Skip to main content
  • 1595 Accesses

Abstract

Beginning with the initial suggestion that antipsychotic neuroleptic drugs block dopamine receptors (1), and continuing with the demonstration that the affinity of antipsychotic drugs for dopamine receptors is highly correlated with clinical potency (2,3), and that the density of [3H]neuroleptic-labeled dopamine receptors is enhanced in postmortem brain tissue of schizophrenics (4), the study of dopamine receptors has been inextricably linked with hypotheses for the mechanism of action of antipsychotic drugs and the etiology of schizophrenia. As described in other chapters in this volume, the role of dopamine in numerous other neuropsychiatric disorders, such as parkinsonism, attention deficit hyperactivity disorder, and addiction, has made consideration of the properties of dopamine receptor subtypes important for attempts to provide improved pharmacological treatments for these disorders. This chapter summarizes the molecular cloning of the five mammalian dopamine receptor subtypes, and reviews their structural, pharmacological, signaling, and regulatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963; 20:140–144.

    CAS  Google Scholar 

  2. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261:717–719.

    CAS  PubMed  Google Scholar 

  3. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192:481–483.

    CAS  PubMed  Google Scholar 

  4. Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykeiwicz OH. Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 1978; 274:897–900.

    CAS  PubMed  Google Scholar 

  5. Brown JH, Makman MH. Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina. Proc Natl Acad Sci USA 1972; 69:539–543.

    CAS  PubMed  Google Scholar 

  6. Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc Natl Acad Sci USA 1972; 69:2145–2149.

    CAS  PubMed  Google Scholar 

  7. Clement-Cormier YC, Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci USA 1974; 71:1113–1117.

    CAS  PubMed  Google Scholar 

  8. Karobath M, Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci USA 1974; 71:2915–2918.

    CAS  PubMed  Google Scholar 

  9. Miller RJ, Horn AS, Iversen LL. The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate production in rat neostriatum and limbic forebrain. Mol Pharmacol 1974; 10:759–766.

    CAS  Google Scholar 

  10. Burt DR, Enna SJ, Creese I, Snyder SH. Dopamine receptor binding in the corpus striatum of mammalian brain. Proc Natl Acad Sci USA 1975; 72:4655–4659.

    CAS  PubMed  Google Scholar 

  11. Creese I, Burt DR, Snyder SH. Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci 1975; 17:933–1001.

    CAS  PubMed  Google Scholar 

  12. Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 1975; 72:4376–4380.

    CAS  PubMed  Google Scholar 

  13. Leysen JE, Gommeren W, Laduron PM. Spiperone: a ligand of choice for neuroleptic receptors. 1._Kinetics and characteristics of in vitro binding. Biochem Pharmacol 1977; 27:307–316.

    Google Scholar 

  14. Fields JZ, Reisine TD, Yamamura HI. Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol. Brain Res 1977; 136:578–584.

    CAS  PubMed  Google Scholar 

  15. Creese I, Schneider R, Snyder SH. 3H-Spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 1977; 46:377–381.

    CAS  PubMed  Google Scholar 

  16. Spano PF, Govoni S, Trabucchi M. Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharm 1978; 19:155–165.

    CAS  Google Scholar 

  17. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979; 277:93–96.

    CAS  PubMed  Google Scholar 

  18. Trabucchi M, Longoni R, Fresia P, Spano PF. Sulpiride: a study of the effects on dopamine receptors in rat neostriatum and limbic forebrain. Life Sci 1975; 17:1551–1556.

    CAS  PubMed  Google Scholar 

  19. Roufogalis BD, Thornton M, Wade DN. Specificity of the dopamine sensitive adenylate cyclase for antipsychotic antagonists. Life Sci 1976; 19:927–934.

    CAS  PubMed  Google Scholar 

  20. Laduron PM, Leysen JE. Domperidone, a specific in vitro dopamine antagonist, devoid of in vivo central dopaminergic activity. Biochem Pharmacol 1979; 28:2161–2165.

    CAS  PubMed  Google Scholar 

  21. Caron MG, Beaulieu M, Raymond V, et al. Dopaminergic receptors in the anterior pituitary gland: correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 1978; 253:2244–2253.

    CAS  PubMed  Google Scholar 

  22. Premont J, Thierry AM, Tassin JP, Glowinski J, Blanc G, Bockaert J. Is the dopamine sensitive adenylate cyclase in the rat substantia nigra coupled with “autoreceptors”? FEBS Lett 1976; 68:99–104.

    CAS  PubMed  Google Scholar 

  23. Di Chiara G, Porceddu ML, Spano PF, Gessa GL. Haloperidol increases and apomorphine decreases striatal dopamine metabolism after destruction of striatal dopamine-sensitive adenylate cyclase by kainic acid. Brain Res 1977; 130:374–382.

    PubMed  Google Scholar 

  24. Schwarcz R, Creese I, Coyle JT, Snyder SH. Dopamine receptors localised on cerebral cortical afferents to rat corpus striatum. Nature 1978; 271:766–768.

    CAS  PubMed  Google Scholar 

  25. De Camilli P, Macconi D, Spada A. Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 1979; 278:252–254.

    PubMed  Google Scholar 

  26. Bunzow JR, Van Tol HHM, et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988; 336:783–787.

    CAS  PubMed  Google Scholar 

  27. Neve KA, Neve RL. Molecular biology of dopamine receptors. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totawa, NJ: Humana Press, 1997:27–76.

    Google Scholar 

  28. Grandy DK, Marchionni MA, Makam H, et al. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 1989; 86:9762–9766.

    CAS  PubMed  Google Scholar 

  29. Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR. Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 1989; 342:926–929.

    CAS  PubMed  Google Scholar 

  30. Dal Toso R, Sommer B, Ewert M, et al. The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 1989; 8:4025–4034.

    CAS  PubMed  Google Scholar 

  31. Selbie LA, Hayes G, Shine J. The major dopamine D2 receptor: Molecular analysis of the human D2A subtype. DNA 1989; 8:683–689.

    CAS  PubMed  Google Scholar 

  32. Sunahara RK, Niznik HB, Weiner DM, et al. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 1990; 347:80–83.

    CAS  PubMed  Google Scholar 

  33. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG. Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 1990; 347:72–75.

    CAS  PubMed  Google Scholar 

  34. Zhou Q-Y, Grandy DK, Thambi L, Kushner JA, Van Tol HHM, Cone R, et al. Cloning and expression of human and rat D1 dopamine receptors. Nature 1990; 347:76–80.

    CAS  PubMed  Google Scholar 

  35. Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990; 347:146–151.

    CAS  PubMed  Google Scholar 

  36. Snyder LA, Roberts JL, Sealfon SC. Distribution of dopamine D2 receptor mRNA splice variants in the rat by solution hybridization/protection assay. Neurosci Lett 1991; 122:37–40.

    CAS  PubMed  Google Scholar 

  37. Sokoloff P, Andrieux M, Besançon R, et al. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol-Molec Pharm 1992; 225:331–337.

    CAS  Google Scholar 

  38. Ariano MA. Distribution of dopamine receptors. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totawa, NJ: Humana Press, 1997:77–103.

    Google Scholar 

  39. Van Tol HHM, Bunzow JR, Guan H-C, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350:610–614.

    PubMed  Google Scholar 

  40. Sunahara RK, Guan H-C, O’Dowd BF, et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991; 350:614–619.

    CAS  PubMed  Google Scholar 

  41. Grandy DK, Zhang Y, Bouvier C, et al. Multiple human D5 receptor genes: a functional receptor and two pseudogenes. Proc Natl Acad Sci USA 1991; 88:9175–9179.

    CAS  PubMed  Google Scholar 

  42. Oak JN, Oldenhof J, Van Tol HHM. The dopamine D4 receptor: one decade of research. Eur J Pharmacol 2000; 405:303–327.

    CAS  PubMed  Google Scholar 

  43. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289:739–745.

    CAS  PubMed  Google Scholar 

  44. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G-protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 2001; 60:1–19.

    CAS  PubMed  Google Scholar 

  45. Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: The transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 2002; 42:437–467.

    CAS  PubMed  Google Scholar 

  46. Neve KA, DuRand CJ, Teeter MM. Structural analysis of the mammalian D2, D3, and D4 dopamine receptors. In: Sidhu A, Laruelle M, Vernier P, ed. Dopamine Receptors and Transporters: Function, Imaging, and Clinical Implication. New York: Marcel Dekker, Inc., 2003:77–144.

    Google Scholar 

  47. Ballesteros J, Weinstein H. Integrated methods for modeling G-protein coupled receptors. Methods Neurosci 1995; 25:366–428.

    CAS  Google Scholar 

  48. Teeter MM, Froimowitz M, Stec B, DuRand CJ. Homology modeling of the dopamine D2 receptor and its testing by docking of agonists and tricyclic antagonists. J Med Chem 1994; 37:2874–2888.

    CAS  PubMed  Google Scholar 

  49. Simpson MM, Ballesteros JA, Chiappa V, et al. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol Pharmacol 1999; 56:1116–1126.

    CAS  PubMed  Google Scholar 

  50. Löber S, Hübner H, Utz W, Gmeiner P. Rationally based efficacy tuning of selective dopamine D4 receptor ligands leading to the complete antagonist 2-[4-(4-chlorophenyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine (FAUC 213). J Med Chem 2001; 44:2691–2694.

    PubMed  Google Scholar 

  51. Porter JE, Hwa J, Perez DM. Activation of the α1b-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J Biol Chem 1996; 271:28318–28323.

    CAS  PubMed  Google Scholar 

  52. Rasmussen SGF, Jensen AD, Liapakis G, Ghanouni P, Javitch JA, Gether U. Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 1999; 56:175–184.

    CAS  PubMed  Google Scholar 

  53. Ballesteros JA, Jensen AD, Liapakis G, et al. Activation of the β2 adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 2001; 276:29171–29177.

    CAS  PubMed  Google Scholar 

  54. Kozell LB, Neve KA. Constitutive activity of a chimeric D2/D1 dopamine receptor. Mol Pharmacol 1997; 52:1137–1149.

    CAS  PubMed  Google Scholar 

  55. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 1996; 274:768–770.

    CAS  PubMed  Google Scholar 

  56. Javitch JA, Fu DY, Liapakis G, Chen JY. Constitutive activation of the β2 adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem 1997; 272:18546–18549.

    CAS  PubMed  Google Scholar 

  57. Voss T, Wallner E, Czernilofsky AP, Freissmuth M. Amphipathic α-helical structure does not predict the ability of receptor-derived synthetic peptides to interact with guanine nucleotide-binding regulatory proteins. J Biol Chem 1993; 268:4637–4642.

    CAS  PubMed  Google Scholar 

  58. Malek D, Münch G, Palm D. Two sites in the third inner loop of the dopamine D2 receptor are involved in functional G protein-mediated coupling to adenylate cyclase. FEBS Lett 1993; 325:215–219.

    CAS  PubMed  Google Scholar 

  59. König B, Grätzel M. Site of dopamine D1 receptor binding to Gs protein mapped with synthetic peptides. Biochim Biophys Acta Mol Cell Res 1994; 1223:261–266.

    Google Scholar 

  60. Kozell LB, Machida CA, Neve RL, Neve KA. Chimeric D1/D2 dopamine receptors: distinct determinants of selective efficacy, potency, and signal transduction. J Biol Chem 1994; 269:30299–30306.

    CAS  PubMed  Google Scholar 

  61. Wess J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 1998; 80:231–264.

    CAS  PubMed  Google Scholar 

  62. Jarvie KR, Booth G, Brown EM, Niznik HB. Glycoprotein nature of dopamine D1 receptors in the brain and parathyroid gland. Mol Pharmacol 1989; 36:566–574.

    CAS  PubMed  Google Scholar 

  63. Karpa KD, Lidow MS, Pickering MT, Levenson R, Bergson C. N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells. Mol Pharmacol 1999; 56:1071–1078.

    CAS  PubMed  Google Scholar 

  64. Leonard MN, Williamson RA, Strange PG. The glycosylation properties of D2 dopamine receptors from striatal and limbic areas of bovine brain. Biochem J 1988; 255:877–883.

    CAS  PubMed  Google Scholar 

  65. David C, Fishburn CS, Monsma FJ, Jr., Sibley DR, Fuchs S. Synthesis and processing of D2 dopamine receptors. Biochemistry 1993; 32:8179–8183.

    CAS  PubMed  Google Scholar 

  66. Clagett-Dame M, McKelvy JF. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity. Arch Biochem Biophys 1989; 274:145–154.

    CAS  PubMed  Google Scholar 

  67. Jarvie KR, Niznik HB, Bzowej NH, Seeman P. Dopamine D2 receptors retain agonist highaffinity form and guanine nucleotide sensitivity after removal of sialic acid. J Biochem 1988; 104:791–794.

    CAS  PubMed  Google Scholar 

  68. Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-proteincoupled receptor function. Pharmacol Ther 2003; 97:1–33.

    CAS  PubMed  Google Scholar 

  69. Ng GY, Mouillac B, George SR, et al. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol Mol Pharmacol 1994; 267:7–19.

    CAS  Google Scholar 

  70. Jin H, Xie ZD, George SR, O’Dowd BF. Palmitoylation occurs at cysteine 347 and cysteine 351 of the dopamine D1 receptor. Eur J Pharmacol 1999; 386:305–312.

    CAS  PubMed  Google Scholar 

  71. Jin H, Zastawny R, George SR, O’Dowd BF. Elimination of palmitoylation sites in the human dopamine D1 receptor does not affect receptor-G protein interaction. Eur J Pharmacol 1997; 324:109–116.

    CAS  PubMed  Google Scholar 

  72. Jensen AA, Pedersen UB, Kiemer A, Din N, Andersen PH. Functional importance of the carboxyl tail cysteine residues in the human D1 dopamine receptor. J Neurochem 1995; 65:1325–1331.

    CAS  PubMed  Google Scholar 

  73. Ng GYK, O’Dowd BF, Caron M, Dennis M, Brann MR, George SR. Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J Neurochem 1994; 63:1589–1595.

    CAS  PubMed  Google Scholar 

  74. Gardner B, Liu ZF, Jiang D, Sibley DR. The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 2001; 59:310–321.

    CAS  PubMed  Google Scholar 

  75. Tiberi M, Nash SR, Bertrand L, Lefkowitz RJ, Caron MG. Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 1996; 271:3771–3778.

    CAS  PubMed  Google Scholar 

  76. Mason JN, Kozell LB, Neve KA. Regulation of dopamine D1 receptor trafficking by protein kinase A-dependent phosphorylation. Mol Pharmacol 2002; 61:806–816.

    CAS  PubMed  Google Scholar 

  77. Lamey M, Thompson M, Varghese G, Chi H, Sawzdargo M, George SR, et al. Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D1 receptor. J Biol Chem 2002; 277:9415–9421.

    CAS  PubMed  Google Scholar 

  78. Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and β-arrestins. J Biol Chem 2001; 276:37,409–37,414.

    CAS  PubMed  Google Scholar 

  79. Ito K, Haga T, Lameh J, Sadée W. Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 1999; 260:112–119.

    CAS  PubMed  Google Scholar 

  80. Tsuruta K, Frey EA, Grewe CW, Cote TE, Eskay RL, Kebabian JW. Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor. Nature 1981; 292:463–465.

    CAS  PubMed  Google Scholar 

  81. Niznik HB, Grigoriadis DE, Pri-Bar I, Buchman O, Seeman P. Dopamine D2 receptors selectively labeled by a benzamide neuroleptic: [3H]-YM-0915-2. Naunyn Schmiedebergs Arch Pharmacol 1985; 329:333–343.

    CAS  PubMed  Google Scholar 

  82. Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA. SCH23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 1983; 226:462–468.

    CAS  PubMed  Google Scholar 

  83. Hyttel J. SCH 23390 — The first selective dopamine D-1 antagonist. Eur J Pharmacol 1983; 91:153–154.

    CAS  PubMed  Google Scholar 

  84. Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A. Characterization of the binding of 3HSCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci 1984; 35:1885–1893.

    CAS  PubMed  Google Scholar 

  85. Kaiser C, Dandridge PA, Garvey E, et al. Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine. J Med Chem 1982; 25:697–703.

    CAS  PubMed  Google Scholar 

  86. Mottola DM, Laiter S, Watts VJ, et al. Conformational analysis of D1 dopamine receptor agonists: pharmacophore assessment and receptor mapping. J Med Chem 1996; 39:285–296.

    CAS  PubMed  Google Scholar 

  87. Chipkin RE, Iorio LC, Coffin VL, Mcquade RD, Berger JG, Barnett A. Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 1988; 247:1093–1102.

    CAS  PubMed  Google Scholar 

  88. Kerkman DJ, Ackerman M, Artman LD, et al. A-69024: a non-benzazepine antagonist with selectivity for the dopamine D-1 receptor. Eur J Pharmacol 1989; 166:481–491.

    CAS  PubMed  Google Scholar 

  89. Riddall DR. A comparison of the selectivities of SCH 23390 with BW737C89 for D1, D2 and 5-HT2 binding sites both in vitro and in vivo. Eur J Pharmacol 1992; 210: 279–284.

    CAS  PubMed  Google Scholar 

  90. Markstein R, Gull P, Rudeberg C, Urwyler S, Jaton AL, McAllister K, et al. SDZ PSD 958, a novel D1 receptor antagonist with potential limbic selectivity. JNT 1996; 103:261–276.

    CAS  Google Scholar 

  91. Daly SA, Waddington JL. Behavioural evidence for ‘D-1-like” dopamine receptor subtypes in rat brain using the new isochroman agonist A 68930 and isoquinoline antagonist BW 737C. Psychopharmacology (Berl) 1993; 113:45–50.

    CAS  Google Scholar 

  92. Tiberi M, Caron MG. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J Biol Chem 1994; 269:27925–27931.

    CAS  PubMed  Google Scholar 

  93. Freedman SB, Patel S, Marwood R, et al. Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 1994; 268:417–426.

    CAS  PubMed  Google Scholar 

  94. MacKenzie RG, VanLeeuwen D, Pugsley TA, et al. Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol Mol Pharmacol 1994; 266:79–85.

    CAS  Google Scholar 

  95. Castro SW, Strange PG. Coupling of D2 and D3 dopamine receptors to G-proteins. FEBS Lett 1993; 315:223–226.

    CAS  PubMed  Google Scholar 

  96. Burris KD, Filtz TM, Chumpradit S, et al. Characterization of [125I](R)-trans-7-hydroxy-2-[N-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin binding to dopamine D3 receptors in rat olfactory tubercle. J Pharmacol Exp Ther 1994; 268:935–942.

    CAS  PubMed  Google Scholar 

  97. Gonzalez AM, Sibley DR. [3H]7-OH-DPAT is capable of labeling dopamine D2 as well as D3 receptors. Eur J Pharmacol 1995; 272:R1–R3.

    CAS  PubMed  Google Scholar 

  98. Malmberg Å, Mohell N. Characterization of [3H]quinpirole binding to human dopamine D2A and D3 receptors: effects of ions and guanine nucleotides. J Pharmacol Exp Ther 1995; 274:790–797.

    CAS  PubMed  Google Scholar 

  99. Schwartz J-C, Diaz J, Pilon C, Sokoloff P. Possible implications of the dopamine D3 receptor in schizophrenia and in antipsychotic drug actions. Brain Res Rev 2000; 31: 277–287.

    CAS  PubMed  Google Scholar 

  100. Joyce JN. Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther 2001; 90:231–259.

    CAS  PubMed  Google Scholar 

  101. Sautel F, Griffon N, Lévesque D, Pilon C, Schwartz J-C, Sokoloff P. A functional test identifies dopamine agonists selective for D3 versus D2 receptors. Neuroreport 1995; 6:329–332.

    CAS  PubMed  Google Scholar 

  102. Pugsley TA, Davis MD, Akunne HC, et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 1995; 275:1355–1366.

    CAS  PubMed  Google Scholar 

  103. Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM. Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur J Pharmacol Mol Pharmacol 1995; 290:29–36.

    CAS  Google Scholar 

  104. Löber S, Hübner H, Gmeiner P. Fused azaindole derivatives: molecular design, synthesis and in vitro pharmacology leading to the preferential dopamine D3 receptor agonist FAUC 725. Bioorg Med Chem Lett 2002; 12:2377–2380.

    PubMed  Google Scholar 

  105. Glase SA, Akunne HC, Georgic LM, et al. Substituted [(4-phenylpiperazinyl)-methyl]benzamides: selective dopamine D4 agonists. J Med Chem 1997; 40:1771–1772.

    CAS  PubMed  Google Scholar 

  106. Einsiedel J, Hübner H, Gmeiner P. Cyclic amidines as benzamide bioisosteres: EPC synthesis and SAR studies leading to the selective dopamine D4 receptor agonist FAUC 312. Bioorg Med Chem Lett 2003; 13:851–854.

    CAS  PubMed  Google Scholar 

  107. Gazi L, Bobirnac I, Danzeisen M, et al. Receptor density as a factor governing the efficacy of the dopamine D4 receptor ligands, L-745,870 and U-101958 at human recombinant D4.4 receptors expressed in CHO cells. Br J Pharmacol 1999; 128:613–620.

    CAS  PubMed  Google Scholar 

  108. Macchia M, Cervetto L, Demontis GC, et al. New N-n-propyl-substituted 3-aryl-and 3-cyclohexylpiperidines as partial agonists at the D4 dopamine receptor. J Med Chem 2003; 46:161–168.

    CAS  PubMed  Google Scholar 

  109. Powell SB, Paulus MP, Hartman DS, Godel T, Geyer MA. RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 2003; 44:473–481.

    CAS  PubMed  Google Scholar 

  110. Kulagowski JJ, Broughton HB, Curtis NR, et al. 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo-2,3-b-pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem 1996; 39:1941–1942.

    CAS  PubMed  Google Scholar 

  111. Lawler CP, Prioleau C, Lewis MM, et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999; 20:612–627.

    CAS  PubMed  Google Scholar 

  112. Leopoldo M, Berardi F, Colabufo NA, et al. Structure-affinity relationship study on N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides as potent and selective dopamine D3 receptor ligands. J Med Chem 2002; 45:5727–5735.

    CAS  PubMed  Google Scholar 

  113. Zhao H, Zhang XY, Hodgetts K, et al. Design, synthesis, and discovery of 5-piperazinyl-1,2,6,7-tetrahydro-5H-azepino[3,2,1-hi]indol-4-one derivatives: A novel series of mixed dopamine D2/D4 receptor antagonists. Bioorg Med Chem Lett 2003; 13:701–704.

    CAS  PubMed  Google Scholar 

  114. Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 1989; 244:790–795.

    CAS  PubMed  Google Scholar 

  115. Zhuang X, Belluscio L, Hen R. Golfα mediates dopamine D1 receptor signaling. J Neurosci 2000; 20:NIL1–NIL5.

    Google Scholar 

  116. Hervé D, Le Moine C, Corvol JC, et al. Gαolf levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 2001; 21:4390–4399.

    PubMed  Google Scholar 

  117. Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 2001; 76:1585–1588.

    CAS  PubMed  Google Scholar 

  118. Wang Q, Jolly JP, Surmeier JD, et al. Differential dependence of the D1 and D5 dopamine receptors on the G protein γ7 subunit for activation of adenylylcyclase. J Biol Chem 2001; 276:39,386–39,393.

    CAS  PubMed  Google Scholar 

  119. Watson JB, Coulter II PM, Margulies JE, et al. G-protein γ7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res 1994; 39:108–116.

    CAS  PubMed  Google Scholar 

  120. Kimura K, White BH, Sidhu A. Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and Go. J Biol Chem 1995; 270:14,672–14,678.

    CAS  PubMed  Google Scholar 

  121. Jin L-Q, Wang H-Y, Friedman E. Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem 2001; 78:981–990.

    CAS  PubMed  Google Scholar 

  122. Robinson SW, Caron MG. Interactions of dopamine receptors with G proteins. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totawa, NJ: Humana Press, 1997:137–165.

    Google Scholar 

  123. Lledo PM, Homburger V, Bockaert J, Vincent J-D. Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 1992; 8:455–463.

    CAS  PubMed  Google Scholar 

  124. Liu YF, Jakobs KH, Rasenick MM, Albert PR. G protein specificity in receptor-effector coupling: analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J Biol Chem 1994; 269:13,880–13,886.

    CAS  PubMed  Google Scholar 

  125. Wong YH, Conklin BR, Bourne HR. Gz-Mediated hormonal inhibition of cyclic AMP accumulation. Science 1992; 255:339–342.

    CAS  PubMed  Google Scholar 

  126. Obadiah J, Avidor-Reiss T, Fishburn CS, et al. Adenylyl cyclase interaction with the D2 dopamine receptor family; Differential coupling to Gi, Gz, and Gs. Cell Mol Neurobiol 1999; 19:653–664.

    CAS  PubMed  Google Scholar 

  127. Watts VJ, Wiens BL, Cumbay MG, Vu MN, Neve RL, Neve KA. Selective activation of Gαo by D2L dopamine receptors in NS20Y neuroblastoma cells. J Neurosci 1998; 18:8692–8699.

    CAS  PubMed  Google Scholar 

  128. Cordeaux Y, Nickolls SA, Flood LA, Graber SG, Strange PG. Agonist regulation of D2 dopamine receptor/G protein interaction—evidence for agonist selection of G protein subtype. J Biol Chem 2001; 276:28,667–28,675.

    CAS  PubMed  Google Scholar 

  129. Gazi L, Nickolls SA, Strange PG. Functional coupling of the human dopamine D2 receptor with Gαi1, Gαi2, Gαi3 and Gαo G proteins: evidence for agonist regulation of G protein selectivity. Br J Pharmacol 2003; 138:775–786.

    CAS  PubMed  Google Scholar 

  130. Leaney JL, Tinker A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci USA 2000; 97:5651–5656.

    CAS  PubMed  Google Scholar 

  131. Liu JC, Baker RE, Sun C, Sundmark VC, Elsholtz HP. Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells—a key step in the transcriptional suppression of the prolactin gene. J Biol Chem 2002; 277:35,819–35,825.

    CAS  PubMed  Google Scholar 

  132. Nickolls SA, Strange PG. Interaction of the D2short dopamine receptor with G proteins: analysis of receptor G protein selectivity. Biochem Pharmacol 2003; 65:1139–1150.

    CAS  PubMed  Google Scholar 

  133. Jiang MS, Spicher K, Boulay G, Wang Y, Birnbaumer L. Most central nervous system D2 dopamine receptors are coupled to their effecters by Go. Proc Natl Acad Sci USA 2001; 98:3577–3582.

    CAS  PubMed  Google Scholar 

  134. Vanhauwe JFM, Josson K, Luyten WHML, Driessen AJ, Leysen JE. G-protein sensitivity of ligand binding to human dopamine D2 and D3 receptors expressed in Escherichia coli: clues for a constrained D3 receptor structure. J Pharmacol Exp Ther 2000; 295: 274–283.

    CAS  PubMed  Google Scholar 

  135. Liu LX, Burgess LH, Gonzalez AM, Sibley DR, Chiodo LA. D2S, D2L, D3, and D4 dopamine receptors couple to a voltage-dependent potassium current in N18TG2 x mesencephalon hybrid cell (MES-23.5) via distinct G proteins. Synapse 1999; 31:108–118.

    CAS  PubMed  Google Scholar 

  136. Newman-Tancredi A, Cussac D, Audinot V, Pasteau V, Gavaudan S, Millan MJ. G protein activation by human dopamine D3 receptors in high-expressing Chinese hamster ovary cells: a guanosine-5′-O-(3-[35S]thio)-triphosphate binding and antibody study. Mol Pharmacol 1999; 55:564–574.

    CAS  PubMed  Google Scholar 

  137. Zaworski PG, Alberts GL, Pregenzer JF, Bin Im W, Slightom JL, Gill GS. Efficient functional coupling of the human D3 dopamine receptor to Go subtype of G proteins in SHSY5Y cells. Br J Pharmacol 1999; 128:1181–1188.

    CAS  PubMed  Google Scholar 

  138. Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, et al. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 2002; 277:46,010–46,019.

    CAS  PubMed  Google Scholar 

  139. Kazmi MA, Snyder LA, Cypess AM, Graber SG, Sakmar TP. Selective reconstitution of human D4 dopamine receptor variants with G subtypes. Biochemistry 2000; 39: 3734–3744.

    CAS  PubMed  Google Scholar 

  140. Yamaguchi I, Harmon SK, Todd RD, O’Malley KL. The rat D4 dopamine receptor couples to cone transducin (Gαt2) to inhibit forskolin-stimulated cAMP accumulation. J Biol Chem 1997; 272:16,599–16,602.

    CAS  PubMed  Google Scholar 

  141. Lee KW, Hong JH, Choi IY, et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci 2002; 22:7931–7940.

    CAS  PubMed  Google Scholar 

  142. Iwamoto T, Okumura S, Iwatsubo K, et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 2003; 278:16,936–16,940.

    CAS  PubMed  Google Scholar 

  143. Huff RM. Signaling pathways modulated by dopamine receptors. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totowa, NJ: Humana Press, 1997:167–192.

    Google Scholar 

  144. Demchyshyn LL, O’Dowd BF, George SR. Structure of mammalian D1 and D5 dopamine receptors and their function and regulation in cells. In: Sidhu A, Laruelle M, Vernier P, ed. Dopamine Receptors and Transporters: Function, Imaging, and Clinical Implication. New York: Marcel Dekker, Inc., 2003:45–76.

    Google Scholar 

  145. Cole RL, Konradi C, Douglass J, Hyman SE. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 1995; 14:813–823.

    CAS  PubMed  Google Scholar 

  146. Liu FC, Graybiel AM. Spatiotemporal dynamics of CREB phosphorylation: transient versus sustained phosphorylation in the developing striatum. Neuron 1996; 17:1133–1144.

    CAS  PubMed  Google Scholar 

  147. Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine D1 receptor protein kinase Adopamine-and cAMP-regulated phosphoprotein (Mr 32 kDa) protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18: 10,297–10,303.

    CAS  PubMed  Google Scholar 

  148. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 1998; 79:82–94.

    CAS  PubMed  Google Scholar 

  149. Surmeier DJ, Bargas J, Hemmings HC, Jr., Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995; 14:385–397.

    CAS  PubMed  Google Scholar 

  150. Baufreton J, Garret M, Rivera A, De la Calle A, Gonon F, Dufy B, et al. D5 (Not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci 2003; 23:816–825.

    CAS  PubMed  Google Scholar 

  151. Schiffmann SN, Lledo P-M, Vincent J-D. Dopamine D1 receptor modulates the voltagegated sodium current in rat striatal neurones through a protein kinase A. J Physiol (Lond) 1995; 483:95–107.

    CAS  Google Scholar 

  152. Flores-Hernandez J, Hernandez S, Snyder GL, et al. D1 dopamine receptor activation reduces GABAA receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 2000; 83:2996–3004.

    CAS  PubMed  Google Scholar 

  153. Hemmings HC, Jr., Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984; 310:503–505.

    CAS  PubMed  Google Scholar 

  154. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/Protein phosphatase-1 cascade. Neuron 1999; 23:435–447.

    CAS  PubMed  Google Scholar 

  155. Bibb JA, Snyder GL, Nishi A, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 1999; 402:669–671.

    CAS  PubMed  Google Scholar 

  156. Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV. Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci 2002; 22:5188–5197.

    CAS  PubMed  Google Scholar 

  157. Lezcano N, Mrzljak L, Eubanks S, Levenson R, Goldman-Rakic P, Bergson C. Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 2000; 287: 1660–1664.

    CAS  PubMed  Google Scholar 

  158. Lezcano N, Bergson C. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J Neurophysiol 2002; 87: 2167–2175.

    CAS  PubMed  Google Scholar 

  159. Undie AS, Weinstock J, Sarau HM, Friedman E. Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 1994; 62: 2045–2048.

    CAS  PubMed  Google Scholar 

  160. Wang HY, Undie AS, Friedman E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 1995; 48: 988–994.

    CAS  PubMed  Google Scholar 

  161. Friedman E, Jin LQ, Cai GP, Hollon TR, Drago J, Sibley DR, et al. D1-like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice. Mol Pharmacol 1997; 51: 6–11.

    CAS  PubMed  Google Scholar 

  162. Mahan LC, Burch RM, Monsma FJ Jr., Sibley DR. Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus oocytes. Proc Natl Acad Sci USA 1990; 87: 2196.

    CAS  PubMed  Google Scholar 

  163. Stoof JC, Kebabian JW. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 1981; 294: 366–368.

    CAS  PubMed  Google Scholar 

  164. Kelly MA, Rubinstein M, Phillips TJ, et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 1998; 18: 3470–3479.

    CAS  PubMed  Google Scholar 

  165. Robinson SW, Caron MG. Selective inhibition of adenylyl cyclase type V by dopamine D3 receptor. Mol Pharmacol 1997; 52: 508–514.

    CAS  PubMed  Google Scholar 

  166. Scarselli M, Novi F, Schallmach E, et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 2001; 276: 30,308–30,314.

    CAS  PubMed  Google Scholar 

  167. Watts VJ, Neve KA. Activation of type II adenylate cyclase by D2 and D4 but not D3 dopamine receptors. Mol Pharmacol 1997; 52: 181–186.

    CAS  PubMed  Google Scholar 

  168. Lacey MG, Mercuri NB, North RA. Dopamine acts on D2 receptors to increase potassium conductance in neurones of rat substantia nigra zona compacta. J Physiol (Lond) 1987; 392: 397–416.

    CAS  Google Scholar 

  169. Liu L, Shen R-Y, Kapatos G, Chiodo LA. Dopamine neuron membrane physiology: characterization of the transient outward current (IA) and demonstration of a common signal transduction pathway for IA and IK. Synapse 1994; 17: 230–240.

    CAS  PubMed  Google Scholar 

  170. Werner P, Hussy N, Buell G, Jones KA, North RA. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. Mol Pharmacol 1996; 49: 656–661.

    CAS  PubMed  Google Scholar 

  171. Wickman KD, Iñiguez-Lluhi JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, et al. Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 1994; 368: 255–257.

    CAS  PubMed  Google Scholar 

  172. Dascal N. Signalling via the G protein-activated K+ channels. Cell Signal 1997; 9: 551–573.

    CAS  PubMed  Google Scholar 

  173. Kuzhikandathil EV, Yu WF, Oxford GS. Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci 1998; 12: 390–402.

    CAS  PubMed  Google Scholar 

  174. Karschin C, Dißmann E, Stühmer W, Karschin A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 1996; 16: 3559.

    CAS  PubMed  Google Scholar 

  175. Inanobe A, Yoshimoto Y, Horio Y, et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 1999; 19: 1006–1017.

    CAS  PubMed  Google Scholar 

  176. Kuzhikandathil EV, Oxford GS. Dominant-negative mutants identify a role for GIRK channels in D3 dopamine receptor-mediated regulation of spontaneous secretory activity. J Gen Physiol 2000; 115: 697–706.

    CAS  PubMed  Google Scholar 

  177. Cass WA, Zahniser NR. Potassium channel blockers inhibit D2 dopamine, but not A1 adenosine, receptor-mediated inhibition of striatal dopamine release. J Neurochem 1991; 57: 147–152.

    CAS  PubMed  Google Scholar 

  178. Memo M, Missale C, Carruba MO, Spano PF. D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent of cyclic AMP. Neurosci Lett 1986; 71: 192–196.

    CAS  PubMed  Google Scholar 

  179. Davila V, Yan Z, Craciun LC, Logothetis D, Sulzer D. D3 dopamine autoreceptors do not activate G-protein-gated inwardly rectifying potassium channel currents in substantia nigra dopamine neurons. J Neurosci 2003; 23: 5693–5697.

    CAS  PubMed  Google Scholar 

  180. Blednov YA, Stoffel M, Cooper R, Wallace D, Mane N, Harris RA. Hyperactivity and dopamine D1 receptor activation in mice lacking girk2 channels. Psychopharmacology 2002; 159: 370–378.

    CAS  PubMed  Google Scholar 

  181. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998; 273: 1839–1842.

    CAS  PubMed  Google Scholar 

  182. Alblas J, Van Corven EJ, Hordijk PL, Milligan G, Moolenaar WH. Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by α2-adrenergic receptors expressed in fibroblasts. J Biol Chem 1993; 268: 22,235–22,238.

    CAS  PubMed  Google Scholar 

  183. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and βγ subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 1994; 269: 7851–7854.

    CAS  PubMed  Google Scholar 

  184. Huff RM. Signal transduction pathways modulated by the D2 subfamily of dopamine receptors. Cell Signal 1996; 8: 453–459.

    CAS  PubMed  Google Scholar 

  185. Luo YQ, Kokkonen GC, Wang XT, Neve KA, Roth GS. D2 dopamine receptors stimulate mitogenesis through pertussis toxin-sensitive G proteins and ras-involved ERK and SAP/JNK pathways in rat C6-D2L glioma cells. J Neurochem 1998; 71: 980–990.

    CAS  PubMed  Google Scholar 

  186. Welsh GI, Hall DA, Warnes A, Strange PG, Proud CG. Activation of microtubule-associated protein kinase (Erk) and p70 S6 kinase by D2 dopamine receptors. J Neurochem 1998; 70: 2139–2146.

    CAS  PubMed  Google Scholar 

  187. Choi EY, Jeong DW, Park KW, Baik JH. G protein-mediated mitogen-activated protein kinase activation by two dopamine D2 receptors. Biochem Biophys Res Comm 1999; 256: 33–40.

    CAS  PubMed  Google Scholar 

  188. Ghahremani MH, Forget C, Albert PR. Distinct roles for Gα2 and Gβγ in signaling to DNA synthesis and Gα13 in cellular transformation by dopamine D2S receptor activation in BALB/c 3T3 cells. Mol Cell Biol 2000; 20: 1497–1506.

    CAS  PubMed  Google Scholar 

  189. Oak JN, Lavine N, Van Tol HHM. Dopamine D4 and D2L receptor stimulation of the mitogen-activated protein kinase pathway is dependent on transactivation of the platelet-derived growth factor receptor. Mol Pharmacol 2001; 60: 92–103.

    CAS  PubMed  Google Scholar 

  190. Cussac D, Newman-Tancredi A, Pasteau V, Millan MJ. Human dopamine D3 receptors mediate mitogen-activated protein kinase activation via a phosphatidylinositol 3-kinase and an atypical protein kinase C-dependent mechanism. Mol Pharmacol 1999; 56: 1025–1030.

    CAS  PubMed  Google Scholar 

  191. Zhen XC, Zhang J, Johnson GP, Friedman E. D4 dopamine receptor differentially regulates Akt/nuclear factor-kappaB and extracellular signal-regulated kinase pathways in D4MN9D cells. Mol Pharmacol 2001; 60: 857–864.

    CAS  PubMed  Google Scholar 

  192. Yan Z, Feng J, Fienberg AA, Greengard P. D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 1999; 96: 11,607–11,612.

    CAS  PubMed  Google Scholar 

  193. Brami-Cherrier K, Valjent E, Garcia M, Pagès C, Hipskind RA, Caboche J. Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: a new route to cAMP response element-binding protein phosphorylation. J Neurosci 2002; 22: 8911–8921.

    CAS  PubMed  Google Scholar 

  194. Cai GP, Zhen XC, Uryu K, Friedman E. Activation of extracellular signal-regulated protein kinases is associated with a sensitized locomotor response to D2 dopamine receptor stimulation in unilateral 6-hydroxydopamine-lesioned rats. J Neurosci 2000; 20: 1849–1857.

    CAS  PubMed  Google Scholar 

  195. Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996; 379: 557–560.

    CAS  PubMed  Google Scholar 

  196. Maudsley S, Pierce KL, Zamah AM, et al. The β2-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 2000; 275: 9572–9580.

    CAS  PubMed  Google Scholar 

  197. Kotecha SA, Oak JN, Jackson MF, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35: 1111–1122.

    CAS  PubMed  Google Scholar 

  198. Lajiness ME, Chio CL, Huff RM. D2 dopamine receptor stimulation of mitogenesis in transfected Chinese hamster ovary cells: relationship to dopamine stimulation of tyrosine phosphorylations. J Pharmacol Exp Ther 1993; 267: 1573–1581.

    CAS  PubMed  Google Scholar 

  199. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995; 80: 199–211.

    CAS  PubMed  Google Scholar 

  200. Fukunaga K, Miyamoto E. Role of MAP kinase in neurons. Mol Neurobiol 1998; 16: 79–95.

    CAS  PubMed  Google Scholar 

  201. Otani S, Auclair N, Desce JM, Roisin MP, Crpel F. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 1999; 19: 9788–9802.

    CAS  PubMed  Google Scholar 

  202. Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999; 23: 11–14.

    CAS  PubMed  Google Scholar 

  203. Iaccarino C, Samad TA, Mathis C, Kercret H, Picetti R, Borrelli E. Control of lactotrop proliferation by dopamine: essential role of signaling through D2 receptors and ERKs. Proc Natl Acad Sci USA 2002; 99: 14,530–14,535.

    CAS  PubMed  Google Scholar 

  204. Yan Z, Song WJ, Surmeier DJ. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 1997; 77: 1003–1015.

    CAS  PubMed  Google Scholar 

  205. Kuzhikandathil EV, Oxford GS. Activation of human D3 dopamine receptor inhibits P/Q-type calcium channels and secretory activity in AtT-20 cells. J Neurosci 1999;19: 1698–1707.

    CAS  PubMed  Google Scholar 

  206. Hernández-López S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 2000; 20: 8987–8995.

    PubMed  Google Scholar 

  207. Kanterman RY, Mahan LC, Briley EM, et al. Transfected D2 dopamine receptors mediate the potentiation of arachidonic acid release in chinese hamster ovary cells. Mol Pharmacol 1991; 39: 364–369.

    CAS  PubMed  Google Scholar 

  208. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres M-P, Schwartz J-C. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 1991; 353: 164–167.

    CAS  PubMed  Google Scholar 

  209. Vial D, Piomelli D. Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J Neurochem 1995; 64: 2765–2772.

    CAS  PubMed  Google Scholar 

  210. Chio CL, Drong RF, Riley DT, Gill GS, Slightom JL, Huff RM. D4 dopamine receptormediated signaling events determined in transfected Chinese hamster ovary cells. J Biol Chem 1994; 269: 11,813–11,819.

    CAS  PubMed  Google Scholar 

  211. Senogles SE. The D2s dopamine receptor stimulates phospholipase D activity: a novel signaling pathway for dopamine. Mol Pharmacol 2000; 58: 455–462.

    CAS  PubMed  Google Scholar 

  212. Neve KA, Kozlowski MR, Rosser MP. Dopamine D2 receptor stimulation of Na+/H+ exchange assessed by quantification of extracellular acidification. J Biol Chem 1992; 267: 25,748–25,753.

    CAS  PubMed  Google Scholar 

  213. Cox BA, Rosser MP, Kozlowski MR, Duwe KM, Neve RL, Neve KA. Regulation and functional characterization of a rat recombinant dopamine D3 receptor. Synapse 1995; 21: 1–9.

    CAS  PubMed  Google Scholar 

  214. Chio CL, Lajiness ME, Huff RM. Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 1994; 45: 51–60.

    CAS  PubMed  Google Scholar 

  215. Ganz MB, Pachter JA, Barber DL. Multiple receptors coupled to adenylate cyclase regulate Na-H exchange independent of cAMP. J Biol Chem 1990; 265: 8989–8992.

    CAS  PubMed  Google Scholar 

  216. Sibley DR, Neve KA. Regulation of dopamine receptor function and expression. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totowa, NJ: Humana Press, 1997: 383–424.

    Google Scholar 

  217. Creese I, Sibley DR. Receptor adaptations to centrally acting drugs. Annu Rev Pharmacol Toxicol 1981; 21: 357–391.

    CAS  PubMed  Google Scholar 

  218. Sibley DR, Houslay MD, ed. Molecular Pharmacology of Cell Regulation, Vol 3: Regulation of Cellular Signal Transduction Pathways by Desensitization and Amplification. Chichester, UK: Wiley, 1994.

    Google Scholar 

  219. Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal system. Acta Physiol Scand 1971; Suppl 367: 69–93.

    Google Scholar 

  220. Fibiger HC, Grewaal DS. Neurochemical evidence for denervation supersensitivity: the effect of unilateral substantia nigra lesions on apomorphine-induced increases in neostriatal acetylcholine levels. Life Sci 1974; 15: 57–63.

    CAS  PubMed  Google Scholar 

  221. Burt DR, Creese I, Snyder SH. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 1977; 196: 326–328.

    CAS  PubMed  Google Scholar 

  222. Creese I, Burt DR, Snyder SH. Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 1977; 197: 596–598.

    CAS  PubMed  Google Scholar 

  223. Schultz W, Ungerstedt U. Striatal cells supersensitivity to apomorphine in dopaminelesioned rats correlated to behavior. Neuropharmacology 1978; 17: 349–353.

    CAS  PubMed  Google Scholar 

  224. Joyce JN, Marshall JF, Bankiewicz KS, Kopin IJ, Jacobowitz DM. Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilateral changes in striatal dopamine D-2 receptor density. Brain Res 1986; 382: 360–364.

    CAS  PubMed  Google Scholar 

  225. Memo M, Pizzi M, Missale C, Carruba MO, Spano PF. Modification of the function of D1 and D2 dopamine receptors in striatum and nucleus accumbens of rats chronically treated with haloperidol. Neuropharmacology 1987; 267: 477–480.

    Google Scholar 

  226. Neve KA, Neve RL, Fidel S, Janowsky A, Higgins GA. Increased abundance of alternatively spliced forms of D-2 receptor mRNA after denervation. Proc Natl Acad Sci USA 1991; 88: 2802–2806.

    CAS  PubMed  Google Scholar 

  227. Srivastava LK, Mishra RK. Dopamine receptor gene expression: effects of neuroleptics, denervation,and development. In: Niznik HB, ed. Dopamine Receptors and Transporters. New York: Marcel Dekker, 1994: 401–415.

    Google Scholar 

  228. Mishra RK, Gardner EL, Katzman R, Makman MH. Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc Natl Acad Sci USA 1974; 71: 3883–3887.

    CAS  PubMed  Google Scholar 

  229. Krueger BK, Forn J, Walters JR, Roth RH, Greengard P. Stimulation by dopamine of adenosine cyclic 3′,5′-monophosphate formation in rat caudate nucleus: effect of lesions of the nigroneostriatal pathway. Mol Pharmacol 1976; 12: 639–648.

    CAS  PubMed  Google Scholar 

  230. Hess EJ, Albers LJ, Le H, Creese I. Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther 1986; 238: 846–854.

    CAS  PubMed  Google Scholar 

  231. Hess EJ, Norman AB, Creese I. Chronic treatment with dopamine receptor antagonists: behavioral and pharmacologic effects on D1 and D2 dopamine receptors. J Neurosci 1988; 8: 2361–2370.

    CAS  PubMed  Google Scholar 

  232. McGonigle P, Boyson SJ, Reuter S, Molinoff PB. Effects of chronic treatment with selective and nonselective antagonists on the subtypes of dopamine receptors. Synapse 1989; 3: 74–82.

    CAS  PubMed  Google Scholar 

  233. Schwartz RA, Greenwald ER, Fletcher PJ, Houle S, DaSilva JN. Up-regulated dopamine D1 receptor binding can be detected in vivo following repeated SCH 23390, but not SKF 81297 or 6-hydroxydopamine, treatments. Eur J Pharmacol 2003; 459: 195–201.

    CAS  PubMed  Google Scholar 

  234. Marshall JF, Ungerstedt U. Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur J Pharmacol 1977; 41: 361–367.

    CAS  PubMed  Google Scholar 

  235. Mandel RJ, Wilcox RE, Randall PK. Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol Biochem Behav 1992; 41: 343–347.

    CAS  PubMed  Google Scholar 

  236. Marshall JF, Ruskin DN, Lahoste GJ. D1/D2 dopamine receptor interactions in basal ganglia. In: Neve KA, Neve RL, ed. The Dopamine Receptors. Totawa, NJ: Humana Press, 1997: 193–219.

    Google Scholar 

  237. Mishra RK, Wong YW, Varmuza SL, Tuff L. Chemical lesion and drug induced supersensitivity and subsensitivity of caudate dopamine receptors. Life Sci 1978; 23: 443–446.

    CAS  PubMed  Google Scholar 

  238. Neisewander JL, Lucki I, McGonigle P. Behavioral and neurochemical effects of chronic administration of reserpine and SKF-38393 in rats. J Pharmacol Exp Ther 1991; 257: 850–860.

    CAS  PubMed  Google Scholar 

  239. Subramaniam S, Lucki I, McGonigle P. Effects of chronic treatment with selective agonists on the subtypes of dopamine receptors. Brain Res 1992; 571: 313–322.

    CAS  PubMed  Google Scholar 

  240. Asin KE, Bednarz L, Nikkel A, Perner R. Rotation and striatal c-fos expression after repeated, daily treatment with selective dopamine receptor agonists and levodopa. J Pharmacol Exp Ther 1995; 273: 1483–1490.

    CAS  PubMed  Google Scholar 

  241. Dumartin B, Caillé I, Gonon F, Bloch B. Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci 1998; 18: 1650–1661.

    CAS  PubMed  Google Scholar 

  242. Chen JF, Aloyo VJ, Weiss B. Continuous treatment with the D2 dopamine receptor agonist quinpirole decreases D2 dopamine receptors, D2 dopamine receptor messenger RNA and proenkephalin messenger RNA, and increases mu opioid receptors in mouse striatum. Neuroscience 1993; 54: 669–680.

    CAS  PubMed  Google Scholar 

  243. Quik M, Iversen LL. Subsensitivity of the rat striatal dopaminergic system after treatment with bromocriptine: effects on [3H]spiperone binding and dopamine-stimulated cyclic AMP formation. Naunyn Schmiedeberg Arch Pharmacol 1978; 304: 141–145.

    CAS  Google Scholar 

  244. List SJ, Seeman P. Dopamine agonists reverse the elevated 3H-neuroleptic binding in neuroleptic-pretreated rats. Life Sci 1979; 24: 1447–1452.

    CAS  PubMed  Google Scholar 

  245. Chronwall BM, Dickerson DS, Huerter BS, Sibley DR, Millington WR. Regulation of heterogeneity in D2 dopamine receptor gene expression among individual melanotropes in the rat pituitary intermediate lobe. Mol Cell Neurosci 1994; 5: 35–45.

    CAS  PubMed  Google Scholar 

  246. Lévesque D, Martres M-P, Diaz J, et al. A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci USA 1995; 92: 1719–1723.

    PubMed  Google Scholar 

  247. Morissette M, Goulet M, Grondin R, et al. Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 1998; 10: 2565–2573.

    CAS  PubMed  Google Scholar 

  248. Quik M, Police S, He L, Di Monte DA, Langston JW. Expression of D3 receptor messenger RNA and binding sites in monkey striatum and substantia nigra after nigrostriatal degeneration: effect of levodopa treatment. Neuroscience 2000; 98: 263–273.

    CAS  PubMed  Google Scholar 

  249. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 2001; 411: 86–89.

    CAS  PubMed  Google Scholar 

  250. Memo M, Lovenberg W, Hanbauer I. Agonist-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. Proc Natl Acad Sci USA 1982; 79:4456–4460.

    CAS  PubMed  Google Scholar 

  251. Jiang D, Sibley DR. Regulation of D1 dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol Pharmacol 1999; 56:675–683.

    CAS  PubMed  Google Scholar 

  252. Jackson A, Iwasiow RM, Chaar ZY, Nantel MF, Tiberi M. Homologous regulation of the heptahelical D1A receptor responsiveness: specific cytoplasmic tail regions mediate dopamine-induced phosphorylation, desensitization and endocytosis. J Neurochem 2002; 82:683–697.

    CAS  PubMed  Google Scholar 

  253. Jarvie KR, Tiberi M, Silvia C, Gingrich JA, Caron MG. Molecular cloning, stable expression and desensitization of the human dopamine D1B/D5 receptor. J Recept Res 1993; 13:573–590.

    CAS  PubMed  Google Scholar 

  254. Agui T, Amlaiky N, Caron MG, Kebabian JW. Agonist-induced desensitization of the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. J Biochem 1988; 103:436–441.

    CAS  PubMed  Google Scholar 

  255. Barton AC, Black LE, Sibley DR. Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastomal cells. Mol Pharmacol 1991; 39:650–658.

    CAS  PubMed  Google Scholar 

  256. Gainetdinov RR, Bohn LM, Sotnikova TD, et al. Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 2003; 38:291–303.

    CAS  PubMed  Google Scholar 

  257. Sharma SK, Klee WA, Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 1975; 72:3092–3096.

    CAS  PubMed  Google Scholar 

  258. Bates MD, Senogles SE, Bunzow JR, Liggett SB, Civelli O, Caron MG. Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. Mol Pharmacol 1991; 39:55–63.

    CAS  PubMed  Google Scholar 

  259. Watts VJ. Molecular mechanisms for heterologous sensitization of adenylate cyclase. J Pharmacol Exp Ther 2002; 302:1–7.

    CAS  PubMed  Google Scholar 

  260. Watts VJ, Neve KA. Sensitization of endogenous and recombinant adenylate cyclase by activation of D2 dopamine receptors. Mol Pharmacol 1996; 50:966–976.

    CAS  PubMed  Google Scholar 

  261. Watts VJ, Vu MN, Wiens BL, Jovanovic V, Van Tol HHM, Neve KA. Short and long-term heterologous sensitization of adenylate cyclase by D4 dopamine receptors. Psychopharmacology 1999; 141:83–92.

    CAS  PubMed  Google Scholar 

  262. Thomas JM, Hoffman BB. Isoform-specific sensitization of adenylyl cyclase activity by prior activation of inhibitory receptors: role of βγ subunits in transducing enhanced activity of the type VI isoform. Mol Pharmacol 1996; 49:907–914.

    CAS  PubMed  Google Scholar 

  263. Watts VJ, Taussig R, Neve RL, Neve KA. Dopamine D2 receptor-induced heterologous sensitization of adenylyl cyclase requires Gαs: characterization Gαs-insensitive mutants of adenylyl cyclase V. Mol Pharmacol 2001; 60:1168–1172.

    CAS  PubMed  Google Scholar 

  264. Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. TIPS 2001; 22:532–537.

    CAS  PubMed  Google Scholar 

  265. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002; 42:409–435.

    CAS  PubMed  Google Scholar 

  266. Ng GYK, O’Dowd BF, Lee SP, et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Comm 1996; 227:200–204.

    CAS  PubMed  Google Scholar 

  267. Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 1997; 272:29,229–29,237.

    CAS  PubMed  Google Scholar 

  268. Zawarynski P, Tallerico T, Seeman P, Lee SP, O’Dowd BF, George SR. Dopamine D2 receptor dimers in human and rat brain. FEBS Lett 1998; 441:383–386.

    CAS  PubMed  Google Scholar 

  269. Lee SP, O’Dowd BF, Ng GYK, et al. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol 2000; 58:120–128.

    CAS  PubMed  Google Scholar 

  270. Karpa KD, Lin R, Kabbani N, Levenson R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol 2000; 58:677–683.

    CAS  PubMed  Google Scholar 

  271. Wurch T, Matsumoto A, Pauwels PJ. Agonist-independent and-dependent oligomerization of doparnine D2 receptors by fusion to fluorescent proteins. FEBS Lett 2001; 507:109–113.

    CAS  PubMed  Google Scholar 

  272. Armstrong D, Strange PG. Dopamine D2 receptor dimer formation—evidence from ligand binding. J Biol Chem 2001; 276:22621–22629.

    CAS  PubMed  Google Scholar 

  273. Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 2003; 278:4385.

    CAS  PubMed  Google Scholar 

  274. Elmhurst JL, Xie ZD, O’Dowd BF, George SR. The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: evidence for heterooligomerization. Brain Res Mol Brain Res 2000; 80:63–74.

    CAS  PubMed  Google Scholar 

  275. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000; 288:154–157.

    CAS  PubMed  Google Scholar 

  276. Hillion J, Canals M, Torvinen M, et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002; 277:18,091–18,097.

    CAS  PubMed  Google Scholar 

  277. Ginés S, Hillion J, Torvinen M, Le, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 2000; 97:8606–8611.

    PubMed  Google Scholar 

  278. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid Areceptors. Nature 2000; 403:274–280.

    CAS  PubMed  Google Scholar 

  279. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct proteinprotein interactions with the dopamine D1 receptor. Cell 2002; 111:219–230.

    CAS  PubMed  Google Scholar 

  280. Fiorentini C, Gardoni F, Spano PF, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003; 278:20,196–20,202.

    CAS  PubMed  Google Scholar 

  281. Milligan G, White JH. Protein-protein interactions at G-protein-coupled receptors. TIPS 2001; 22:513–518.

    CAS  PubMed  Google Scholar 

  282. Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell Signal 2002; 14:297–309.

    CAS  PubMed  Google Scholar 

  283. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001; 3:492–498.

    CAS  PubMed  Google Scholar 

  284. Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY. Interaction of γ-COP with a transport motif in the D1 receptor C-terminus. Eur J Cell Biol 2002; 81:77–85.

    CAS  PubMed  Google Scholar 

  285. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 2002; 22:5920–5930.

    CAS  PubMed  Google Scholar 

  286. Zhen XC, Torres C, Wang HY, Friedman E. Prenatal exposure to cocaine disrupts D1A dopamine receptor function via selective inhibition of protein phosphatase 1 pathway in rabbit frontal cortex. J Neurosci 2001; 21:9160–9167.

    CAS  PubMed  Google Scholar 

  287. Li M, Bermak JC, Wang ZW, Zhou QY. Modulation of dopamine D2 receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 2000; 57:446–452.

    CAS  PubMed  Google Scholar 

  288. Li M, Li CY, Weingarten P, Bunzow JR, Grandy DK, Zhou QY. Association of dopamine D3 receptors with actin-binding protein 280 (ABP-280). Biochem Pharmacol 2002; 63:859–863.

    CAS  PubMed  Google Scholar 

  289. Lin RW, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001; 98:5258–5263.

    CAS  PubMed  Google Scholar 

  290. Binda AV, Kabbani N, Lin RW, Levenson R. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 2002; 62:507–513.

    CAS  PubMed  Google Scholar 

  291. Takeuchi Y, Fukunaga K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J Neurochem 2003; 85:1064–1074.

    CAS  PubMed  Google Scholar 

  292. Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999; 274:19,894–19,900.

    CAS  PubMed  Google Scholar 

  293. Bofill-Cardona E, Kudlacek O, Yang Q, Ahorn H, Freissmuth M, Nanoff C. Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J Biol Chem 2000; 275:32,672–32,680.

    CAS  PubMed  Google Scholar 

  294. Kabbani N, Negyessy L, Lin RW, Goldman-Rakic P, Levenson R. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 2002; 22:8476–8486.

    CAS  PubMed  Google Scholar 

  295. Oldenhof J, Vickery R, Anafi M, Oak J, Ray A, Schoots O, et al. SH3 binding domains in the dopamine D4 receptor. Biochemistry 1998; 37:15,726–15,736.

    CAS  PubMed  Google Scholar 

  296. Oldenhof J, Ray A, Vickery R, Van Tol HHM. SH3 ligands in the dopamine D3 receptor. Cell Signal 2001; 13:411–416.

    Google Scholar 

  297. Cao WH, Luttrell LM, Medvedev AV, et al. Direct binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J Biol Chem 2000; 275:38,131–38,134.

    CAS  PubMed  Google Scholar 

  298. Fan GF, Shumay E, Malbon CC, Wang HY. c-Src tyrosine kinase binds the β2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 2001; 276:13,240–13,247.

    CAS  PubMed  Google Scholar 

  299. Rebois RV, Hebert TE. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 2003; 9:169–194.

    CAS  PubMed  Google Scholar 

  300. Wong AHC, Buckle CE, Van Tol HHM. Polymorphisms in dopamine receptors: what do they tell us? Eur J Pharmacol 2000; 410:183–203.

    CAS  PubMed  Google Scholar 

  301. Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6:577–582.

    CAS  PubMed  Google Scholar 

  302. Duan J, Wainwright MS, Comeron JM, et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12:205–216.

    CAS  PubMed  Google Scholar 

  303. Cravchik A, Goldman D. Neurochemical individuality—genetic diversity among human dopamine and serotonin receptors and transporters. Arch Gen Psychiatry 2000; 57:1105–1114.

    CAS  PubMed  Google Scholar 

  304. Fujiwara Y, Yamaguchi K, Tanaka Y, et al. Polymorphism of dopamine receptors and transporter genes in neuropsychiatric diseases. Eur Neurol 1997; 38:6–10.

    CAS  PubMed  Google Scholar 

  305. Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 2000; 20:8305–8314.

    CAS  PubMed  Google Scholar 

  306. Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000; 408:199–203.

    CAS  PubMed  Google Scholar 

  307. Centonze D, Usiello A, Gubellini P, et al. Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 2002; 27:723–726.

    CAS  PubMed  Google Scholar 

  308. Lindgren N, Usiello A, Goiny M, et al. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci USA 2003; 100:4305.

    CAS  PubMed  Google Scholar 

  309. Khan ZU, Mrzljak L, Gutierrez A, De la Calle A, Goldman-Rakic PS. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 1998; 95:7731–7736.

    CAS  PubMed  Google Scholar 

  310. Centonze D, Grande C, Usiello A, et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 2003; 23:6245.

    CAS  PubMed  Google Scholar 

  311. Fetsko LA, Xu R, Wang YY. Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 2003; 967:191–200.

    CAS  PubMed  Google Scholar 

  312. Snyder LA, Roberts JL, Sealfon SC. Alternative transcripts of the rat and human dopamine D3 receptor. Biochem Biophys Res Comm 1991; 180:1031–1035.

    CAS  PubMed  Google Scholar 

  313. Griffon N, Crocq MA, Pilon C, et al. transcript variants, and polymorphism associated with schizophrenia. Am J Med Genet 1996; 67:63–70.

    CAS  PubMed  Google Scholar 

  314. Nagai Y, Ueno S, Saeki Y, Soga F, Yanagihara T. Expression of the D3 dopamine receptor gene and a novel variant transcript generated by alternative splicing in human peripheral blood lymphocytes. Biochem Biophys Res Comm 1993; 194:368–374.

    CAS  PubMed  Google Scholar 

  315. Liu K, Bergson C, Levenson R, Schmauss C. On the origin of mRNA encoding the truncated dopamine D3-type receptor D3nf and detection of D3nf-like immunoreactivity in human brain. J Biol Chem 1994; 269:29,220–29,226.

    CAS  PubMed  Google Scholar 

  316. Sobell JL, Lind TJ, Sigurdson DC, et al. The D5 dopamine receptor gene in schizophrenia: identification of a nonsense change and multiple missense changes but lack of association with disease. Hum Mol Genet 1995; 4:507–514.

    CAS  PubMed  Google Scholar 

  317. Cravchik A, Gejman PV. Functional analysis of the human D5 dopamine receptor missense and nonsense variants: differences in dopamine binding affinities. Pharmacogenetics 1999; 9:199–206.

    CAS  PubMed  Google Scholar 

  318. Neve KA, Cumbay MG, Thompson KR, et al. Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol Pharmacol 2001; 60:373–381.

    CAS  PubMed  Google Scholar 

  319. Gejman PV, Ram A, Gelernter J, et al. No structural mutation in the dopamine D2 receptor gene in alcoholism or schizophrenia. Analysis using denaturing gradient gel electrophoresis. JAMA 1994; 271:204–208.

    CAS  PubMed  Google Scholar 

  320. Cravchik A, Sibley DR, Gejman PV. Analysis of neuroleptic binding affinities and potencies for the different human D2 dopamine receptor missense variants. Pharmacogenetics 1999; 9:17–23.

    CAS  PubMed  Google Scholar 

  321. Cravchik A, Sibley DR, Gejman PV. Functional analysis of the human D2 dopamine receptor missense variants. J Biol Chem 1996; 271:26,013–26,017.

    CAS  PubMed  Google Scholar 

  322. Lannfelt L, Sokoloff P, Martres M-P, et al. Amino acid substitution in the dopamine D3 receptor as a useful polymorphism for investigating psychiatric disorders. Psychiat Genet 1992; 2:249–256.

    Google Scholar 

  323. Van Tol HHM, Wu CM, Guan H-C, et al. Multiple dopamine D4 receptor variants in the human population. Nature 1992; 358:149–152.

    PubMed  Google Scholar 

  324. Lichter JB, Barr CL, Kennedy JL, Van Tol HHM, Kidd KK, Livak KJ. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993; 6:767–773.

    Google Scholar 

  325. Asghari V, Schoots O, Van Kats S, et al. Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol Pharmacol 1994; 46:364–373.

    CAS  PubMed  Google Scholar 

  326. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HHM. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995; 65:1157–1165.

    CAS  PubMed  Google Scholar 

  327. Catalano M, Nobile M, Novelli E, Nöthen MM, Smeraldi E. Distribution of a novel mutation in the first exon of the human dopamine D4 receptor gene in psychotic patients. Biol Psychiat 1993; 34:459–464.

    CAS  PubMed  Google Scholar 

  328. Cichon S, Nöthen MM, Catalano M, et al. Identification of two novel polymorphisms and a rare deletion variant in the human dopamine D4 receptor gene. Psychiatr Genet 1995; 5:97–103.

    CAS  PubMed  Google Scholar 

  329. Nöthen MM, Cichon S, et al. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Hum Mol Genet 1994; 3:2207–2212.

    PubMed  Google Scholar 

  330. Seeman P, Ulpian C, Chouinard G, et al. Dopamine D4 receptor variant, D4glycine194, in Africans, but not in Caucasians: no association with schizophrenia. Am J Med Genet 1994; 54:384–390.

    CAS  PubMed  Google Scholar 

  331. Liu ISC, Seeman P, Sanyal S, et al. Dopamine D4 receptor variant in Africans, D4Valine194Glycine, is insensitive to dopamine and clozapine: report of a homozygous individual. Am J Med Genet 1996; 61:277–282.

    CAS  PubMed  Google Scholar 

  332. Daly SA, Waddington JL. Two directions of dopamine D1/D2 receptor interaction in studies of behavioural regulation: a finding generic to four new, selective dopamine D1 receptor antagonists. Eur J Pharmacol 1992; 213:251–258.

    CAS  PubMed  Google Scholar 

  333. Roth BL, Kroeze WK, Patel S, Lopez E. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrasment of riches? The Neuroscientist 2000; 6:252–262.

    CAS  Google Scholar 

  334. Pedersen UB, Norby B, Jensen AA, et al. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor. Eur J Pharmacol Mol Pharmacol 1994; 267:85–93.

    CAS  Google Scholar 

  335. Patel S, Patel S, Marwood R, et al. Identification and pharmacological characterization of [125I]L-750,667, a novel radioligand for the dopamine D4 receptor. Mol Pharmacol 1996; 50:1658–1664.

    CAS  PubMed  Google Scholar 

  336. Faedda G, Kula NS, Baldessarini RJ. Pharmacology of binding of 3H-SCH-23390 to D-1 dopaminergic receptor sites in rat striatal tissue. Biochem Pharmacol 1989; 38:473–480.

    CAS  PubMed  Google Scholar 

  337. Millan MJ, Gobert A, Newman-Tancredi A, et al. S33084, a novel, potent, selective, and competitive antagonist at dopamine D3-receptors: I. Receptorial, electrophysiological, and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 2000; 293:1048–1062.

    CAS  PubMed  Google Scholar 

  338. Toll L, Berzetei-Gurske IP, Polgar WE, et al. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr 1998; 178:440–466.

    CAS  PubMed  Google Scholar 

  339. Demchyshyn LL, McConkey F, Niznik HB. Dopamine D5 receptor agonist high affinity and constitutive activity profile conferred by carboxyl-terminal tail sequence. J Biol Chem 2000; 275:23,446–23,455.

    CAS  PubMed  Google Scholar 

  340. Audinot V, Newman-Tancredi A, Gobert A, et al. A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 1998; 287:187–197.

    CAS  PubMed  Google Scholar 

  341. Sautel F, Griffon N, Sokoloff P, et al. activates locomotion in rodents. J Pharmacol Exp Ther 1995; 275: 1239–1246.

    CAS  PubMed  Google Scholar 

  342. Yuan J, Chen X, Brodbeck R, et al. NGB 2904 and NGB 2849: two highly selective dopamine D3 receptor antagonists. Bioorg Med Chem Lett 1998; 8:2715–2718.

    CAS  PubMed  Google Scholar 

  343. Whetzel SZ, Shih YH, Georgic LM, Akunne HC, Pugsley TA. Effects of the dopamine D3 antagonist PD 58491 and its interaction with the dopamine D3 agonist PD 128907 on brain dopamine synthesis in rat. J Neurochem 1997; 69:2363–2368.

    CAS  PubMed  Google Scholar 

  344. Millan MJ, Peglion JL, Vian J, et al. Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: 1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J Pharmacol Exp Ther 1995; 275:885–898.

    CAS  PubMed  Google Scholar 

  345. Stemp G, Ashmeade T, Branch CL, et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D3 receptor antagonist with high oral bioavailability and CNS penetration in the rat. J Med Chem 2000; 43:1878–1885.

    CAS  PubMed  Google Scholar 

  346. Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A. The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm Gen Sect 1993; 94:11–19.

    CAS  PubMed  Google Scholar 

  347. Belliotti TR, Wustrow DJ, Brink WA, et al. Aseries of 6-and 7-piperazinyl-and-piperidinylmethylbenzoxazinones with dopamine D4 antagonist activity: discovery of a potential atypical antipsychotic agent. J Med Chem 1999; 42:5181–5187.

    CAS  PubMed  Google Scholar 

  348. Sanner MA, Chappie TA, Dunaiskis AR, et al. Synthesis, SAR and pharmacology of CP-293,019: a potent, selective dopamine D4 receptor antagonist. Bioorg Med Chem Lett 1998; 8:725–730.

    CAS  PubMed  Google Scholar 

  349. Tallman JF, Primus RJ, Brodbeck R, et al. NGD 94-1: identification of a novel, high-affinity antagonist at the human dopamine D4 receptor 1. J Pharmacol Exp Ther 1997; 282: 1011–1019.

    CAS  PubMed  Google Scholar 

  350. Perrone R, Berardi F, Colabufo NA, Leopoldo M, Tortorella V. A structure-affinity relationship study on derivatives of N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a high-affinity and selective D4 receptor ligand. J Med Chem 2000; 43:270–277.

    CAS  PubMed  Google Scholar 

  351. Pugsley TA, Shih YH, Whetzel SZ, et al. The discovery of PD 89211 and related compounds: selective dopamine D4 receptor antagonists. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:219–226.

    CAS  PubMed  Google Scholar 

  352. Belliotti TR, Brink WA, Kesten SR, et al. Isoindolinone enantiomers having affinity for the dopamine D4 receptor. Bioorg Med Chem Lett 1998; 8:1499–1502.

    CAS  PubMed  Google Scholar 

  353. Kula NS, Baldessarini RJ, Kebabian JW, Bakthavachalam V, Xu LX. RBI-257: A highly potent dopamine D4 receptor-selective ligand. Eur J Pharmacol 1997; 331:333–336.

    CAS  PubMed  Google Scholar 

  354. Merchant KM, Gill GS, Harris DW, et al. Pharmacological characterization of U-101387, a dopamine D4 receptor selective antagonist. J Pharmacol Exp Ther 1996; 279:1392–1403.

    CAS  PubMed  Google Scholar 

  355. Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M. A structural polymorphism of human dopamine D2 receptor, D2(Ser311→Cys). Biochem Biophys Res Comm 1993; 196:1369–1375.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Neve, K.A. (2005). Dopamine Receptors. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics