Skip to main content

Effects of the Ketogenic Diet on Acute Seizure Models

  • Chapter
Book cover Epilepsy and the Ketogenic Diet

Part of the book series: Nutrition and Health ((NH))

  • 784 Accesses

Abstract

The ketogenic diet (KD) is both a therapy and a tool for investigating the mechanisms of seizures and, perhaps, epilepsy. Despite our ignorance of the mechanisms by which the KD acts to alter seizures, the observation that seizure threshold can vary widely depending on what an animal eats suggests that seizure threshold is a (patho)physiological variable. The general hypothesis underlying experimental studies of the KD is that, by understanding the physiological changes consequent to a switch from a carbohydrate-based metabolism to one based on fats, we might gain insight into fundamental processes that affect ictogenesis. If a person whose seizures are controlled by a KD abandons the diet abruptly and suffers a seizure, then we might consider elevated blood glucose (or decreased ketonemia) to be ictogenic. Because central nervous system (CNS) metabolism is normally based entirely on glucose, the success of KDs in treating seizures and epilepsies presents interesting questions and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prasad AN, Stafstrom CE, Holmes GE Alternative epilepsy strategies: the ketogenic diet, immunoglobulins, and steroids. Epilepsia 1996;37 (Suppl 1):S81—S95.

    Article  PubMed  Google Scholar 

  2. Merritt HH, Putnam TJ. Sodium diphenylhydantoinate in the treatment of convulsive disorders. J Am Med Assoc 1938;111:1068–1073.

    Article  Google Scholar 

  3. Richards RK, Everett GM. Analgesic and anticonvulsive properties of 3,5,5-trimethyloxazoliidine2,4-dione (Tridione). Fed Proc 1944;3:39.

    Google Scholar 

  4. Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 1978;19:409–428.

    Article  PubMed  CAS  Google Scholar 

  5. Schachter SC. Current evidence indicates that antiepileptic drugs are anti-ictal, not antiepileptic. Epilepsy Res 2002;50:67–70.

    Article  PubMed  CAS  Google Scholar 

  6. Jacobs MP, Fischbach, GD, Davis, MR, Dichter MA, Dingledine R, Lowenstein DH, Morrell MJ, Noebels JL, Rogawski MA, Spencer SS, Theodore WH. Future directions for epilepsy research. Neurology 2001;57:1536–1542.

    Article  PubMed  CAS  Google Scholar 

  7. Meldrum B. Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs? Epilepsy Res 2002;50:33–40.

    Article  PubMed  CAS  Google Scholar 

  8. Sankar R, Weaver DF. Basic principles of medicinal chemistry. In: Engel J Jr, Pedley TA (eds.). Epilepsy: A Comprehensive Textbook, Vol. 2. Philadelphia, Lippincott-Raven, 1997, pp. 1394–1403.

    Google Scholar 

  9. MacLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 1983;227:779–789.

    Google Scholar 

  10. Schwarz J, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na+ currents in mammalian myelinated nerve fibers. Epilepsia 1989;30:286–294.

    Article  PubMed  CAS  Google Scholar 

  11. Jung MJ, Lippert B, Metcalf BW, Bohlen P, Schechter PI. Gammavinyl GABA (4-amino-hex-5enoic acid), a new selective irreversible inhibitor of GABA-T; effects on brain GABA metabolism in mice. J Neurochem 1977;29:797–802.

    Article  PubMed  CAS  Google Scholar 

  12. Browne TR, Mattson RH, Penry JK, Smith DB, Treiman DM, Wilder BJ, Ben-Menachem E, Napoliello MJ, Sherry KM, Szabo GK. Vigabatrin for refractory complex partial seizures. Multicenter single-blind study and long-term follow-up. Neurology 1987;37:184–189.

    Article  PubMed  CAS  Google Scholar 

  13. Sayin Ü, Cengiz S, Altug T. Vigabatrin as an anticonvulsant against pentylenetetrazol seizures. Pharmacol Res 1993;28:325–331.

    Article  PubMed  CAS  Google Scholar 

  14. Hosford DA, Wang Y. Utility of the lethargic (LH/LH) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia 1997;38:408–414.

    Article  PubMed  CAS  Google Scholar 

  15. Schechter PJ, Trainier Y, Jung MJ, Sjoerdsma A. Antiseizure activity of γ-acetylenic γ-aminobutyric acid: a catalytic irreversible inhibitor of γ-aminobutyric acid transaminase. J Pharmacol Exp Ther 1977;201:606–612.

    PubMed  CAS  Google Scholar 

  16. Schechter PJ, Trainier Y. Effect of elevated brain GABA concentration on the actions of bicuculline and picrotoxin in mice. Psychopharmacology 1977;54:145–148.

    Article  PubMed  CAS  Google Scholar 

  17. Gale K, Iadorola MJ. Seizure protection and increased nerve terminal GABA: delayed effects of GABA transaminase inhibition. Science 1980;208:288–291.

    Article  PubMed  CAS  Google Scholar 

  18. Gale K. Role of the substantia nigra in GABA-mediated anticonvulsant actions. In: Delgado-Escueta, Ward AA, Woodbury DM, Porter RI (eds.). Basic Mechanisms of the Epilepsies: Molecular and Cellular Approaches. Raven, New York, Advances in Neurology, Vol. 44, 1986, pp. 343–364.

    Google Scholar 

  19. Appleton DB, DeVivo DC. An animal model for the ketogenic diet. Epilepsia 1974;15:211–227.

    Article  PubMed  CAS  Google Scholar 

  20. Macdonald RL. Cellular effects of antiepileptic drugs. In: Engel J Jr and Pedley TA (eds.). Epilepsy: A Comprehensive Textbook, Vol. 2. Philadelphia, Lippincott-Raven, 1997, pp. 1383–1391.

    Google Scholar 

  21. Llinás R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 1981;315:569–584.

    PubMed  Google Scholar 

  22. Swinyard EA. Laboratory evaluation of antiepileptic drugs. Epilepsia 1969;10:107–119.

    Article  PubMed  CAS  Google Scholar 

  23. Wilder RM. The effects of ketonemia on the course of epilepsy. Mayo Clin Bull 1921;2:307–308.

    Google Scholar 

  24. Freeman JM, Kelly MT, Freeman JB. The Epilepsy Diet Treatment: An Introduction to the Ketogenic Diet. Demos, New York, 1994.

    Google Scholar 

  25. Huttenlocher PR, Wilbourn AJ, Signore JM. Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology 1971;21:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  26. Thavendirinathan P, Mendonca A, Dell C, Likhodii SS, Musa K, Iracleous C, Cunnane SC, Burnham WM. The MCT ketogenic diet: effects on animal seizure models. Exp Neurol 2000;161:696–703.

    Article  CAS  Google Scholar 

  27. DeVivo DC, Leckie MP, Ferrendelli JS, McDougal DB Jr. Chronic ketosis and cerebral metabolism. Ann Neurol 1978;3:331–337.

    Article  Google Scholar 

  28. Al-Mudallal AS, LaManna JC, Lust WD, Harik SI. Diet-induced ketosis does not cause cerebral acidosis. Epilepsia 1996;37:258–261.

    Article  PubMed  CAS  Google Scholar 

  29. Bough KJ, Eagles DA. A ketogenic diet increases the resistance to pentylenetetrazole-induced seizures in the rat. Epilepsia 1999;40:138–143.

    Article  PubMed  CAS  Google Scholar 

  30. Bough KJ, Eagles DA. Comparison of the anticonvulsant efficacies and neurotoxic effects of valproic acid, phenytoin, and the ketogenic diet. Epilepsia 2001;42:1345–1353.

    Article  PubMed  CAS  Google Scholar 

  31. Likhodii SS, Musa K, Mendonca A, Dell C, Burnham WM, Cunnane SC. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia 2000;41:1400–1410.

    Article  PubMed  CAS  Google Scholar 

  32. DeVivo DC, Fujimoto K, Leckie MP, Agrawal HC. Subcellular distribution of ketone body metabolizing enzymes in the rat brain. J Neurochem 1976;26:635–637.

    Article  Google Scholar 

  33. DeVivo DC. The effects of ketone bodies on glucose utilization. In: Passoneau JV, Hawkins RA, Lust WD, Welsh FA (eds.). Cerebral Metabolism and Neural Function. Williams & Wilkins, Baltimore, 1980, pp. 243–254.

    Google Scholar 

  34. Yeh Y-Y, Sheehan PM. Preferential utilization of ketone bodies in the brain and lung of newborn rats. Fed Proc 1985;44:2352–2358.

    PubMed  CAS  Google Scholar 

  35. Adam PM, Räihä N, Rahiala E-L, Kekomäki. Oxidation of glucose and D-β-OH-butyrate by the early human fetal brain. Acta Paediatr Scand 1975;64:17–24.

    Article  PubMed  CAS  Google Scholar 

  36. Bough KJ, Valiyil R, Han FT, Eagles DA. Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Res 1999;35:21–28.

    Article  PubMed  CAS  Google Scholar 

  37. Bough KJ, Chen RS, Eagles DA. Path analysis shows that increasing ketogenic ratio, but not βhydroxybutyrate, elevates seizure threshold in the rat. Dev Neurosci 1999;21:400–406.

    Article  PubMed  CAS  Google Scholar 

  38. Uhlemann ER, Neims AH. Anticonvulsant properties of the ketogenic diet in mice. J Pharmacol Exp Ther 1972;180:231–238.

    PubMed  CAS  Google Scholar 

  39. Huttenlocher PR. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res 1976;10:536–540.

    Article  PubMed  CAS  Google Scholar 

  40. Otani K, Yamatodani A, Wada H, Mimaki T, Yabuuchi T. Effect of ketogenic diet on convulsive threshold and brain monoamine levels in young mice. No To Hattatsu 1984;16:196–204.

    PubMed  CAS  Google Scholar 

  41. Bough KJ, Yao SG, Eagles DA. Higher ketogenic diet ratios confer protection from seizures without neurotoxicity. Epilepsy Res 2000;38:15–25.

    Article  PubMed  CAS  Google Scholar 

  42. Harik SI, Al-Mudallal AS, LaManna JC, Lust WD, Levin BE. Ketogenic diet and the brain. Ann N Y Acad Sci 1997;835:218–224.

    Article  PubMed  CAS  Google Scholar 

  43. Harney JP, Madara J, Madara J, I’Anson H. Effects of acute inhibition of fatty acid oxidation on latency to seizure and concentrations of β-hydroxybutyrate in plasma of rats maintained on calorie restriction and/or the ketogenic diet. Epilepsy Res 2002;49:239–246.

    Article  PubMed  CAS  Google Scholar 

  44. Thio LL, Wong M, Yamada KA. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 2000;54:325–331.

    Article  PubMed  CAS  Google Scholar 

  45. Cullingford TE, Eagles DA, Sato H. The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain. Epilepsy Res 2002;49:99–107.

    Article  PubMed  CAS  Google Scholar 

  46. Cullingford TE, Dolphin CT, Bhakoo KK, Peuchen S, Canevari L, Clark JB. Molecular cloning of rat mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase and detection of the corresponding mRNA and of those encoding the remaining enzymes comprising the ketogenic 3-hydroxy-3-methylglutarylCoA cycle in central nervous system of suckling rat. Biochem J 1998;329:373–381.

    PubMed  CAS  Google Scholar 

  47. Daniel PM, Love ER, Moorehouse SR, Pratt OE, Wilson P. Factors influencing utilisation of ketonebodies by brain in normal rats and rats with ketoacidosis. Lancet 1971;2:637–638.

    Article  PubMed  CAS  Google Scholar 

  48. Sokoloff L. Metabolism of ketone bodies by the brain. Ann Rev Med 1973;24:271–280.

    Article  PubMed  CAS  Google Scholar 

  49. Seymour KJ, Bluml S, Sutherling J, Sutherling W, Ross B. Identification of cerebral acetone by 1HMRS in patients with epilepsy controlled by ketogenic diet. MAGMA 1999;8:33–42.

    PubMed  CAS  Google Scholar 

  50. Rho JM, Anderson GD, Donevan SD, White HS. Acetoacetate, acetone, and dibenzylamine (a contaminant in 1-(+)-beta-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo. Epilepsia 2002;43:358–361.

    Article  PubMed  CAS  Google Scholar 

  51. Likhodii SS, Musa K, Cunnane SC. Breath acetone as a measure of systemic ketosis assessed in a rat model of the ketogenic diet. Clin Chem 2002;48:115–120.

    PubMed  CAS  Google Scholar 

  52. Musa-Veloso K, Likhodii SS, Cunnane SC. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr 2002;76:65–70.

    PubMed  CAS  Google Scholar 

  53. Freeman JM, Vining EPG, Pillas DJ, Pyzik PL, Casey JC, Kelly MT. The efficacy of the ketogenic diet-1998: A prospective evaluation of intervention in 150 children. Pediatrics 1998;102:1358–1363.

    Article  PubMed  CAS  Google Scholar 

  54. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia 1999;40:1471–1483.

    Article  PubMed  CAS  Google Scholar 

  55. Snead OC III. Basic mechanisms of generalized absence seizures. Ann Neurol 1995;37:146–157.

    Article  PubMed  Google Scholar 

  56. Snead OC III. Antiabsence seizure activity of specific GABAB and γ-hydroxybutyric acid receptor antagonists. Pharmacol Biochem Behav 1996;53:73–79.

    Article  PubMed  CAS  Google Scholar 

  57. Marescaux C, Vergnes M, Bernasconi R. GABAB receptor antagonists: potential new antiabsence drugs. J Neural Transm 1992;35:179–188.

    CAS  Google Scholar 

  58. Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989:25:582–593.

    Article  PubMed  CAS  Google Scholar 

  59. Leresche N, Parri HR, Erdemli G, Guyon A, Turner JP, Williams SR, Asprodini E, Crunelli V. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 1998;18:4842–4853.

    PubMed  CAS  Google Scholar 

  60. Hosford DA, Clark S, Cao Z, Wilson WA Jr, Lin F-H, Morrisett RA, Huin A. The role of GABAB receptor activation in absence seizures of lethargic (LH/LH) mice. Science 1992;257:398–401.

    Article  PubMed  CAS  Google Scholar 

  61. Huang R-Q, Bell-Homer CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazoleinduced inhibition of recombinant y-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. J Pharmacol Exp Ther 2001;298:986–995.

    PubMed  CAS  Google Scholar 

  62. Bough KJ, Matthews PJ, Eagles DA. A ketogenic diet has different effects upon seizures induced by maximal electroshock and by pentylenetetrazole infusion. Epilepsy Res 2000;38:105–114.

    Article  PubMed  CAS  Google Scholar 

  63. Pollock GM, Shen DD. A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat. J Pharmacol Methods 1985;13:135–146.

    Article  Google Scholar 

  64. Olsen RW, Wong EHF, Stauber GB, King RG. Biochemical pharmacology of the y-aminobutyric acid receptor/ionophore protein. Fed Proc 1984;43:2773–2778.

    PubMed  CAS  Google Scholar 

  65. Seutin V, Johnson SW. Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol Sci 1999;20:268–270.

    Article  PubMed  CAS  Google Scholar 

  66. Bough KJ, Gudi K, Han FT, Rathod AH, Eagles DA. An anticonvulsant profile of the ketogenic diet in the rat. Epilepsy Res 2002;50:313–325.

    Article  PubMed  CAS  Google Scholar 

  67. Snead OC III. γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988;29:361–368.

    Article  PubMed  CAS  Google Scholar 

  68. Snead OC III. The ontogeny of [3H]y-hydroxybutyrate and [3H]GABAB binding sites: relation to the development of experimental absence seizures. Brain Res 1994;659;147–156.

    Article  PubMed  Google Scholar 

  69. Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res 1992;65:227–236.

    Article  CAS  Google Scholar 

  70. Muller-Schwarze AB, Tandon P, Liu Z, Yang Y, Holmes GL, Stafstrom CE. Ketogenic diet reduces spontaneous seizures and mossy fiber sprouting in the kainic acid model. Neuro Report 1999;10:1517–1522.

    CAS  Google Scholar 

  71. Stafstrom CE, Wang C, Jensen FE. Electrophysiological observations in hippocampal slices from rats treated with the ketogenic diet. Dev Neurosci 1999;21:393–399.

    Article  PubMed  CAS  Google Scholar 

  72. Su SW, Cilio MR, Sogawa Y, Silveira D, Holmes GL, Stafstrom CE. Timing of ketogenic diet initiation in an experimental epilepsy model. Dev Brain Res 2000;125:131–138.

    Article  CAS  Google Scholar 

  73. Rho JM, Kim DW, Robbins CA, Anderson GD, Schwartzkroin PA. Age-dependent differences in flurothyl seizure sensitivity in mice treated with a ketogenic diet. Epilepsy Res 1999;37:233–240.

    Article  PubMed  CAS  Google Scholar 

  74. Liptáková S, Velísek L, Velískovd J, Moshé SL. Effect of ganaxolone on flurothyl seizures in developing rats. Epilepsia 2000;41:788–793.

    Article  PubMed  Google Scholar 

  75. Velísek L, Velísková J, Ptachewich Y, Shinnar S, Moshé SL. Effects of MK-801 and phenytoin on flurothyl-induced seizures during development. Epilepsia 1995;36:179–185.

    Article  PubMed  Google Scholar 

  76. Millichap JG, Jones JD, Rudis BP. Mechanisms of anticonvulsant action of ketogenic diet. Am J Dis Child 1964;107:593–604.

    PubMed  CAS  Google Scholar 

  77. Appleton DB, DeVivo DC. An experimental animal model for the effect of ketogenic diet on epilepsy. Proc Aust Assoc Neurol 1973;10:75–80.

    PubMed  CAS  Google Scholar 

  78. Nakazawa M, Kodama S, Matsuo T. Effects of ketogenic diet on electroconvulsive threshold and brain contents of adenosine nucleotides. Brain Dev 1983;5:375–380.

    Article  PubMed  CAS  Google Scholar 

  79. Davenport VD, Davenport HW. The relation between starvation, metabolic acidosis and convulsive seizures in rats. J Nutr 1948;36:139–151.

    PubMed  CAS  Google Scholar 

  80. Hori A, Tandon P, Holmes GL, Stafstrom CE. Ketogenic diet: effects on expression of kindled seizures and behavior in adult rats. Epilepsia 1997;38:750–758.

    Article  PubMed  CAS  Google Scholar 

  81. Bitterman N, Skapa E, Gutterman A. Starvation and dehydration attenuate CNS oxygen toxicity in rats. Brain Res 1997;761:146–150.

    Article  PubMed  CAS  Google Scholar 

  82. Chavko M, Braisted JC, Harabin AL. Attenuation of brain hyperbaric oxygen toxicity by fasting is not related to ketosis. Undersea Hyperbaric Med 1999;26:99–103.

    CAS  Google Scholar 

  83. Mahoney AW, Hendricks DG, Bernard N, Sisson DV. Fasting and ketogenic diet effects on audiogenic seizure suscentibility of magnesium deficient rats. Pharmacol Biochem Behav 1983;18:683–687.

    Article  PubMed  CAS  Google Scholar 

  84. White HS, Wolf HH, Woodhead JH, Kupferberg HJ. The National Institutes of Health anticonvulsant drug development program: Screening for efficacy. In: French J, Leppik I, Dichter MA (eds.). Advances in Neurology, Antiepileptic Drug Development, Vol. 76. Lippincott-Raven, Philadelphia, 1998, pp. 29–47.

    Google Scholar 

  85. Gale K. Chemoconvulsant seizures: advantages of focally-evoked seizure models. Ital J Neurol Sci 1995;16:17–25.

    Article  PubMed  CAS  Google Scholar 

  86. Miller JW, McKeon AC, Ferrendelli JA. Functional anatomy of pentylenetetrazol and electroshock seizures in the rat brainstem. Ann Neurol 1987;22:615–621.

    Article  PubMed  CAS  Google Scholar 

  87. Okada R, Negishi N, Nagaya H. The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazole-induced seizures. Brain Res 1989;480:383–387.

    Article  PubMed  CAS  Google Scholar 

  88. Zapater P, Javaloy J, Roman JF, Vidal MT, Horga JF. Anticonvulsant effects of nimodipine and two novel dihydropyridines (PCA 50922 and PCA 50941) against seizures elicited by pentylenetetrazole and electroconvulsive shock in mice. Brain Res 1998;796:311–314.

    Article  PubMed  CAS  Google Scholar 

  89. Fischer W, van der Groot H. Effect of clobenpropit, a centrally acting histamine H3-receptor antagonist, on electroshock- and pentylenetetrazole-induced seizures in mice. J Neural Transm 1998;105:587–599.

    Article  PubMed  CAS  Google Scholar 

  90. Rostock A, Tober C, Rundfelt C, Bartsch R, Engel J, Polymeropoulos EE, Kutscher B, Löscher W, Honack D, White HS, Wolf HH. D-23129: a new anti-convulsant with a broad spectrum of activity in animal models of epileptic seizures. Epilepsy Res 1996;23:211–223.

    Article  PubMed  CAS  Google Scholar 

  91. Cooper EC. Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 2001;42 (Suppl 5):S49–S54.

    Article  Google Scholar 

  92. Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 2002;61:921–927.

    Article  PubMed  CAS  Google Scholar 

  93. Lack D. The factors limiting mammals. In: Lack D (ed.). The Natural Regulation of Animal Numbers. Clarendon, Oxford, UK, 1954, Chapter 16.

    Google Scholar 

  94. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council. Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, DC, 1996.

    Google Scholar 

  95. Friedman JM. A war on obesity, not the obese. Science 2003;299:856–858.

    Article  PubMed  CAS  Google Scholar 

  96. Bolis CL. Epilepsy in developing countries. In: Penry JK (ed.). Epilepsy. The Eighth International Symposium. Raven, New York, 1977, pp. 355–357.

    Google Scholar 

  97. Moshé SL, Albala BJ, Ackermann RF, Engel J Jr. Increased seizure susceptibility of the immature brain. Dev Brain Res 1983;7:81–85.

    Article  Google Scholar 

  98. Medina MT, Rosas E, Rubio-Donnadieu F, Sotelo J. Neurocysticercosis as the main cause of lateonset epilepsy in Mexico. Arch Intern Med 1990;150:325–327.

    Article  PubMed  CAS  Google Scholar 

  99. Shorvon SD, Bharucha NE. Epilepsy in developing countries: epidemiology, aetiology and health care. In: Laidlaw J, Richens A, Chadwickle D (eds.). A Textbook of Epilepsy, 4th ed. Churchill Livingston, Edinburgh, 1993, pp. 613–630.

    Google Scholar 

  100. Palencia G, Calvillo M, Sotelo J. Chronic malnutrition caused by a corn-based diet lowers the threshold for pentylenetetrazole-induced seizures in rats. Epilepsia 1996;37:583–586.

    Article  PubMed  CAS  Google Scholar 

  101. Withrow CD. The ketogenic diet: mechanisms of anticonvulsant action. In: Glaser GH, Penry JK, Woodbury DM (eds.). Antiepileptic Drugs: Mechanisms of Action. Raven, New York, 1980, pp. 635–642.

    Google Scholar 

  102. Noebels JL, Rees M, Gardiner RM. Molecular genetics and epilepsy genes. In: Engel J Jr, Pedley TA (eds.). Epilepsy: A Comprehensive Textbook, Vol. 1. Lippincott-Raven, Philadelphia, 1997, pp. 211–216.

    Google Scholar 

  103. Seyfried TN, Todorova MT, Poderycki MJ. Experimental models of multifactorial epilepsies: the EL mouse and mice susceptible to audiogenic seizures. Adv Neurol 1999;79:279–290.

    PubMed  CAS  Google Scholar 

  104. Dzeja PP, Terzic A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J 1998;12:523–529.

    PubMed  CAS  Google Scholar 

  105. Ziegler DR, Araújo E, Rotta LN, Perry ML, Gonçalves C-A. A ketogenic diet increases protein phosphorylation in brain slices of rats. J Nutr 2002;132:483–487.

    PubMed  CAS  Google Scholar 

  106. Pan JW, Bebin EM, Chu WJ, Hetherington HP. Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 1999;40:703–707.

    Article  PubMed  CAS  Google Scholar 

  107. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 1998;282:1141–1144.

    Article  PubMed  CAS  Google Scholar 

  108. Shyng S-L, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 1998;282:1138–1141.

    Article  PubMed  CAS  Google Scholar 

  109. Yamada K, Ji JJ, Yuan H, Mild T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 2001;292:1543–1546.

    Article  PubMed  CAS  Google Scholar 

  110. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998;78:53–97.

    PubMed  CAS  Google Scholar 

  111. Thompson RJ, Nurse CA. Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J Physiol 1998;512.2:421–434.

    Article  PubMed  CAS  Google Scholar 

  112. Kekwick A, Pawan GLS. The effect of high fat and high carbohydrate diets on rates of weight loss in mice. Metabolism 1964;13:87–97.

    Article  PubMed  CAS  Google Scholar 

  113. Hawkins RA, Mans AM, Davis DW. Regional ketone body utilization by rat brain in starvation and diabetes. Am J Physiol 1986;250:E169–E178.

    PubMed  CAS  Google Scholar 

  114. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 1994;14:125–131.

    Article  PubMed  CAS  Google Scholar 

  115. Davis JW, Wirtshafter D, Asin KE, Brief D. Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 1981;212:81–83.

    Article  PubMed  CAS  Google Scholar 

  116. Sun M, Martin RJ, Edwards GL. ICV β-hydroxybutyrate: effects on food intake, body composition, and body weight in rats. Physiol Behav 1997;61:433–436.

    Article  PubMed  CAS  Google Scholar 

  117. Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990;116:233–238.

    Article  PubMed  CAS  Google Scholar 

  118. MacLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltagedependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986;237:1001–1011.

    Google Scholar 

  119. Stefan H, Snead OC III. Absence seizures. In: Engel J Jr, Pedley TA (eds.). Epilepsy: A Comprehensive Textbook, Vol. 2. Lippincott-Raven, Philadelphia, 1997, pp. 579–590.

    Google Scholar 

  120. DeVivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood—brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991;325:703–709.

    Article  PubMed  Google Scholar 

  121. Erecinska M, Nelson D, Daikhin Y, Yudkoff M. Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem 1996;67:2325–2334.

    Article  PubMed  CAS  Google Scholar 

  122. Yudkoff M, Diakhin Y, Nissim I, Lazarow A, Nissim I. Brain amino acid metabolism and ketosis. J Neurosci Res 2001;66:272–281.

    Article  PubMed  CAS  Google Scholar 

  123. Yudkoff M, Diakhin Y, Nissim I, Lazarow A, Nissim I. Ketogenic diet, amino acid metabolism, and seizure control. J Neurosci Res 2001;66:931–940.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eagles, D.A., Bough, K.J. (2004). Effects of the Ketogenic Diet on Acute Seizure Models. In: Stafstrom, C.E., Rho, J.M. (eds) Epilepsy and the Ketogenic Diet. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-808-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-808-3_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-477-7

  • Online ISBN: 978-1-59259-808-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics