Skip to main content

Radiation Therapy for Hepatocellular Carcinoma

  • Chapter
Hepatocellular Cancer

Part of the book series: Current Clinical Oncology ((CCO))

  • 591 Accesses

Abstract

There are many factors that over time have contributed to the limited use of ionizing radiation in treating hepatocellular carcinoma (HCC). This is primarily because delivery of tumoricidal doses of radiation to a tumor will exceed tolerance of the normal surrounding liver. X-rays produce nondiscriminatory cell killing in the already diseased liver of patients with HCC. In the past, radiation beams could be delivered only in the simplest of geometric arrangements, which could not avoid enough normal liver tissue from X-rays to deliver doses of radiation to control solid tumors. Only in the past 15 years have technological advancements in radiation oncology and diagnostic radiology allowed for innovative approaches in both external beam therapy and brachytherapy for treatment of liver malignancies. Concurrent with hardware upgrades, such as megavoltage linear accelerators, have been powerful software programs that enable conversion of computed tomography (CT) or magnetic resonance imaging (MRI) data sets into three-dimensional (3D) virtual patients. With accurate 3D models of the patient to work from and estimates in real time of radiation dose deposition within the patient, radiation oncologists can attempt to deliver the higher doses of radiation that have a chance to control tumors while sparing the nonmalignant hepatocytes. Most solid malignancies are successfully treated with combination therapy, and for years, it has been the desire to apply these approaches to HCC. The technology described is now widely available in all cancer centers and explains, in part, why the interest, within multidisciplinary hepatic oncology groups and ongoing clinical trials, in treating HCC is increasing. Radiobiological protectants are now in clinical trials, which may allow in the future for selective sparing of the normal liver cells found within the radiation beam. This chapter summarizes the main techniques historically and currently available in delivering ionizing radiation to HCC and describes interesting new approaches. Clinical experience over the past century suggests radiation dose parameters, above which serious and possibly fatal liver dysfunction occurs. Moreover, this occurs when the entire liver (i.e., all functional units of the organ) receives external beam radiation in excess of 30 Gy. State-of-the art radiotherapy techniques can treat small portions of the liver to cumulative doses of 90 Gy or more, as will be discussed later, but the number of patients suitable for this approach is few. Placing radiation directly in the tumor (brachytherapy) holds the promise of success because it can deliver very large doses of radiation selectively to the tumor (80–300 Gy) but spares surrounding normal liver parenchyma, which is reviewed in the microsphere section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeman E. Biologic basis of radiation oncology. In: Clinical Radiation Oncology (Gunderson L, Tepper J, eds.), Churchill Livingstone, Philadelphia, 2000, pp. 1–41.

    Google Scholar 

  2. Sailer SL. Three dimensional conformal radiotherapy. In: Clinical Radiation Oncology (Gunderson L, Tepper J, eds.), Churchill Livingstone, Philadelphia, 2000, pp. 236–255.

    Google Scholar 

  3. Hall E. Radiobiology for the Radiologist, Lippincott Williams & Wilkins, Philadelphia, 2000, pp. 5–16, 80–87.

    Google Scholar 

  4. Kennedy AS, Raleigh JA, Varia MA, et al. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys 1997;37:897–905.

    Article  PubMed  CAS  Google Scholar 

  5. Withers HR. Gastrointestinal cancer: radiation oncology. In: Gastrointestinal Oncology: Principles and Practice (Kelsen DP, Daly JM, Levin B, Kern SE, Tepper JE, eds.), Lippincott Williams & Wilkins, Philadelphia, 2002, pp. 83–96.

    Google Scholar 

  6. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 1995;31:1237–1248.

    Article  PubMed  CAS  Google Scholar 

  7. Ingold J, Reed G, Kaplan H. Radiation hepatitis. Am J Roentgenol 1965;93:200–208.

    CAS  Google Scholar 

  8. Ogata K, Hizawa K, Yoshida M. Hepatic injury following irradiation: a morphologic study. Tukushima J Exp Med 1963;9:240–251.

    Google Scholar 

  9. Austin-Seymour MM, Chen GT, Castro JR. Dose volume histogram analysis of liver radiation tolerance. J Radiat Oncol Biol Phys 1986;12:31–35.

    Article  CAS  Google Scholar 

  10. Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol 2001;11:240–246.

    Article  PubMed  CAS  Google Scholar 

  11. Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys 1992;23:781–788.

    PubMed  CAS  Google Scholar 

  12. Fajardo LF, Berthrong M, Anderson RE. Radiation Pathology. Oxford University Press, New York, 2001.

    Google Scholar 

  13. Lawrence TS, Tesser RJ, Ten Haken RK. An application of dose volume histograms to the treatment of intrahepatic malignancies with radiation therapy. Int J Radiat Oncol Biol Phys 1990;19:1041–1047.

    PubMed  CAS  Google Scholar 

  14. Lawrence TS, Davis MA, Maybaum J, et al. The potential superiority of bromodeoxyuridine to iododeoxyuridine as a radiation sensitizer in the treatment of colorectal cancer. Cancer Res 1992;52:3698–3704.

    PubMed  CAS  Google Scholar 

  15. Lawrence TS, Kessler ML, Robertson JM. 3-D conformal radiation therapy in upper gastrointestinal cancer. The University of Michigan experience. Front Radiat Ther Oncol 1996;29:221–228.

    PubMed  CAS  Google Scholar 

  16. Lawrence TS, Kessler ML, Robertson JM. Conformal high-dose radiation plus intraarterial floxuridine for hepatic cancer. Oncology 1993;7:51–57.

    PubMed  CAS  Google Scholar 

  17. Lawrence TS, Dworzanin LM, Walker-Andrews SC, et al. Treatment of cancers involving the liver and porta hepatis with external beam irradiation and intraarterial hepatic fluorodeoxyuridine. Int J Radiat Oncol Biol Phys 1991;20:555–561.

    PubMed  CAS  Google Scholar 

  18. Lawrence TS, Davis MA, Stetson PL, Maybaum J, Ensminger WD. Kinetics of bromodeoxyuridine elimination from human colon cancer cells in vitro and in vivo. Cancer Res 1994;54:2964–2968.

    PubMed  CAS  Google Scholar 

  19. Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol 2000;18:2210–2218.

    PubMed  CAS  Google Scholar 

  20. Dawson LA, Brock KK, Kazanjian S, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys 2001;51:1410–1421.

    Article  PubMed  CAS  Google Scholar 

  21. McGinn CJ, Lawrence TS. Clinical results of the combination of radiation and fluoropyrimidines in the treatment of intrahepatic cancer. Semin Radiat Oncol 1997;7:313–323.

    Article  PubMed  Google Scholar 

  22. McGinn CJ, Ten Haken RK, Ensminger WD, Walker S, Wang S, Lawrence TS. Treatment of intrahepatic cancers with radiation doses based on a normal tissue complication probability model. J Clin Oncol 1998;16:2246–2252.

    PubMed  CAS  Google Scholar 

  23. Ten Haken RK, Balter JM, Marsh LH, Robertson JM, Lawrence TS. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 1997;38:613–617.

    Article  PubMed  Google Scholar 

  24. Ten Haken RK, Lawrence TS, McShan DL, Tesser RJ, Fraass BA, Lichter AS. Technical considerations in the use of 3-D beam arrangements in the abdomen. Radiother Oncol 1991;22:19–28.

    Article  PubMed  Google Scholar 

  25. Ten Haken RK, Martel MK, Kessler ML, et al. Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 1993;27:689–695.

    PubMed  Google Scholar 

  26. Order SE, Pajak T, Leibel S, et al. A randomized prospective trial comparing full dose chemotherapy to I131 antiferritin: an RTOG study. Int J Radiat Oncol Biol Phys 1991;1:953–963.

    Google Scholar 

  27. Abrams RA, Pajak T, Haulk TL, et al. Survival results among patients with alpha-fetoprotein-positive, unresectable hepatocellular carcinoma: analysis of three sequential treatments of the RTOG and Johns Hopkins Oncology Center. Cancer J 1998;4:178–184.

    CAS  Google Scholar 

  28. Seong J, Keum KC, Han KH, et al. Combined transcatheter arterial chemoembolization and local radiotherapy of unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 1999;43:393–397.

    Article  PubMed  CAS  Google Scholar 

  29. Seong J, Park HC, Han KH, et al. Local radiotherapy for unresectable hepatocellular carcinoma patients who failed with transcatheter arterial chemoembolization. Int J Radiat Oncol Biol Phys 2000;47:1331–1335.

    Article  PubMed  CAS  Google Scholar 

  30. Seong J, Park HC, Han KH, et al. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients. Int J Radiat Oncol Biol Phys 2003;55:329–336.

    Article  PubMed  Google Scholar 

  31. Park HC, Seong J, Han KH, et al. Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2002;54:150–155.

    Article  PubMed  Google Scholar 

  32. Aoki K, Okazaki N, Okada S, et al. Radiotherapy for hepatocellular carcinoma: clinicopathological study of seven autopsy cases. Hepatogastroenterology 1994;41:427–431.

    PubMed  CAS  Google Scholar 

  33. Guo WJ, Yu EX. Evaluation of combined therapy with chemoembolization and irradiation for large hepatocellular carcinoma. Br J Cancer 2000;73:1091–1097.

    CAS  Google Scholar 

  34. Suit H. The Gray Lecture 2001: coming technical advances in radiation oncology. Int J Radiat Oncol Biol Phys 2002;53:798–809.

    Article  PubMed  Google Scholar 

  35. Tokuuye K, Matsui R, Sakie Y. Proton therapy for hepatocellular carcinoma. In: Proton Therapy Oncology Group XXXV Proceedings 2001, pp. 57,58.

    Google Scholar 

  36. Matsuzaki Y, Osuga T, Saito Y, et al. A new, effective, and safe therapeutic option using proton irradiation for hepatocellular carcinoma. Gastroenterology 1994;106:1032–1041.

    PubMed  CAS  Google Scholar 

  37. Herfarth KK, Debus J, Lohr F. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 2001;19:164–170.

    PubMed  CAS  Google Scholar 

  38. Ho S, Lau WY, Leung TW, Johnson PJ. Internal radiation therapy for patients with primary or metastatic hepatic cancer: a review. Cancer 1998;83:1894–1907.

    Article  PubMed  CAS  Google Scholar 

  39. Raoul JI, Guyader D, Bretagne JF. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial injection of 131I-labeled-iodized oil versus medical support. J Nuclear Med 1994;35(11):1782–1787.

    CAS  Google Scholar 

  40. Raoul JI, Guyader D, Bretagne JF, et al. Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma. Hepatology 1997;26:1156–1161.

    PubMed  CAS  Google Scholar 

  41. Lau WY, Leung TW, Ho SK, et al. Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial. Lancet 1999;353:943,944.

    Article  Google Scholar 

  42. Dancey JE, Shepherd FA, Paul K, et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000;41:1673–1681.

    PubMed  CAS  Google Scholar 

  43. Leung TW, Lau WY, Ho SK, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 1995;33:919–924.

    Article  PubMed  CAS  Google Scholar 

  44. Kennedy AS, Murthy R, Sarfaraz M, et al. Outpatient hepatic artery brachytherapy for primary and secondary hepatic malignancies. Radiology 2001;221P:468.

    Google Scholar 

  45. Van Echo DA, Kennedy AS, Coldwell D. TheraSphere (TS) at 143 Gy median dose for mixed hepatic cancers; feasibility and toxicities. Am Soc Clin Oncol 2001;260a:1038.

    Google Scholar 

  46. Coldwell D, Kennedy AS, Van Echo DA, et al. Feasibility of treatment of hepatic tumors utilizing embolization with yttrium-90 glass microspheres. J Vasc Interv Radiol 2001;12:S113.

    Google Scholar 

  47. Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 1965;162:267–278.

    Article  PubMed  CAS  Google Scholar 

  48. Ariel IM, Pack GT. Treatment of inoperable cancer of the liver by intra-arterial radioactive isotopes and chemotherapy. Cancer 1967;20:793–804.

    Article  PubMed  CAS  Google Scholar 

  49. Simon N, Warner RRP, Baron MG, Rudavsky AZ. Intra-arterial irradiation of carcinoid tumors of the liver. Am J Roentgenol Radium Ther Nucl Med 1968;102:552–561.

    PubMed  CAS  Google Scholar 

  50. Murthy R, Line BR, Kennedy AS. Clinical utility of Brehmstralung scan (BRM-Scan) after TheraSphere (TS). J Vasc Interv Radiol 2002;13:S2.

    Google Scholar 

  51. Murthy R, Kennedy AS, Tucker G. Outpatient trans arterial hepatic ‘low dose rate’ (TAHLDR) brachytherapy for unresectable hepatocellular carcinoma. Proc Am Assoc Cancer Res 2002;43:485.

    Google Scholar 

  52. Murthy R, Kennedy AS, Coldwell D. Technical aspects of TheraSphere (TS) infusion. J Vasc Interv Radiol 2002;13:S2.

    Google Scholar 

  53. Kennedy AS, Van Echo DA, Murthy R. Hepatic artery brachytherapy for neuroendocrine carcinoma. Regulatory Peptides 2002;108:32.

    Google Scholar 

  54. Gray BN, Anderson JE, Burton MA, et al. Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg 1992;62:105–110.

    Article  PubMed  CAS  Google Scholar 

  55. Gray BN, Burton MA, Kelleher DK, Anderson J, Klemp P. Selective internal radiation (SIR) therapy for treatment of liver metastases: measurement of response rate. J Surg Oncol 1989;42:192–196.

    Article  PubMed  CAS  Google Scholar 

  56. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 1994;35:1637–1644.

    PubMed  CAS  Google Scholar 

  57. Blanchard RJ, Morrow IM, Sutherland JB. Treatment of liver tumors with yttrium-90 microspheres alone. Can Assoc Radiol J 1989;40:206–210.

    PubMed  CAS  Google Scholar 

  58. Blanchard RJW. Treatment of Liver tumours with yttrium-90 microspheres. Can J Surg 1983;26:442,443.

    Google Scholar 

  59. Salem R, Thurston KG, Carr B. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 2002;13:S223–S229.

    Article  PubMed  Google Scholar 

  60. Kennedy AS, Salem R. Comparison of two 90Yttrium microsphere agents for hepatic artery brachytherapy. In: Proceedings of the 14th International Congress on Anti-Cancer Treatment ICACT, Paris, France: 2003, pp. 156.

    Google Scholar 

  61. Lau WY, Ho S, Leung TW, et al. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys 1998;40:583–592.

    Article  PubMed  CAS  Google Scholar 

  62. Lau WY, Leung WT, Ho S, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer 1994;70:994–999.

    PubMed  CAS  Google Scholar 

  63. Houle S, Yip TK, Shepherd FA, et al. Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres. Radiology 1989;172:857–860.

    PubMed  CAS  Google Scholar 

  64. Carr B, Salem R, Sheetz M. Hepatic arterial yttrium labeled glass microspheres (TheraSphere) as treatment for unresectable HCC in 36 patients. Proc Am Soc Clin Oncol 2002, p. 139a.

    Google Scholar 

  65. Carr B, Torok F, Sheetz M. A novel and safe therapy for advanced-stage hepatocellular carcinoma (HCC): hepatic arterial 90Yttrium-labeled glass microspheres (TheraSphere). Int J Cancer 2002;(Suppl 13):459.

    Google Scholar 

  66. Willmott N, Daly JM. Microspheres and Regional Cancer Therapy. CRC Press, Boca Raton, FL, 1994, pp. 245.

    Google Scholar 

  67. Carr B. Hepatic arterial 90Yttrium glass microspheres (TheraSphere) for unresectable hepatocellular carcinoma: Interim safety and survival data on 65 patients. Liver Transplant 2004;10:S107–S110.

    Article  Google Scholar 

  68. Steel J, Baum A, Carr B. Quality of life in patients diagnosed with primary hepatocellular carcinoma: hepatic arterial infusion of cisplatin versus 90-yttrium microspheres (Therasphere). Psycho-Oncology 2004;13:73–79.

    Article  PubMed  Google Scholar 

  69. Okuda K, Ohtsuki T, Obata H, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment: study of 850 patients. Cancer 1985;56:918–928.

    Article  PubMed  CAS  Google Scholar 

  70. Pawarode A, Tangkijvanich P, Voravud N, et al. Outcomes of primary hepatocellular carcinoma treatment: an 8-year experience with 368 patients in Thailand. J Gastroenterol Hepatol 2000;15:860–864.

    Article  PubMed  CAS  Google Scholar 

  71. Sithinamsuwan P, Piratvisuth T, Tanomkiat W, et al. Review of 336 patients with hepatocellular carcinoma at Songklanagarind Hospital. World J Gastroenterol 2000;6:339–343.

    PubMed  Google Scholar 

  72. Kennedy AS, Murthy R, Kwok Y. Hepatic artery brachytherapy for unresectable hepatocellular carcinoma: an outpatient treatment approach. Proceedings of the 12th International Congress on Anti-Cancer Treatment 2002;1:198,199.

    Google Scholar 

  73. Soulen M, Geschwind JF, Salem R. Y90 microsphere radioembolization of hepatoma: initial report of the U.S. multicenter trial. Proc Soc Cardiovasc Intervent Radiol 2002:175–176.

    Google Scholar 

  74. Burton MA, Gray BN, Jones C, Coletti A. Intraoperative dosimetry of 90Y in liver tissue. Int J Radiat Appl Instrum B 1989;16:495–498.

    CAS  Google Scholar 

  75. Burton MA, Gray BN, Kelleher DK, Klemp PF. Selective internal radiation therapy: validation of intraoperative dosimetry. Radiology 1990;175:253–255.

    PubMed  CAS  Google Scholar 

  76. Ho S, Lau WY, Leung TW, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 1996;23:947–952.

    Article  PubMed  CAS  Google Scholar 

  77. Ho S, Lau WY, Leung TW, et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol 1997;70:823–828.

    PubMed  CAS  Google Scholar 

  78. Sarfaraz M, Kennedy AS, Cao ZJ, Li A, Yu C. Radiation dose distribution in patients treated with Y-90 microspheres for non-resectable hepatic tumors. Int J Radiat Biol Oncol Phys 2001;51:32–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kennedy, A.S. (2005). Radiation Therapy for Hepatocellular Carcinoma. In: Carr, B.I. (eds) Hepatocellular Cancer. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59259-844-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-844-1_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-125-7

  • Online ISBN: 978-1-59259-844-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics