Skip to main content

Global Hypoxia-Ischemia and Critical Care Seizures

  • Chapter
Seizures in Critical Care

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Seizures after cardiopulmonary arrest are a common problem in the intensive care unit, occurring in as many as one-third of these patients during their hospitalization. The etiology, treatment, and prognostic importance of seizures in this setting have not been well-delineated in the literature. Whether seizures exacerbate global hypoxic-ischemic brain injury in humans remains unclear, which raises uncertainty about how aggressively they should be treated. Some pathological data suggest that anoxic brain injury is worsened by generalized tonic-clonic (GTC) status epilepticus (SE). Especially when the prognosis remains uncertain, GTC SE should be treated in the conventional manner. Partial seizures and simple myoclonus are unlikely to exacerbate neuronal damage, and treatment probably should be reserved for seizures that are traumatic to family members or interfere with mechanical ventilation. Status myoclonus (SM) in hypoxic-ischemic coma is particularly troublesome because it can be highly refractory to conventional anticonvulsants and appears to portend an extremely poor prognosis, regardless of its management. Case series that report 100% mortality or vegetative state from this condition have involved only highly selected patient populations. Several cases have been reported of patients with good neurological outcomes despite SM in postanoxic coma. The most prudent course of action is to continue intensive management of patients with SM—including anticonvulsant therapy—and to rely on more precise means of prognostication (clinical exam, electroencephalography, and somatosensory evoked potential) to inform the decision to withdraw supportive care. The decision to use anesthetic agents and paralytics in this setting must be individualized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology 1988;38:401–405.

    PubMed  CAS  Google Scholar 

  2. Snyder BD, Ramirez-Lassepas M, Lippert DM. Neurologic status and prognosis after cardiopulmonary arrest. I. A retrospective study. Neurology 1977;27:807–811.

    PubMed  CAS  Google Scholar 

  3. Snyder BD, Hauser WA, Loewenson RB, Leppik IE, Ramirez-Lassepas M, Gumnit RJ. Neurologic prognosis after cardiopulmonary arrest. III. Seizure activity. Neurology 1980;30:1292–1297.

    PubMed  CAS  Google Scholar 

  4. Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting outcome from hypoxic-ischemic coma. JAMA 1985;253:1420–1426.

    Article  PubMed  CAS  Google Scholar 

  5. Lance JW, Adams RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain 1963;86:111–136.

    Article  PubMed  CAS  Google Scholar 

  6. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 2001;292:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  7. Meldrum BS. Epileptic brain damage: a consequence and cause of seizures. Neuropathol Appl Neurobiol 1997; 23:185–202.

    Article  PubMed  CAS  Google Scholar 

  8. Novelli A, Reilly JA, Lysko PG, Henneberry RC. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988;451:205–212.

    Article  PubMed  CAS  Google Scholar 

  9. Fariello RG, Golden GT, Smith GG, Reyes PF. Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist. Epilepsy Res 1989;3:206–213.

    Article  PubMed  CAS  Google Scholar 

  10. Norman RM. The neuropathology of status epilepticus. Med Sci Law 1964;4:46–51.

    PubMed  CAS  Google Scholar 

  11. Meldrum BS, Brierley JB. Prolonged epileptic seizures in primates: ischemic cell change and its relation to ictal physiological events. Arch Neurol 1973;28:10–17.

    PubMed  CAS  Google Scholar 

  12. O’Connell BK, Towfighi J, Kofke WA, Hawkins RA. Neuronal lesions in mercaptopropionic acid-induced status epilepticus. Acta Neuropathol 1988;77:47–54.

    Article  PubMed  CAS  Google Scholar 

  13. Nevander G, Ingvar M, Auer R, Siesjö BK. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol 1985;18:281–290.

    Article  PubMed  CAS  Google Scholar 

  14. Brierley JB. Cerebral hypoxia. In: Blackwood W, Corsellis JAN, eds. Greenfield’s Neuropathology. Edinburgh: Edward Arnold; 1976:43–85.

    Google Scholar 

  15. Young RSK, During MJ, Aquila WJ, Tendler D, Ley E. Hypoxia increases extracellular concentrations of excitatory and inhibitory neurotransmitters in subsequently induced seizure: in vivo microdialysis study in the rabbit. Exp Neurol 1992;117:204–209.

    Article  PubMed  CAS  Google Scholar 

  16. Cataltepe O, Vannucci RC, Heitjan DF, Towfighi J. Effect of status epilepticus on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 1995;38:251–257.

    Article  PubMed  CAS  Google Scholar 

  17. Hayakawa T, Higuchi Y, Nigami H, Hattori H. Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsant effect. Eur J Pharmacol 1994;257:131–136.

    Article  PubMed  CAS  Google Scholar 

  18. Towfighi J, Housman C, Mauger D, Vannucci RC. Effect of seizures on cerebral hypoxic-ischemic lesions in immature rats. Dev Brain Res 1999;113:83–95.

    Article  CAS  Google Scholar 

  19. Wirrell EC, Armstrong EA, Osman LD, Yager JY. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res 2001;50:445–454.

    Article  PubMed  CAS  Google Scholar 

  20. Young GB, Gilbert JJ, Zochodne DW. The significance of myoclonic status epilepticus in postanoxic coma. Neurology 1990;40:1843–1848.

    PubMed  CAS  Google Scholar 

  21. Wijdicks EFM, Parisi JE, Sharbrough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol 1994;35:239–243.

    Article  PubMed  CAS  Google Scholar 

  22. Celesia GG, Grigg MM, Ross E. Generalized status myoclonicus in acute anoxic and toxic-metabolic encephalopathies. Arch Neurol 1988;45:781–784.

    PubMed  CAS  Google Scholar 

  23. Guilleminault C, Tharp BR, Cousin D. HVA and 5-HIAA CSF measurements and 5-HTP trials in some patients with involuntary movements. J Neurol Sci 1973;18:435–441.

    Article  PubMed  CAS  Google Scholar 

  24. Chadwick D, Hallet M, Harris R, Jenner P, Reynolds EH, Marsden CD. Clinical, biochemical, and physiological features distinguishing myoclonus responsive to 5-HTP, tryptophan with monoamine oxidase inhibitor, and clonazepam. Brain 1977;100:455–487.

    Article  PubMed  CAS  Google Scholar 

  25. Jaw SP, Hussong MJ, Matsumoto RR, Truong DD. Involvement of 5-HT2 receptors in posthypoxic stimulus-sensitive myoclonus in rats. Pharmacol Biochem Behav 1994;49:129–131.

    Article  PubMed  CAS  Google Scholar 

  26. Pappert EJ, Goetz CG, Vu TQ, Ling ZD, Leurgans S, Raman R, Carvey PM. Animal model of posthypoxic myoclonus: effects of serotonergic antagonists. Neurology 1999;52:16–21.

    PubMed  CAS  Google Scholar 

  27. Truong DD, Matsumoto RR, Schwartz PH, Hussong MJ, Wasterlain CG. Novel rat cardiac arrest model of posthypoxic myoclonus. Movement Disord 1994;9:201–206.

    Article  PubMed  CAS  Google Scholar 

  28. De Lean J, Richardson JC, Hornykiewicz O. Beneficial effect of serotonin precursors in postanoxic action myoclonus. Neurology 1976;26:863–868.

    PubMed  Google Scholar 

  29. Gimenez-Roldan S, Mateo D, Muradas V, De Yeben JG. Clinical, biochemical, and pharmacologic observation in a patient with postasphyxial myoclonus: association with serotonin hyperactivity. Clin Neuropharmacol 1998; 11: 151–160.

    Article  Google Scholar 

  30. Jumao-as A, Brenner RP. Myoclonic status epilepticus: a clinical and electroencephalographic study. Neurology 1990;40:1199–1202.

    PubMed  CAS  Google Scholar 

  31. Niedermeyer E, Bauer G, Burnite R, Reichenbach D. Selective stimulus-sensitive myoclonus in acute cerebral anoxia. Arch Neurol 1977;34:365–368.

    PubMed  CAS  Google Scholar 

  32. Van Cott AC, Blatt I, Brenner RP. Stimulus-sensitive seizures in postanoxic coma. Epilepsia 1996; 37:868–874.

    Article  PubMed  Google Scholar 

  33. Wolf P. Periodic synchronous and stereotyped myoclonus with postanoxic coma. J Neurol 1977;215: 39–47.

    Article  PubMed  CAS  Google Scholar 

  34. Kanemoto K, Ozawa K. A case of post-anoxic encephalopathy with initial massive myoclonic status followed by alternating Jacksonian seizures. Seizure 2000;9:352–355.

    Article  PubMed  CAS  Google Scholar 

  35. Wijdicks EFM, Young GB. Myoclonus status in comatose patients after cardiac arrest. Lancet 1994; 343:1642,1643.

    Article  PubMed  CAS  Google Scholar 

  36. Arnoldus EPJ, Lammers GJ. Postanoxic coma: good recovery despite myoclonus status. Ann Neurol 1995; 38:697,698.

    Article  PubMed  CAS  Google Scholar 

  37. Hanakawa T, Hashimoto S, Iga K, Segawa Y, Shibasaki H. Carotid brainstem myoclonus after hypoxic brain damage. J Neurol Neurosurg Psychiatry 2000;69:672–674.

    Article  PubMed  CAS  Google Scholar 

  38. Hallett M. The pathophysiology of myoclonus. Trends Neurosci 1987;10:69–73.

    Article  Google Scholar 

  39. Harper SJ, Wilkes RG. Posthypoxic myoclonus (the Lance-Adams syndrome) in the intensive care unit. Anaesthesia 1991;46:199–201.

    Article  PubMed  CAS  Google Scholar 

  40. Werhahn KJ, Brown P, Thompson PD, Marsden CD. The clinical features and prognosis of chronic posthypoxic myoclonus. Movement Disord 1997;12:216–220.

    Article  PubMed  CAS  Google Scholar 

  41. Hallett M, Chadwick D, Adam J, Marsden CD. Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus. J Neurol Neurosurg Psychiatry 1977;40:253–264.

    PubMed  CAS  Google Scholar 

  42. Brown P, Thompson PD, Rothwell JC, Day BL, Marsden CD. A case of postanoxic encephalopathy with cortical action and brainstem reticular reflex myoclonus. Movement Disord 1991;6: 139–144.

    Article  PubMed  CAS  Google Scholar 

  43. Witte OW, Niedermeyer E, Arendt G, Freund HJ. Post-hypoxic action (intention) myoclonus: a clinico-electroencephalographic study. J Neurol 1988;235:214–218.

    Article  PubMed  CAS  Google Scholar 

  44. Lance JW, Adams RD. Negative myoclonus in posthypoxic patients: historical note. Movement Disord 2001; 16:162–163.

    Article  PubMed  CAS  Google Scholar 

  45. Fahn S. Posthypoxic action myoclonus: literature review update. Adv Neurol 1986;43:157–169.

    PubMed  CAS  Google Scholar 

  46. Varelas PN, Spanaki MV, Hacein-Bey L, Hether T, Terranova B. Emergent EEG: indications and diagnostic yield. Neurology 2003;61:702–704.

    PubMed  CAS  Google Scholar 

  47. Beydoun A, Yen CE, Drury I. Variance of interburst intervals in burst suppression. Electroencephalogr Clin Neurophysiol 1991;79:435–439.

    Article  PubMed  CAS  Google Scholar 

  48. Chen R, Bolton CF, Young GB. Prediction of outcome in patients with anoxic coma: a clinical and electro-physiologic study. Crit Care Med 1996;24:672–678.

    Article  PubMed  CAS  Google Scholar 

  49. Binnie CD, Prior PF, Lloyd DSL, Scott DF, Margison JH. Electroencephalographic prediction of fatal anoxic brain damage after resuscitation for cardiac arrest. Br Med J 1970;4:265–268.

    Article  PubMed  CAS  Google Scholar 

  50. Møller M, Holm B, Sindrup E, Lyager Nielsen B. Electroencephalographic prediction of anoxic brain damage after resuscitation from cardiac arrest in patients with acute myocardial infarction. Acta Med Scand 1978; 203: 31–37.

    PubMed  Google Scholar 

  51. Zandbergen EGJ, de Haan RJ, Stoutenbeek CP, Koelman JHTM, Hijdra A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 1998;352:1808–1812.

    Article  PubMed  CAS  Google Scholar 

  52. Ahmed I. Use of somatosensory evoked responses in the prediction of outcome from coma. Clin Electroencephalogr 1988;19:78–86.

    PubMed  CAS  Google Scholar 

  53. Bassetti C, Bomio F, Mathis J, Hess CW. Early prognosis in coma after cardiac arrest: a prospective clinical, electrophysiological, and biochemical study of 60 patients. J Neurol Neurosurg Psychiatry 1996;61: 610–615.

    PubMed  CAS  Google Scholar 

  54. Brunko E, Zegers de Beyl D. Prognostic value of early cortical somatosensory evoked potentials after resuscitation from cardiac arrest. Electroencephalogr Clin Neurophysiol 1987;66:14–24.

    Google Scholar 

  55. Kano T, Shimoda O, Morioka T, Yagishita Y, Hashiguchi A. Evaluation of the central nervous function in resuscitated comatose patients by multilevel evoked potentials. Resuscitation 1992;23:235–248.

    Article  PubMed  CAS  Google Scholar 

  56. Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiologic study. Electoencephalogr Clin Neurophysiol 1991;79:101–107.

    Article  CAS  Google Scholar 

  57. Walser H, Mattle H, Keller HM, Janzer R. Early cortical median nerve somatosensory evoked potentials. Prognostic value in anoxic coma. Arch Neurol 1985;42:32–38.

    PubMed  CAS  Google Scholar 

  58. Madl C, Kramer L, Yeganehfar W. Detection of nontraumatic comatose patients with no benefit of intensive care treatment by recording of sensory evoked potentials. Arch Neurol 1996;53:512–516.

    PubMed  CAS  Google Scholar 

  59. Torbey MT, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke 2000;31:2163–2167.

    PubMed  CAS  Google Scholar 

  60. Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 1999;20:999–1007.

    PubMed  CAS  Google Scholar 

  61. Kim JA, Chung JI, Yoon PH, Kim DI, Chung TS, Kim EJ, Jeong EK. Transient MR signal changes in patients with generalized tonic-clonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol 2001;22:1149–1160.

    PubMed  CAS  Google Scholar 

  62. Ye JH, Ren J, Krnjevic K, Liu PL, McArdle JJ. Cocaine and lidocaine have additive inhibitory effects on GABA. A current of acutely dissociated hippocampal pyramidal cells. Brain Res 1999;821:26–32.

    Article  PubMed  CAS  Google Scholar 

  63. Barat SA, Abdel-Rahman MS. Decreased cocaine-and lidocaine-induced seizure response by dextromethorphan and DNQX in rat. Brain Res 1997;756:179–183.

    Article  PubMed  CAS  Google Scholar 

  64. DeToledo JC. Lidocaine and seizures. Ther Drug Monit 2000;22:320–322.

    Article  PubMed  CAS  Google Scholar 

  65. Kerns W, English B, Ford M. Propafenone overdose. Ann Emerg Med 1994;81:35–39.

    Google Scholar 

  66. Caramelli P, Mutarelli EG, Caramelli B, Tranchesi B, Pileggi F, Schaff M. Neurological complications after thrombolytic treatment for acute myocardial infarction: emphasis on unprecedented manifestations. Acta Neurol Scand 1992;85:331–333.

    PubMed  CAS  Google Scholar 

  67. Cooling DS. Theophylline toxicity. J Emerg Med 1993;11:415–425.

    Article  PubMed  CAS  Google Scholar 

  68. Hollander JE. The management of cocaine-associated myocardial ischemia. N Engl J Med 1995;333: 1267–1272.

    Article  PubMed  CAS  Google Scholar 

  69. Koppel BS, Samkoff L, Daras M. Relation of cocaine use to seizures and epilepsy. Epilepsia 1996; 37:875–878.

    Article  PubMed  CAS  Google Scholar 

  70. Goh WC, Heath PD, Ellis SJ, Oakley PA. Neurological outcome prediction in a cardiorespiratory arrest survivor. Br J Anaesth 2002;88:719–722.

    Article  PubMed  CAS  Google Scholar 

  71. Brain Resuscitation Clinical Trial I Study Group. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 1986;314:397–403.

    Google Scholar 

  72. Kanthasamy AG, Vu TQ, Yun RJ, Truong DD. Antimyoclonic effect of gabapentin in a posthypoxic animal model of myoclonus. Eur J Pharmacol 1996;297:219–224.

    Article  PubMed  CAS  Google Scholar 

  73. Fahn S. Post-anoxic action myoclonus: improvement with valproic acid. N Engl J Med 1978;299: 313–314.

    PubMed  CAS  Google Scholar 

  74. Hirose G, Singer P, Bass N. Successful treatment of posthypoxic action myoclonus with carbamazepine. JAMA 1971;218:1432,1433.

    Article  PubMed  CAS  Google Scholar 

  75. Coletti A, Mandelli A, Minoli G, Tredici G. Post-anoxic action myoclonus (Lance-Adams syndrome) treated with levodopa and GABAergic drugs. J Neurol 1980;223:67–70.

    Article  PubMed  CAS  Google Scholar 

  76. Beretta E, Regli F, de Crousaz G, Steck AJ. Postanoxic myoclonus: treatment of a case with 5-hydroxytryptophane and a decarboxylase inhibitor. J Neurol 1981;225:57–62.

    Article  PubMed  CAS  Google Scholar 

  77. Krauss GL, Bergin A, Kramer RE, Cho YW, Reich SG. Suppression of post-hypoxic and postencephalitic myoclonus with levetiracetam. Neurology 2001;56:411,412.

    PubMed  CAS  Google Scholar 

  78. Willoughby JO, Leach BG. Relation of neurological findings after cardiac arrest to outcome. Br Med J 1974;3:437–439.

    PubMed  CAS  Google Scholar 

  79. Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar P, and BRCT I Study Group. Assessment of neurological prognosis in comatose survivors of cardiac arrest. Lancet 1994;343:1055–1059.

    Article  PubMed  CAS  Google Scholar 

  80. Longstreth WT, Diehr P, Inui TS. Prediction of awakening after out-of-hospital cardiac arrest. N Engl J Med 1983;308:1378–1382.

    PubMed  Google Scholar 

  81. Berek K, Schinnerl A, Traweger C, Lechleitner P, Baubin M, Aichner F. The prognostic significance of coma-rating, duration of anoxia and cardiopulmonary resuscitation in out-of-hospital cardiac arrest. J Neurol 1997;244:556–561.

    Article  PubMed  CAS  Google Scholar 

  82. Madl C, Grimm G, Kramer L, Yeganehfar W, Sterz F, Schneider B, et al. Early prediction of individual outcome after cardiopulmonary resuscitation. Lancet 1993;341:855–858.

    Article  PubMed  CAS  Google Scholar 

  83. So HY, Buckley TA, Oh TE. Factors affecting outcome following cardiopulmonary resuscitation. Anaesth Intens Care 1994;22:647–658.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Koenig, M.A., Geocadin, R. (2005). Global Hypoxia-Ischemia and Critical Care Seizures. In: Varelas, P.N. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-59259-841-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-841-0_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-342-8

  • Online ISBN: 978-1-59259-841-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics