Skip to main content

Prostaglandins and Leukotrienes

Locally Acting Agents

  • Chapter

Abstract

This chapter is not intended for the prostaglandin (PG) specialist but, rather, for those not familiar with the PG field. It provides a brief overview of the biology of the eicosanoid family and how these local mediators may function in health and disease. The term eicosanoids (from the Greek eicosa, which means 20) was coined to describe the broad group of compounds derived from C20 fatty acids that, in turn, are derived from the essential dietary fatty acids. The predominant C20 fatty acid precursor for eicosanoid biosynthesis in most mammals is arachidonic acid (AA). These eicosanoids include the PGs and thromboxanes (TXs), leukotrienes (LTs), lipoxins (LPXs), and hydroxyeicosatetraenoic acids (HETEs). Because the biologic activity of eicosanoids is diminished rapidly in both tissues and the circulation, it is likely that they act locally at the tissue and organ level, where they may regulate regional blood flow and other metabolic activities. Moreover, their formation in various inflammatory sites indicates an important mediating role for these substances in diseased states. Indeed, eicosanoid inhibition by different classes of anti-inflammatory drugs underlines their importance in this regard. This chapter includes a brief historical background, together with a description of nomenclature, biosynthesis, and selected local actions of PGs and LTs. For those requiring more detailed information, see the references at the end of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banu S, Arosh JA, Chapeldaine P, Fortier MA. Molecular cloning and spatio-temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system. Proc Natl Acad Sci USA 2003;100:11,747–11,752.

    Article  PubMed  CAS  Google Scholar 

  • Bergström S, Sjovall J. The isolation of prostaglandin. Acta Chem Scand 1957;11:1086–1087.

    Article  Google Scholar 

  • Bygdeman M, Lundstrom V. Menstruation and dysmenorrhoea. In: Curtis-Prior PB, ed. Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids. Edinburgh, UK: Churchill Livingstone 1988:490–495.

    Google Scholar 

  • Capdevila JH, Falck JR. The CYP P450 arachidonic acid monoxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun 2001;285:571–576.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekharan NV, et al. COX-3, a cylooxygenase-1 variant inhibited by acetominophen and other analgesic/antipyretic drugs: cloning, structure and expression. Proc Natl Acad Sci USA 2002;99:13,926–13,931.

    Article  PubMed  CAS  Google Scholar 

  • Coceani F, Bishai J, Lees J, Sirko S. Prostaglandin E2 in the pathogenesis of pyrogen fever: validation of an intermediary role. Adv Prostate Thromb Res 1989;19:394–397.

    CAS  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology Classification of Prostanoid Receptors: properties, distribution and structure of receptors and their subtypes. Pharmacol Rev 1994;46:205–229.

    PubMed  CAS  Google Scholar 

  • Cundell DR, Gerard NP, Gerard C, Idanpaan-Helkklla I, Tuomanen E. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 1995;377:435–438.

    Article  PubMed  CAS  Google Scholar 

  • Deby C. Metabolism of fatty acids, precursors of eicosanoids. In: Curtis-Prior PB, ed. Prostaglandins: Biology and Chemistry of Prostaglandins and Related Compounds. Edinburgh, UK: Churchill Livingstone 1988:11–36.

    Google Scholar 

  • Eldering JA, Nay MG, Hoberg LM, Longcope C, McCracken JA. Hormonal regulation of endometrial prostaglandin F production during luteal phase of the rhesus monkey. Biol Reprod 1993;49:809–815.

    Article  PubMed  CAS  Google Scholar 

  • Engblom D, et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci 2003;6:1137–1138.

    Article  PubMed  CAS  Google Scholar 

  • Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov 2003;2:179–191.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs AR, Helmer H, Chang SM, Fields MJ. Concentration of oxytocin receptors in the placenta and fetal membranes of cows during pregnancy and labor. J Reprod Fertil 1992;96:775–783.

    Article  PubMed  CAS  Google Scholar 

  • Hayaishi O, Matsumura H, Urade Y. Prostaglandin D synthase is the key enzyme in the promotion of physiological sleep. J Lipid Mediators 1993;6:429–431.

    CAS  Google Scholar 

  • Hoegy SE, Oh HR, Corcoran ML, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinase-2 (TIMP-2) supresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem 2001;276:3203–3214.

    Article  PubMed  CAS  Google Scholar 

  • Klein RF, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004;203:229–232.

    Article  Google Scholar 

  • Liotta AL, Kohn EC. The microenvironment of the tumor-host interface. Nature 2001;411:375–379.

    Article  PubMed  CAS  Google Scholar 

  • Lui CH, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001;276:18,563–18,569.

    Article  Google Scholar 

  • McCracken JA, et al. The central oxytocin pulse generator: a pace-maker for luteolysis. Adv Exper Med Biol 1995;395:133–154.

    CAS  Google Scholar 

  • McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev 1999;79:263–323.

    PubMed  CAS  Google Scholar 

  • McCracken JA, et al. ProstaglandinF identified as a luteolytic hormone in sheep. Nat New Biol 1972;238:129–134.

    Article  PubMed  CAS  Google Scholar 

  • McCracken JA. Prostaglandin F: the luteolytic hormone. In: Curtis-Prior P, ed. The Eicosanoids. New York, NY: John Wiley & Sons 2004:525–545.

    Chapter  Google Scholar 

  • Momma K. Foetal and neonatal ductus arteriosus. In: Curtis-Prior P, ed. The Eicosanoids. New York, NY: John Wiley & Sons 2004:576–590.

    Google Scholar 

  • Narumiya S, Fitzgerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 2001;108:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Negeshi M, et al. Signal transduction of the isoforms of mouse prostaglandin E receptor EP3 subtype. Adv Prosta Thromb Leuk Res 1995;23:255–257.

    Google Scholar 

  • O’Flaherty JT, Wykle RL. Biochemical interactions of platelet-activating factor with eicosanoids. In: Curtis-Prior P, ed. The Eicosanoids. New York, NY: John Wiley & Sons 2004:585–592.

    Google Scholar 

  • Piper PF, Letts LG. Biology of leukotrienes. In: Curtis-Prior PB, ed. Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids. Edinburgh, UK: Churchill Livingstone 1988:616–624.

    Google Scholar 

  • Robbiani DF, et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3B,ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 2000;103:757–786.

    Article  PubMed  CAS  Google Scholar 

  • Roberts LJ II, Morrow JD. Isoprostanes: novel markers of endo-genous lipid peroxidation and potential mediators of oxidant injury. Ann NY Acad Sci 1994;744:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Robinson DS, Campbell D, Barnes PJ. Addition of leukotriene antagonists to therapy in chronic persistent asthma: a double-blind placebo-controlled trial. Lancet 2001;235:2007–2011.

    Article  Google Scholar 

  • Sakamoto K, et al. Cloning and characterization of the novel isoforms for PGFα receptor in the bovine corpus luteum. DNA Seq 2002;13:307–311.

    PubMed  CAS  Google Scholar 

  • Samuelsson B, et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987;2:1171–1176.

    Article  Google Scholar 

  • Shemesh M, et al. Expression of functional LH receptor and its messenger ribonucleic acid in bovine uterine veins: LH induction of cyclooxygenase and augmentation of prostaglandin production in bovine uterine veins. Endocrinology 1997;138:4844–4851.

    Article  PubMed  CAS  Google Scholar 

  • Skarnes RC, Brown SK, Hull SS, McCracken JA. Role of prostaglandin E in the biphasic fever response to endotoxin. J Exp Med 1981;154:1212–1224.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen PW, Goetz FW. Pheromonal and reproductive function of F prostaglandins and their metabolites in teleost fish. J Lipid Mediators 1993;6:385–393.

    CAS  Google Scholar 

  • Stjernschantz J, et al. Microvascular effects of selective prostaglandin analogues in the eye with special reference to latanoprost and glaucoma treatment. Prog Retin Eye Res 2000;19:459–596.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Narumiya S, Ichikawa. Distribution and function of prostanoid receptors: studies from knockout mice. Prog Lipid Res2000;39:289–314.

    Article  PubMed  CAS  Google Scholar 

  • Towle TA, Tsang PCW, Milvae RM, Newbury MK, McCracken JA. Dynamic in vivo changes in tissue inhibitors of metalloproteinase 1 and 2, and in matrix metalloproteinases 2 and 9, during PGF-induced luteolysis in sheep. Biol Reprod 2002;66:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  • Vanderhoek JY. Regulation of lipoxygenase enzymes in leukocytes. Immunol Ser 1992;57:77–86.

    PubMed  CAS  Google Scholar 

  • von Euler US. Biology of prostanoids. In: Curtis-Prior PB, ed. Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids. Edinburgh, UK: Churchill Livingstone 1988:1–7.

    Google Scholar 

  • Watanabe K, et al. Role of prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 1999;59:5093–5096.

    PubMed  CAS  Google Scholar 

  • Weggen S, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 2001;414:212–216.

    Article  PubMed  CAS  Google Scholar 

  • Weissmann G. Prostaglandins as modulators rather then mediators of inflammation. J Lipid Mediators 1993;6:275–286.

    CAS  Google Scholar 

  • Yokomizo T, et al. A second leukotriene B4 receptor, BLT2: a new therapeutic target in inflammation and immunological disorders. JExp Med 2000;192:421–431.

    Article  CAS  Google Scholar 

  • Zurier RB. Prostaglandins: then and now and next. Semin Arthritis Rheum 2003;33:137–139.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McCracken, J.A. (2005). Prostaglandins and Leukotrienes. In: Melmed, S., Conn, P.M. (eds) Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59259-829-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-829-8_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-427-2

  • Online ISBN: 978-1-59259-829-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics