokinetic microdialysis study. Eur J Pharmacol 1994; 262(1–2):21–26.

    Article  CAS  PubMed  Google Scholar 

  183. Hertel P, Mathe JM, Nomikos GG, Iurlo M, Mathe AA, Svensson TH. Effects of d-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav Brain Res 1995; 72(1–2):103–114.

    Article  Google Scholar 

  184. Kuroki T, Kawahara T, Yonezawa Y, Tashiro N. Effects of the serotonin2A/2C receptor agonist and antagonist on phencyclidine-induced dopamine release in rat medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23(7):1259–1275.

    Article  CAS  PubMed  Google Scholar 

  185. Carr DB, O’Donnell P, Card JP, Sesack SR. Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 1999; 19:11049–11060.

    CAS  PubMed  Google Scholar 

  186. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979; 205(4409): 929–932.

    Article  CAS  PubMed  Google Scholar 

  187. Roth BL, Tandra S, Burgess LH, Sibley DR, Meltzer HY. D4 dopamine receptor binding affinity does not distinguish between typical and atypical antipsychotic drugs. Psychopharmacology 1995; 120:365–368.

    Article  CAS  PubMed  Google Scholar 

  188. Bakshi VP, Swerdlow NR, Geyer MA. Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 1994; 271(2): 787–794.

    CAS  PubMed  Google Scholar 

  189. Gleason SD, Shannon HE. Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology 1997; 129(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  190. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 1996; 381(6579):245–248.

    Article  CAS  PubMed  Google Scholar 

  191. Wang X, Zhong P, Gu Z, Yan Z. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 2003; 23(30):9852–9861.

    CAS  PubMed  Google Scholar 

  192. Rubinstein M, Cepeda C, Hurst RS, Flores-Hernandez J, Ariano MA, Falzone TL, et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 2001; 21(11):3756–3763.

    CAS  PubMed  Google Scholar 

  193. Lee JJ, Croucher MJ. Actions of group I and group II metabotropic glutamate receptor ligands on 5-hydroxytryptamine release in the rat cerebral cortex in vivo: differential roles in the regulation of central serotonergic neurotransmission. Neuroscience 2003; 117(3): 671–679.

    Article  CAS  PubMed  Google Scholar 

  194. Lee HS, Kim MA, Valentino RJ, Waterhouse BD. Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res 2003; 963(1–2):57–71.

    Article  CAS  Google Scholar 

  195. Tao R, Auerbach SB. Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 2003; 961(1):109–120.

    Article  CAS  PubMed  Google Scholar 

  196. Maione S, Palazzo E, de Novellis V, Stella L, Leyva J, Rossi F. Metabotropic glutamate receptors modulate serotonin release in the rat periaqueductal gray matter. Naunyn Schmiedeberg Arch Pharmacol 1998; 358(4):411–417.

    Article  CAS  Google Scholar 

  197. Guan XM, McBride WJ. Serotonin microinfusion into the ventral tegmental area increases accumbens dopamine release. Brain Res Bull 1989; 23:541–547.

    Article  CAS  PubMed  Google Scholar 

  198. Parsons L, Justice J. Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res 1993; 606:195–199.

    Article  CAS  PubMed  Google Scholar 

  199. Peyron C, Luppi PH, Kitahama K, Fort P, Hermann DM, Jouvet M. Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport 1995; 6(18):2527–2531.

    Article  CAS  PubMed  Google Scholar 

  200. Coccaro EF. Central serotonin and impulsive aggression. Br J Psychiatry 1989; 155:52–62.

    Google Scholar 

  201. Virkkunen M, Linnoila M. Brain serotonin, Type II alcoholism and impulsive violence. J Stud Alcohol 1993; Suppl 11:163–169.

    Google Scholar 

  202. Raine A, Buchsbaum M, LaCasse L. Brain abnormalities in murderers indicated by positron emission tomography. Biol Psychiatry 1997; 42(6):495–508.

    Article  CAS  PubMed  Google Scholar 

  203. Raine A, Meloy JR, Bihrle S, Stoddard J, LaCasse L, Buchsbaum MS. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behav Sci Law 1998; 16(3):319–332.

    Article  CAS  PubMed  Google Scholar 

  204. Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino-acids in the prefrontal cortex—Comparison to hippocampus and basal ganglia. J Neurochem 1993; 60(5):1650–1657.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Miczek, K.A., Fish, E.W. (2005). Dopamine, Glutamate, and Aggression. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics